
Copyright © The OWASP Foundation
Permission is granted to copy, distribute and/or modify this document
under the terms of the OWASP License.

The OWASP Foundation

OWASP

http://www.owasp.org

Dynamic Vulnerability
Remediation with ModSecurity:
An Incident Response Approach

Ryan C. Barnett
Director of Application Security
ModSecurity Community Manager
Breach Security
Ryan.Barnett@breach.com

April 16th 2008

2OWASP

Introduction - Ryan Barnett
Background

Director of Application Security at Breach.
ModSecurity Community Manager.
Background as an IDS/Web Security Admin.
Author of Preventing Web Attacks with Apache
(Addison/Wesley, 2006).

3OWASP

Introduction - Ryan Barnett
Open Source and Community Projects

�Board Member, Web Application Security Consortium.
�Project Leader, WASC Distributed Open Proxy Honeypots.
�Speaker/Instructor, Open Web Application Security Project
�Courseware Developer/Instructor for the SANS Institute.
�Project Leader, Center for Internet Security’s Apache
Benchmark.

4OWASP

Agenda

Dynamic Vulnerability Remediation Introduction
Incident Response Process Approach

Preparation
Identification
Analysis
Virtual Patch Creation
Implementation/Testing
Recovery and Follow-Up

Examples
Public Vulnerability Announcement
Source Code Review
Vulnerability Assessment
Real Incident: SQL Injection

Complex Vulnerabilities
Conclusion/Questions

Dynamic Vulnerability Remediation with ModSecurity:
An Incident Response Approach

Ryan C. Barnett
Ryan.Barnett@breach.com

The OWASP Foundation
http://www.owasp.org

Dynamic Vulnerability Remediation:
What is it?

6OWASP

What is Dynamic Vulnerability Remediation?

Known by many names
Virtual Patching
External Patching
Just-in-time Patching

Definition
A policy for an intermediary device (i.e. - Web Application
Firewall - WAF) that is able to identify and block attempts to
exploit a specific web application vulnerability.

Method
The WAF analyzes transactions and intercepts attacks in transit,
so malicious traffic never reaches the web application.

Result
Provides protection for a vulnerable web application.

7OWASP

Traditional Patching
Many Challenges and is Time Consuming

Last System
Patched &
Rebooted

Vulnerability
Published and
Patch Released

Push new
Image

Test
Patch

Evaluate
Patch

Develop &
document
new image

Notice
Patch

Start Safe
High value systems are difficult to patch:

Patch may impact the system
Patches inherently slow and expensive to test
Most patches not designed to be easily reversible
Service disruption or machine reboot

8OWASP

Traditional Patching:
A Race Against the Clock

Vulnerability
published

Time To
Patch 55 days

Exploit
Code

Availability
6 days

1 – Symantec Internet Security Threat Report, H3, 2007

9OWASP

Vulnerability Scanning Statistics

Average # of days for the top 5 URGENT
severity vulnerabilities to be fixed

Traditional code fixes take too long…
1 – Whitehat Website Security Statistics Report, March 2008

10OWASP

Dynamic Vulnerability Remediation Concept
Preventing Exploitation During Patching

Bad Guys:
ATTACK

time

Last System
Patched &
Rebooted

Vulnerability
Published and
Patch Released

Push new
Image

Test
Patch

Evaluate
Patch

Develop &
document
new image

Notice
Patch

11OWASP

Value (1)

Scalable solution as it is implemented in few
locations vs. installing patches on all hosts.
Reduces risk until a vendor-supplied patch is
released or while a patch is being tested and
applied.
Less likelihood of introducing conflicts as
libraries and support code files are not
changed.

12OWASP

Traditional Patching Trade-Off:
Applying a Bad Patch vs. Exploit Exposure

1 – http://immunix.com/~crispin/time-to-patch-usenix-lisa02.pdf

13OWASP

Value (2)

Protection for mission-critical systems that may
not be taken offline.
Reduced or eliminated time and money spent
performing emergency patching.
Allows organizations to maintain normal
patching cycles.

14OWASP

Why ModSecurity?
Free - ☺
Deep understanding of HTTP and HTML

Breaking up to individual fields: headers, parameters, uploaded files.
Validation of field attributes such as content, length or count
Correct breakup and matching of transactions and sessions.
Compensation for protocol caveats and anomalies, for example cookies.

Robust parsing:
Unique parameters syntax
XML requests (SOAP, Web Services)

Anti Evasion features:
Decoding
Path canonizations
Thorough understanding of application layer issues: Apache request line
delimiters, PHP parameter names anomalies.

Rules instead of signatures:
Sessions & state management, Logical operators, Control structures.

Dynamic Vulnerability Remediation with ModSecurity:
An Incident Response Approach

Ryan C. Barnett
Ryan.Barnett@breach.com

The OWASP Foundation
http://www.owasp.org

Incident Response Phase 1:
Preparation

16OWASP

Preparation Tasks:
You Can’t Patch What You Don’t Know

Ensure that you are signed up for on all vendor alert
mail-lists for commercial/open source software that you
are using.

This should include the SANS @Risk weekly newsletter
(http://www.sans.org/newsletters/risk/) as it includes Web
Application vulnerability sections.

17OWASP

Preparation Tasks:
Deploy ModSecurity In Advance

As time is critical during incident response, it
would be a poor time to have to get approvals
to install new software.

You can install ModSecurity in embedded mode on
your Apache servers, or
Install ModSecurity on an Apache reverse proxy
server. The advantage with this deployment is that
you can create fixes for non-Apache servers.

Even if you do not use ModSecurity under
normal circumstances, it is best to have it “on
deck” ready to be enabled if need be.

18OWASP

Preparation Tasks:
Pre-Authorization

Virtual Patches need to be implemented ASAP
so the normal governance processes and
authorizations steps for standard software
patches need to be expedited.
Since virtual patches are not actually modifying
source code, they do NOT need to have the
same amount of regression testing as normal
software patches.
The authorization process should be similar to
how your organization handles updates to
AV/NIDS signatures.

19OWASP

Preparation Tasks:
Increase Audit Logging (1)

The Common Log Format (CLF) that is
extensively used by web servers does not
contain enough detail to accurately identify or
confirm exploit attempts.
Critical data such as the full Request Headers
and Request Body (such as POST payloads) are
not normally logged.

For instance, here is an example log entry in CLF
format –

What was in the POST Payload???

80.87.72.6 - - [22/Apr/2007:18:55:53 --0400] \
"POST /xmlrpc.php HTTP/1.1" 200 293

20OWASP

Preparation Tasks:
Increase Audit Logging (2)

SecAuditEngine handles the creation of audit logs.
Possible values are:

On - log all transactions by default – can potentially consume a
lot of resources.
Off - do not log transactions by default.
RelevantOnly - by default only log transactions that have
triggered a warning or an error, or have a status code that is
considered to be relevant (see SecAuditLogRelevantStatus).

Recommend On for the following situations
Initial WAF deployment/testing.
Sensitive areas of web application.
Trap and Trace during Incident Response – use
“ctl:auditEngine=On” when a rule fires.

Auditing optimization options such as excluding “static”
content can help to reduce load.

21OWASP

Preparation Tasks:
Increase Audit Logging (3)
--ddb9bf17-A--
[22/Apr/2007:18:55:53 --0400]

dGgsYX8AAAEAABJkpY8AAACG 80.87.72.6 41376
192.168.1.133 80

--ddb9bf17-B--
POST /xmlrpc.php HTTP/1.1
TE: deflate,gzip;q=0.3
Connection: TE, close
Host: www.example.com
User-Agent: libwww-perl/5.805
Content-Length: 201
--ddb9bf17-C--
<?xml

version="1.0"?><methodCall><methodName>test.method
</methodName><params><param><value><name>',''));ec
ho '_begin_';echo `id;ls /;w`;echo
'_end_';exit;/*</name></value></param></params></m
ethodCall>

POST Payload is
now available and
shows signs of OS
Command
injections.

Dynamic Vulnerability Remediation with ModSecurity:
An Incident Response Approach

Ryan C. Barnett
Ryan.Barnett@breach.com

The OWASP Foundation
http://www.owasp.org

Incident Response Phase 2:
Identification

23OWASP

Vulnerability Discovery:
Proactive Identification

Occur when an organization takes it upon
themselves to assess their web security
posture and conducts the following tasks:

Vulnerability assessment (internal or external) and
penetration tests
Source code reviews
These tasks are extremely important for custom
coded web applications.

Output
Reports details on vulnerabilities.

Action
Immediately create Virtual Patches.
Initiate normal source code fix SDLC

24OWASP

Vulnerability Discovery:
Reactive Identification

Vendor contact (e.g. pre-warning)
Occurs when there a vendor disclosures a vulnerability for
commercial web application software that you are using.

Public disclosure
Public vulnerability disclosure for commercial/open source web
application software that you are using.
Threat Level is increased as more people know about the
vulnerability.

Security incident
Most urgent situation.
Remediation must be immediate.
Blocking only the source IP is not always possible as you may
prevent legitimate users from accessing the application.
WAF rules are more flexible – it is not necessarily where you
are coming from but what you are doing

Dynamic Vulnerability Remediation with ModSecurity:
An Incident Response Approach

Ryan C. Barnett
Ryan.Barnett@breach.com

The OWASP Foundation
http://www.owasp.org

Incident Response Phase 3:
Analysis

26OWASP

Vulnerability Analysis Phase (1)
What is the name of the vulnerability?

This means that you need to have the proper CVE name/number
identified by the vulnerability announcement, vulnerability scan,
etc…

What is the impact of the problem?
It is always important to understand the level of criticality
involved with a web vulnerability. Information leakages may not
be treated in the same manner as an SQL Injection issue.

What versions of software are affected?
You need to identify what versions of software are listed so that
you can determine if the version(s) you have installed are
affected.

What configuration is required to trigger the
problem or how to tell if you are affected by the
problem?

Some vulnerabilities may only manifest themselves under certain
configuration settings.

27OWASP

Vulnerability Analysis Phase (2)
Is proof of concept exploit code available?

Many vulnerability announcements have accompanying exploit
code that shows how to demonstrate the vulnerability. If this
data is available, make sure to download it for analysis. This will
be useful later on when both developing and testing the Virtual
Patch.

Is there a work around available without patching
or upgrading?

This is where Virtual Patching actually comes into play. It is a
temporary work-around that will by organizations time while
they implement actual source code fixes.

Is there a patch available?
Unfortunately, vulnerabilities are often announced without an
accompanying patch. This leaves organizations exposed and is
why Virtual Patching has become an invaluable tool.
If there is a patch available, then you initiate the proper patch
management processes and simultaneously create a Virtual
Patch

Dynamic Vulnerability Remediation with ModSecurity:
An Incident Response Approach

Ryan C. Barnett
Ryan.Barnett@breach.com

The OWASP Foundation
http://www.owasp.org

Incident Response Phase 4:
Virtual Patch Creation

29OWASP

Virtual Patch Writing Considerations
Minimize false negatives

Do not miss attacks, even when the attacker
intentionally tries to evade detection.
� Attackers may try common evasion techniques such as using

various encoding schemes or including null bytes.
� Must therefore include normalization functions before applying

rules.

Minimize false positives
Do not ever block legitimate traffic under any
circumstances.
Most false positives arise due to one of the following:
� A weaknesses in the engine or signature language that

prevents the detection logic from being implemented with
adequate precision.

� Signatures being written without regard for false positives (in
many cases it is a sloppiness problem).

30OWASP

Virtual Patch Goal:
Minimize False Negatives

During vulnerability research, you must identify all
of the mandatory conditions for an attack to
succeed.

When testing proof-of-concept exploit code, if the
attack succeeds even when a particular variable is set
to a random value, that variable is not important for
the patch creation.

Given a set of criteria that must be satisfied for an
attack to succeed, it is possible to describe patch
logic that has zero false negatives.

Meaning an attack simply cannot succeed unless the
associated request has exactly the characteristics that
the patch is looking for.

31OWASP

Poor Rule Writing
Resulting in False Negatives

SecDefaultAction
"log,deny,phase:2,status:500,t:urlDecodeUni,t:htmlEntityDe
code,t:lowercase“

WEB-CGI csSearch.cgi arbitrary command execution attempt
SecRule REQUEST_URI "/csSearch\.cgi\?" chain

SecRule REQUEST_URI "\`"

#generic SQL injection sigs using PCRE

SecRule REQUEST_URI|ARGS|REQUEST_BODY
"/\w*(\x27|\')(\x6F|o|\x4F)(\x72|r|\x52)/ix”

#PHPNuke general SQL injection
SecRule REQUEST_URI "/modules\.php\?.*name=.*UNION.*SELECT”

Use of lowercase transformation
function however the rule is written in
upper-case

Converted Snort Rule –
can’t specify PCRE flags
in this way.

Does the
application
accepts POST
requests?

An SQL injection
does not have to use
SELECT or UNION

32OWASP

Virtual Patch Goal:
No False Positives

At this stage, the rule writer attempts to identify at least
one characteristic that would never occur in normal
traffic.
A zero false negative patch is also a zero false positive
patch if it is comprised of a characteristics that are both:

Anomalous compared to normal traffic, and
Critical to the attack’s success

Examples:
SQL Injection Attacks: special characters such as ‘ and %27 are
provided in a particular value in particular web request.
PHP Remote File Include Attacks: a remote URL is provided in a
particular value in a particular Web request.
Buffer Overflows: too much of a certain kind of data is provided
to a specific variable in a particular parameter.

33OWASP

Virtual Patch Terminology:
Negative/Positive Security

Negative Security is looking for what is dangerous such
as known web attack signature strings or character sets
outside of the normal alpha-numeric ASCII range

Example Vulnerability
� If a semi-colon is passed to parameter A of application B, then an

attacker can inject OS commands.
Example Negative Security Virtual Patch
� Would be to look for a semi-colon being passed to parameter A in

application B.

Positive Security is the security model employed to
validate acceptable input for all portions of the application

Example Vulnerability
� If a semi-colon is passed to parameter A of application B, then an

attacker can inject OS commands.
Example Positive Security Virtual Patch
� Would be to enforce only digits for parameter A in application B.

34OWASP

Negative Security vs. Positive Security:
Which is Better?

A Virtual Patch can employ either a negative or
positive security model.
Negative Security Rules

Can usually be implemented more quickly.
The issue is that evasions are more likely.

Positive Security Rules
A positive security model provides better protection,
however, it is often a manual process and thus is not
scalable and difficult to maintain for large/dynamic
sites.
A positive security model can be selectively employed
when a vulnerability alert identifies a specific location
with a problem.

Dynamic Vulnerability Remediation with ModSecurity:
An Incident Response Approach

Ryan C. Barnett
Ryan.Barnett@breach.com

The OWASP Foundation
http://www.owasp.org

Incident Response Phase 5:
Implementation/Testing

36OWASP

Implementation/Testing:
Testing Tools

In order to accurately test out the Virtual Patch, it may be
necessary to use an application other than a web
browser.
Some useful tools are –

Command line web clients such as Curl and Wget.
Local Proxy Servers such as WebScarab and Burp Proxy.
ModSecurity AuditViewer – can re-inject audit log data.

These tools will allow you to manipulate the request data
in any way desired.

37OWASP

Testing the Virtual Patch

You can use curl to send a test exploit request
$ curl -d "username=`perl -e 'print "0"x250'`"

http://www.example.com/isqlplus/login.uix

This will result in the following request
POST /isqlplus/login.uix HTTP/1.1
User-Agent: curl/7.15.4 (i686-pc-cygwin) libcurl/7.15.4

OpenSSL/0.9.8d zlib/1.2.3
Host: www.example.com
Accept: */*
Content-Length: 259
Content-Type: application/x-www-form-urlencoded

username=00
000
000
000
000

38OWASP

Verify Patch Rule Triggered

You should receive a 403 Forbidden Status
Code
This will also generate the following error
log message

[Sat Jun 09 08:45:32 2007] [error] [client
192.168.1.103] ModSecurity: Access denied with code
403 (phase 2). Match of "rx ^(\w{0,32})$" against
"ARGS:username" required. [file
"/usr/local/apache/conf/rules/modsecurity_crs_15_cus
tomrules.conf"] [line "1"] [msg "Oracle iSQLPlus
login.uix username positive policy violation"]
[hostname “www.example.com"] [uri
"/isqlplus/login.uix"] [unique_id
"hf3JssCoD4QAAApcA88AAAAB"]

39OWASP

ModSecurity Debug Log

In order to verify exactly how your new rule is
working, you should review the SecDebugLog
file.
The Debug log provides details on the rule
processing order.
You will most likely need to increase the
SecDebugLogLevel directive setting to get
enough detail to validate the patch processing.
You can selectively increase the logging based
on source IP address so that you don’t impact
performance on the web server.

40OWASP

Sample Debug Log Data
Recipe: Invoking rule 82211d8.
Executing operator !rx with param "^(POST)$" against REQUEST_METHOD.
Target value: POST
Operator completed in 17 usec.
Rule returned 0.
No match, not chained -> mode NEXT_RULE.
Recipe: Invoking rule 82214b0.
Rule returned 0.
No match, not chained -> mode NEXT_RULE.
Recipe: Invoking rule 82360d0.
Executing operator !rx with param "^(\w{0,32})$" against

ARGS:username.
Target value:

000
000
000
000

Operator completed in 13 usec.
Rule returned 1.
Match, intercepted -> returning.
Access denied with code 501 (phase 2). Match of "rx ^(\w{0,32})$"

against "ARGS:username" required. [id "1"] [msg "Postparameter
username failed validity check. Value domain: Username."] [severity
"ERROR"]

Dynamic Vulnerability Remediation with ModSecurity:
An Incident Response Approach

Ryan C. Barnett
Ryan.Barnett@breach.com

The OWASP Foundation
http://www.owasp.org

Incident Response Phase :
Recovery/Follow-Up

42OWASP

Recovery and Follow-Up
Track Virtual Patches

Although you may need to expedite the implementation of
Virtual Patches, you should still track them in your normal Patch
Management processes.
This means that you should create proper change request
tickets, etc…

Periodic Re-Evaluations
You should have periodic re-assessments to verify if/when you
can remove previous Virtual Patches once the web application
code has been updated with the real software patch.
Many people opt to keep Virtual Patches in place due to better
identification/logging vs. application or db capabilities.

Dynamic Vulnerability Remediation with ModSecurity:
An Incident Response Approach

Ryan C. Barnett
Ryan.Barnett@breach.com

The OWASP Foundation
http://www.owasp.org

Example : Public Vulnerability Announcement
Google Mini Search Appliance IE Parameter
Cross-Site Scripting Vulnerability

44OWASP

SANS @Risk Announcement
07.41.32 - CVE: Not Available
Platform: Web Application - Cross Site Scripting
Title: Google Mini Search Appliance IE Parameter
Cross-Site Scripting
Description: Google Mini Search Appliance is an
integrated hardware and software enterprise
search solution. The application is exposed to a
cross-site scripting issue because it fails to
sanitize the "ie" input parameter in the "search"
script. Google Mini Search Appliance version
3.4.14 is affected.
Ref: http://www.securityfocus.com/bid/25894

45OWASP

SecurityFocus Vulnerability Data

“ie” parameter is
vulnerable to
XSS injection
attack.

46OWASP

ModSecurity Core Rules:
Generic XSS Rules
SecRuleEngine DetectionOnly
…
SecRule REQUEST_FILENAME|ARGS|ARGS_NAMES|REQUEST_HEADERS|\
XML:/*|!REQUEST_HEADERS:Referer

"(?:\b(?:(?:type\b\W*?\b(?:text\b\W*?\b(?:j(?:ava)?|ecma|v
b)|application\b\W*?\bx(?:java|vb))script|c(?:opyparentfol
der|reatetextrange)|get(?:special|parent)folder)\b|on(?:(?
:mo(?:use(?:o(?:ver|ut)|down|move|up)|ve)|key(?:press|down
|up)|c(?:hange|lick)|s(?:elec|ubmi)t|(?:un)?load|dragdrop|
resize|focus|blur)\b\W*?=|abort\b)|(?:l(?:owsrc\b\W*?\b(?:
(?:java|vb)script|shell)|ivescript)|(?:href|url)\b\W*?\b(?
:(?:java|vb)script|shell)|background-
image|mocha):|s(?:(?:tyle\b\W*=.*\bexpression\b\W*|ettimeo
ut\b\W*?)\(|rc\b\W*?\b(?:(?:java|vb)script|shell|http):)|a
(?:ctivexobject\b|lert\b\W*?\())|<(?:(?:body\b.*?\b(?:back
groun|onloa)d|input\b.*?\btype\b\W*?\bimage|script|meta)\b
|!\[cdata\[)|(?:\.(?:(?:execscrip|addimpor)t|(?:fromcharco
d|cooki)e|innerhtml)|\@import)\b)" \

“deny,capture,ctl:auditLogParts=+E,log,auditlog,msg:'Cross
-site Scripting (XSS) Attack. Matched sign ature
<%{TX.0}>',,id:'950004',severity:'2'"

47OWASP

ModSecurity Core Rules:
Targeted XSS Blocking
SecRuleEngine DetectionOnly
<Location /search>
SecRule ARGS:ie

"(?:\b(?:(?:type\b\W*?\b(?:text\b\W*?\b(?:j(?:ava)?|ecma|v
b)|application\b\W*?\bx?:java|vb))script|c(?:opyparentfold
er|reatetextrange)|get(?:special|parent)folder)\b|on(?:(?:
mo(?:use(?:o(?:ver|ut)|down|move|up)|ve)|key(?:press|down|
up)|c(?:hange|lick)|s(?:elec|ubmi)t|(?:un)?load|dragdrop|r
esize|focus|blur)\b\W*?=|abort\b)|(?:l(?:owsrc\b\W*?\b(?:(
?:java|vb)script|shell)|ivescript)|(?:href|url)\b\W*?\b(?:
(?:java|vb)script|shell)|backgroundimage|mocha):|s(?:(?:ty
le\b\W*=.*\bexpression\b\W*|ettimeout\b\W*?)\(|rc\b\W*?\b(
?:(?:java|vb)script|shell|http):)|a(?:ctivexobject\b|lert\
b\W*?\())|<(?:(?:body\b.*?\b(?:backgroun|onloa)d|input\b.*
?\btype\b\W*?\bimage|script|meta)\b|!\[cdata\[)|(?:\.(?:(?
:execscrip|addimpor)t|(?:fromcharcod|cooki)e|innerhtml)|\@
import)\b)" \

“deny,capture,ctl:ruleEngine=On,ctl:auditLogParts=+E,log,aud
itlog,msg:Google Mini Search Appliance IE Parameter Cross-
Site Scripting Attack. Matched signature
<%{TX.0}>',id:'100000',severity:'2'“

</Location>

Dynamic Vulnerability Remediation with ModSecurity:
An Incident Response Approach

Ryan C. Barnett
Ryan.Barnett@breach.com

The OWASP Foundation
http://www.owasp.org

Example : Source Code Review
Buffer Overflow/Authentication Bypass

49OWASP

Source Code Review:
Authentication Bypass

Let’s say that a
source code
review was
conducted on the
login page of your
appExample Pseudo code

shows the
vulnerability.

50OWASP

Problems In The Code

user and
error_on_auth
variables are declared
next to each other

If error_on_auth
variable is equal to 0,
then the user is
authenticated

51OWASP

Running Stack

52OWASP

Negative Security Virtual Patch
Only apply this rule to the proper CGI script
Inspect the “login” argument
Block if the parameter payload is greater then
128 characters in length

<Location /cgi-bin/validate_replicant.cgi>
SecRule ARGS:login “^.{128,}$”
</Location>

ModSecurity 2.5 Version
<Location /cgi-bin/validate_replicant.cgi>
SecRule ARGS:login “@gt 128” t:length
</Location>

53OWASP

Positive Security Virtual Patch
Only apply this rule to the proper CGI script
ARGS should only appear on POST payload and not in a
Query_String
Ensure that there are only 2 arguments supplied and that only 1
argument is named “login”
Inspect the “login” argument

Block if the parameter payload is not an upper/lowercase letter between
0 and 25 characters in length

Apply anti-evasion functions

<Location /cgi-bin/validate_replicant.cgi>
SecRule &ARGS_GET_NAMES “@gt 0”
SecRule &ARGS_POST_NAMES “!@eq 2”
SecRule &ARGS:login “!@eq 1”
SecRule ARGS:login “!^[a-zA-Z]{0,25}$” \
“deny,log,t:urlDecodeUni,t:htmlEntityDecode, \
t:lowercase,t:removeWhitespace,t:removeComments”
</Location>

Dynamic Vulnerability Remediation with ModSecurity:
An Incident Response Approach

Ryan C. Barnett
Ryan.Barnett@breach.com

The OWASP Foundation
http://www.owasp.org

Example : Vulnerability Scan Results
OS Command Injection in Web Services

55OWASP

Vulnerability Scanning Vendor Report

Let’s say that your
vulnerability scanning
vendor identifies an
SQL Injection
problem with the
“search” function of
your application.

Exploit:/cgi-bin/badstore.cgi?searchquery=%27&action=qsearch&x=13&y=20

If you inject a meta-
character (') into the
search field, it
responds with a DB
Error

56OWASP

Resulting Page Shows DB Error Message

57OWASP

ModSecurity Alerts on the DB Error Message

58OWASP

Positive Security Virtual Patch

59OWASP

Searchquery Data Is Now Validated

Dynamic Vulnerability Remediation with ModSecurity:
An Incident Response Approach

Ryan C. Barnett
Ryan.Barnett@breach.com

The OWASP Foundation
http://www.owasp.org

Example : Real Customer Incident
SQL Injection

61OWASP

eCommerce Customer Complaints

Several of eCommerce customers notified the
fraud division.
They complained that their credit card info was
being stolen from their site.
The eCommerce company could not track down
the problem due to poor audit logging.

They could find no evidence of tampering in the MS-
SQL DB logs

They contacted Breach and we deployed our
ModSecurity appliance in DetectionOnly mode.
We quickly identified the problem…

62OWASP

SQL Injection: Reconnaissance Probe

63OWASP

SQL Injection String

64OWASP

Targeting Database Variables

65OWASP

DB Audit Log Evasion Attempt

66OWASP

SQL Injection Response

67OWASP

500 Status Code and DB Errors

68OWASP

Includes Results of Variable Query

69OWASP

SQL Injection: Stealing Customer Data

70OWASP

Targeting Credit Card Data

71OWASP

Response Includes Customer Data

72OWASP

SQL Injection:
Positive Security Virtual Patch

<Location /cart/loginxecute.asp>
SecRule ARGS:LoginEmail "!^([a-zA-Z0-

9_\-\.]+)@((\[[0-9]{1,3}\.[0-
9]{1,3}\.[0-9]{1,3}\.)|(([a-zA-Z0-9\-
]+\.)+))([a-zA-Z]{2,4}|[0-9]{1,3})$“ \

"phase:2,capture,log,deny,status:403,msg
:'Email Input Data Violation:
%{TX.0}'"

</Location>

Dynamic Vulnerability Remediation with ModSecurity:
An Incident Response Approach

Ryan C. Barnett
Ryan.Barnett@breach.com

The OWASP Foundation
http://www.owasp.org

Complex Vulnerabilities:
Stateful Rules

74OWASP

What about Complex Vulnerabilities?

We have been focusing on Atomic-based rules – which is
making decisions based on one single transaction.

Command Injection type vulnerabilities are relatively easy to
address with small virtual patches.

Stateful-based rules – which must correlate data from
multiple transactions can also be used.

These can include issues such as Brute Force Attacks, Session
Hijacking and Business Logic Flaws.
These are more challenging, however, the biggest hurdle is first
identifying the problem.

ModSecurity 2 advanced features can be utilized
Persistent Collections (initcol and setsid)
Set/Update/Decrease arbitrary variables

75OWASP

Tracking Form-based Authentication Failures

Goal - You want to be able to track failed form-based
Authentication requests. If they exceed a threshold, then
temporarily suspend access and redirect the client to a
friendly webpage.
Problem – You need to be able to do the following:

Identify when form-based authentication attempts fail.
Track the failed attempts across multiple requests.
Set a temporary blocking period.

Solution – Use the “initcol” action to create a
persistent collection based on the client’s IP address and
user-agent string, the “RESPONSE_BODY” variable location
to identify failure text within the html payload and the
“setvar” action to keep track of the number of failures.

76OWASP

Example Login Failure Message

77OWASP

Brute Force Detection Ruleset

77

SecAction phase:1,nolog,pass,initcol:ip=%{REMOTE_ADDR}_%{HTTP_USER-AGENT}
SecRule IP:SCORE "@ge 20" "phase:1,pass,log,setvar:ip.blocked=1,expirevar:ip.blocked=600“
SecRule IP:SCORE “@gt 100” phase:1,pass,log,setvar:ip.drop=1,expirevar:ip.drop=1000”
SecRule IP:DROP “@eq 1” “phase:1,drop,log,msg:’Brute Force Attack Identified’”
SecRule IP:BLOCKED "@eq 1" "phase:1,deny,log,status:302,redirect:http://www.site.com/"
<Location "login.jsp$“>
SecRule RESPONSE_BODY “your sign in information is not valid” “phase:4,nolog,t:lowercase, \
setvar:ip.score=+1,expirevar:ip.score=600”
</Location>

Protection
Brute force detection
Scanners and automation
detection
Misdemeanor scoring

Comparison
Operators

Monitoring
Capturing the username
Login Failures

State
Collection

Drop
Action

Inspect
HTML

Rate
control

78OWASP

Conclusion
There is a tremendous need for Virtual Patching:

Vulnerability disclosure is increasing.
Automated exploit code is often released in days.
Organizations have many systems that need to be patched.
Patching processes are often slow.

Virtual Patching helps to address these issues as it is able
to be quickly implemented in a WAF

This provides immediate protection from remote exploitation.
Servers do not have to be taken offline for patching.
There is less chance of service interruption that often happens
when traditional patches are installed.

ModSecurity is an excellent application to implement
Virtual Patches - www.modsecurity.org

79OWASP

Questions?

Thank you!

Ryan C. Barnett

Business: Ryan.Barnett@breach.com

Personal: RCBarnett@gmail.com

