Memory leak

Revision as of 05:32, 26 May 2009 by Deleted user (Talk | contribs)

Jump to: navigation, search

exchange rate australian us [ asian face girl ] [ automatic login linux ] top [ automotive designs ] [ auto parts tampa fl ] [ antivirus realtime protection failed to load ] [ auto dumfries insurance ] [ nortan antivirus 2005 activation key ] [ australian photographic portrait prize 2005 ] [ motor cycle parts australia ] [ avg antivirus free software download ] [ mobile phone review australia ] webmap http [ white map of asia ] africa formulation housing in policy south [ educational links to wild african animals ] [ antivirus software downloadable ] [ employment agencies sydney australia ] [ anz bank australia swift code ] [ society ethnicity asian caucasian armenian armenia ] [ network power australia ] [ microsoft antivirus software downloads ] [ antivirus sofware ] map map [ mature asian female ] [ teaching hospitals australia ] [ top antivirus software reviews ] top [ autographed baseball jerseys ] [ african american wedding planner ] [ australian continent map ] uninstall norton antivirus 2003 professional [ automated based business business development home personal ] mature asian photos index [ avg+antivirus+free ] [ norton antivirus 2004 professional serial number ] [ hospital automated time and attendance software ] top [ antivirus trialware download ] [ asian figure skaters ] [ african tattoo history ] [ african drums history ] [ helmut lotti out of africa ] [ opening of parliament south africa 2005 ] [ auto insurance faq in ri ] [ endangered animal in south africa ] This is a Vulnerability. To view all vulnerabilities, please see the Vulnerability Category page.

This article includes content generously donated to OWASP by Fortify.JPG.

Last revision (mm/dd/yy): 05/26/2009

Vulnerabilities Table of Contents


A memory leak is an unintentional form of memory consumption whereby the developer fails to free an allocated block of memory when no longer needed. The consequences of such an issue depend on the application itself. Consider the following general three cases:

Case Description of Consequence
Short Lived User-land Application Little if any noticable effect. Modern operating system recollects lost memory after program termination.
Long Lived User-land Application Potentially dangerous. These applications continue to waste memory over time, eventually consuming all RAM resources. Leads to abnormal system behavior
Kernel-land Process Very dangerous. Memory leaks in the kernel level lead to serious system stability issues. Kernel memory is very limited compared to user land memory and should be handled cautiously.

Memory is allocated but never freed.

Memory leaks have two common and sometimes overlapping causes:

  • Error conditions and other exceptional circumstances.
  • Confusion over which part of the program is responsible for freeing the memory

Most memory leaks result in general software reliability problems, but if an attacker can intentionally trigger a memory leak, the attacker might be able to launch a denial of service attack (by crashing the program) or take advantage of other unexpected program behavior resulting from a low memory condition [1].

Risk Factors

  • Talk about the factors that make this vulnerability likely or unlikely to actually happen
  • Discuss the technical impact of a successful exploit of this vulnerability
  • Consider the likely [business impacts] of a successful attack


Example 1

The following example is a basic memory leak in C:

#include <stdlib.h>
#include <stdio.h>

#define  LOOPS    10
#define  MAXSIZE  256

int main(int argc, char **argv)
     int count = 0;
     char *pointer = NULL;

     for(count=0; count<LOOPS; count++) {
          pointer = (char *)malloc(sizeof(char) * MAXSIZE);


     return count;
  • In this example, we have 10 allocations of size MAXSIZE. Every allocation, with the exception of the last, is lost. If no pointer is pointed to the allocated block, it is unrecoverable during program execution. A simple fix to this trivial example is to place the free() call inside of the 'for' loop.
  • Here is a real world example of a memory leak causing denial of service

Example 2

The following C function leaks a block of allocated memory if the call to read() fails to return the expected number of bytes:

	char* getBlock(int fd) {
	char* buf = (char*) malloc(BLOCK_SIZE);
	if (!buf) {
	  return NULL;
	if (read(fd, buf, BLOCK_SIZE) != BLOCK_SIZE) {
	  return NULL;
	return buf;

Related Attacks

Related Vulnerabilities

Related Controls

Avoiding memory leaks in applications is difficult for even the most skilled developers. Luckily, there are tools with aide in tracking down such memory leaks. One such example on the Unix/Linux environment is Valgrind. Valgrind runs the desired program in an environment such that all memory allocation and de-allocation routines are checked. At the end of program execution, Valgrind will display the results in an easy to read manner. The following is the output of Valgrind using the flawed code above:

[root@localhost Programming]# gcc -o leak leak.c
[root@localhost Programming]# valgrind ./leak
==6518== Memcheck, a memory error detector for x86-linux.
==6518== Copyright (C) 2002-2005, and GNU GPL'd, by Julian Seward et al.
==6518== Using valgrind-2.4.0, a program supervision framework for x86-linux.
==6518== Copyright (C) 2000-2005, and GNU GPL'd, by Julian Seward et al.
==6518== For more details, rerun with: -v
==6518== ERROR SUMMARY: 0 errors from 0 contexts (suppressed: 13 from 1)
==6518== malloc/free: in use at exit: 2304 bytes in 9 blocks.
==6518== malloc/free: 10 allocs, 1 frees, 2560 bytes allocated.
==6518== For counts of detected errors, rerun with: -v
==6518== searching for pointers to 9 not-freed blocks.
==6518== checked 49152 bytes.
==6518== LEAK SUMMARY:
==6518==    definitely lost: 2304 bytes in 9 blocks.
==6518==      possibly lost: 0 bytes in 0 blocks.
==6518==    still reachable: 0 bytes in 0 blocks.
==6518==         suppressed: 0 bytes in 0 blocks.
==6518== Use --leak-check=full to see details of leaked memory.
  • As we can see in this example, we leak 9 block with a total of 2304 bytes as we expected. If we were to place the free() call inside of the loop, we would get 0 memory blocks definitely lost.

Related Technical Impacts


[1] J. Whittaker and H. Thompson. How to Break Software Security. Addison Wesley, 2003.