Insecure Randomness

From OWASP
Revision as of 10:33, 18 July 2006 by Weilin Zhong (Talk | contribs)

Jump to: navigation, search
This article includes content generously donated to OWASP by Fortify.JPG.

This is a Vulnerability. To view all vulnerabilities, please see the Vulnerability Category page.


Abstract

Standard pseudo-random number generators cannot withstand cryptographic attacks.

Description

Insecure randomness errors occur when a function that can produce predictable values is used as a source of randomness in security-sensitive context.

Computers are deterministic machines, and as such are unable to produce true randomness. Pseudo-Random Number Generators (PRNGs) approximate randomness algorithmically, starting with a seed from which subsequent values are calculated.

There are two types of PRNGs: statistical and cryptographic. Statistical PRNGs provide useful statistical properties, but their output is highly predictable and forms an easy to reproduce numeric stream that is unsuitable for use in cases where security depends on generated values being unpredictable. Cryptographic PRNGs address this problem by generating output that is more difficult to predict. For a value to be cryptographically secure, it must be impossible or highly improbable for an attacker to distinguish between it and a truly random value. In general, if a PRNG algorithm is not advertised as being cryptographically secure, then it is probably a statistical PRNG and should not be used in security-sensitive contexts.

Examples

The following code uses a statistical PRNG to create a URL for a receipt that remains active for some period of time after a purchase.

	String GenerateReceiptURL(String baseUrl) {
		Random ranGen = new Random();
		ranGen.setSeed((new Date()).getTime());
		return(baseUrl + Gen.nextInt(400000000) + ".html");
	}

This code uses the Random.nextInt() function to generate "unique" identifiers for the receipt pages it generates. Because Random.nextInt() is a statistical PRNG, it is easy for an attacker to guess the strings it generates. Although the underlying design of the receipt system is also faulty, it would be more secure if it used a random number generator that did not produce predictable receipt identifiers, such as a cryptographic PRNG.

Related Threats

Related Attacks

Related Vulnerabilities

Related Countermeasures

Random Number Generator

Category:Cryptography

Categories

This article is a stub. You can help OWASP by expanding it or discussing it on its Talk page.