
Consequences of a
Jailbroken iDevice
Part of the Reverse Engineering
and Code Modification
Prevention Umbrella

Agenda

•  A Brief History of iOS Attacks
•  iOS Security Basics
•  Jailbreaking 101

A BRIEF HISTORY OF IOS
ATTACKS

iPhone 2007
•  Security… what’s that?

–  Stripped-down OS
–  No privilege separation:

All processes ran as root.
–  No code-signing enforcement
–  No DEP
–  No ASLR
–  No sandboxing
–  No app store

Libtiff Vulnerability (iOS 1.1.2)
Victim surf’s malicious web site and attacker gets remote
‘root’ access to device

1.  Get user’s Safari Browser to view a malicious TIFF

image;
2.  Browser’s libtiff library attempts to render image;
3.  TIFF contains malicious input that renderer places

into heap memory and executes

CommCentre Vulnerability
(iOS 2)

An attacker can remotely eavesdrop
on conversations, monitor user’s
location, or force victim’s phone to
join a botnet by sending an SMS to the
victim.

1.  Attacker sends victim malicious

incoming SMS that contains code
2.  CommCentre parses incoming SMS

and buffer overflow occurs
3.  CommCentre executes code as root

user

Rick Astley is “Never Gonna Give
You Up” Ikee Worm (iOS 2)

Jailbroken devices typically
contained an SSH server with
default root passwords…

1.  Worm spread between

Jailbroken devices that used the
same default passwords.

2.  Later incarnations performed
more malicious acts than
simply changing wallpapers

3.  Lock phone for ransom, stealing
content, botnet enrollment

Storm 8
(2009)

•  Affected games, “Vampires Live”,
“Zombies Live”, and “Rockstars
Live”

1.  Apps collected cell phone

numbers of the devices on
which users were playing; 20
million downloads!

2.  Uploaded data to Storm 8
servers

3.  Resulted in class-action lawsuit;
Storm8 claims it was a simple
mistake…

SpyPhone (2010)
SpyPhone accesses every possible piece of
information exposed through the sandbox

•  Cell-phone number
•  Read / write access to address book
•  Safari / YouTube search terms
•  E-mail account information
•  Keyboard cache
•  Geotagged photos
•  GPS Information
•  WiFi access point names

Even inside a ‘safe’ environment, a
malicious app can extract a frightening
amount of information

Pwn2Own (2010)
Annual competition in which contestants exploit mobile devices with
unknown vulnerabilities for cash, their device, and a ‘masters’
jacket…

•  Winners of 2010 discovered vulnerabilities in MobileSafari of

iPhone 3GS that allow remote execution of code;

•  Their test code opened up the SMS database and sent the entire
database’s contents to a remote server;

•  They won $15,000 and an iPhone 3GS

Jailbreakme.com (“Star”)
 iOS 4.0.1

Attacker can silently jailbreak victim’s device by
tricking victim into visiting a malicious web site

1.  User visits malicious site;
2.  Attacker exploits MobileSafari stack-overflow

vulnerability in its font rendering code to execute
foreign code within the browser;

3.  Malicious payload exploited second vulnerability
(integer overflow) that allowed privilege escalation
to get increased access to device;

4.  Attacker can now execute code within kernel space
5.  Attacker disables code-signing
6.  Attacker downloads remote libraries and silently

jailbreaks device.

Jailbreakme.com (“Saffron”) –
iOS 4.3.3

•  Apple quickly patched iOS to mitigate
‘Star’ vulnerability. Apple also
introduced ‘ASLR’ around the same
time.

•  Attacker achieved ‘drive-by’
Jailbreaking by exploiting critical
vulnerabilities:

✔	
 Ability	
 to	
 execute	
 foreign	
 code	

	

Ability	
 to	
 raise	
 privilege	
 escala6on	
 to	

disable	
 code	
 signing	
 (within	
 kernel	
 space)	

	

Ability	
 to	
 bypass	
 ASLR	

✔	

✔	

iOS Secutity Controls Strategy

•  Historical vulnerabilities illustrate the
importance of particular security iPhone
security controls:
– App Encryption
– Data Execution Prevention
– Code Signing
– Address Space Layout Randomization
– Sandboxing

iOS Security Controls
App encryption

iOS Security Controls
Code signing

iOS Security Controls
•  Code execution

policies
–  ASLR

•  Address Space Layout
Randomization

–  W^X Memory pages
•  No self-modifying code

–  Stack canaries

iOS Security Controls
Sandboxing

Circumventing iOS Controls
•  Jailbreaking
– Remove iOS controls
– Gain root access
– Custom kernel
– Privilege escalation

Jailbreaking Motivation
•  Jailbreaking removes critical security controls from

the iOS and allows an attacker to return to these
earlier vulnerabilities we’ve already seen…

•  Why jailbreak?!
–  Adding features
–  Carrier independence
–  OS customization
–  Security auditing
–  Piracy
–  Espionage/Forensics

Jailbreak History
•  iPhone 1.0 (released June 29th 2007)

Broken July 10th 2007
•  4.3.2

redsn0w 0.9.11x (Broken April 2011)
•  4.3.3

jailbreakme.com remote jailbreak (Broken July 2011)
•  5.1.1

absinthe 2.0.x (Broken May 2012)
•  6.1

evasi0n (Broken Jan 30 2013)
•  7.0

evasi0n (Broken December 22 2013)

Jailbreak History
•  Time to jailbreak

increases when:
•  New OS versions
•  New hardware versions

•  Apple continually
patches known exploits

Ramifications of Jailbreaking

•  If a device is Jailbroken, all bets are off…
– Application encryption is not enforced
– Code-signing is disabled
– Arbitrary remote code execution is possible
– Exploitation of other applications on the

device is entirely possible
•  The attack is really limited by the

imagination of the attacker

Ramifications of Non-Jailbreaking
Even if you are running on a non-Jailbroken
device, there are plenty of remote-execution
vulnerabilities out there…

Ramifications of Non-Jailbreaking

•  SpyPhone illustrates the problems of running things on
a non-Jailbroken device:
–  AppStore approval process is not transparent or rigorous;
–  Sandboxing is far too permissive and allows access to all

sorts of things apps shouldn’t have access to;
–  Information disclosure to third-parties is probably the greatest

risk a user will face

•  iOS Security controls are not bug-free
–  Check out the CVE iOS Security Vulnerabilities database to see

the latest and greatest security exploits

Conclusions
•  Jailbreaking teaches us a lot about the pitfalls of iOS security

•  There are plenty of bad things that can happen in non-
jailbroken environments

•  Jailbreaking is not going away anytime soon

•  In your code, always test for the presence of a jailbroken
environment. There’s a lot of risk in these environments

•  Follow xcon for more information about how to reliably
detect jailbroken environments

