Web Application Assessments: Reconnaissance and Profiling

November 6th, 2008
Faro (Portugal)

Vicente Aguilera Díaz
OWASP Spain Chapter Leader
CI SA, CI SSP, ITIL, CEH| I, OPST, OPSA
vicente.aguilera@owasp.org

Copyright © The OWASP Foundation
Permission is granted to copy, distribute and/or modify this document under the terms of the OWASP License.

The OWASP Foundation
http://www.owasp.org
About the instructor

- Vicente Aguilera Díaz
- CI SA, CISSP, ITIL, CEH Instructor, OPST, OPSA
- Co-founder of Internet Security Auditors
- OWASP Spain Chapter Leader
- Contributor at OWASP Testing Guide v2, WASC Threat Classification v2, WASC Articles and OISSG ISSAF projects.
- Technical council member of the Spanish magazine RedSeguridad
- Rewarded in 2008 by the Spanish magazine SIC
- Publication of vulnerabilities (Oracle, Squirrelmail, ...) and speaker at security conferences (OWASP, RedIRIS, HackMeeting, FIST, IGC) about WebAppSec
Easy to remember...

Vicente Aguilera Díaz

Cristina Cameron
Agenda

1. Introduction
2. Web Application Discovery
3. Information Gathering
4. Attack Vectors Analysis
5. Examples in the real world
6. References
Agenda

- **1. Introduction**
- 2. Web Application Discovery
- 3. Information Gathering
- 4. Attack Vectors Analysis
- 5. Examples in the real world
- 6. References
1. Introduction

- Reconnaissance is the initial phase of any application pentest
- Requires the most time of an attack process
- Involves manual and automated techniques
- More information = attacks with more success
- **Any information is useful**
- It's necessary to understand the application
- Before executing an attack is necessary to develop a methodically plan
1. Introduction

Scope of this presentation
1. Introduction

- Physical world example: “The terrible event of New York of September 11, 2001”

 - 1996: a terrorist presented the idea to Osama bin Laden. (*)
 [I want to attack a webapp]
 - 1999: target selections and arrange travel for the hijackers. (*) [Application Discovery]
 - 2000: terrorists took flying lessons. (*) [Information Gathering]
 - The terrorists carried out maps, photos and videos, as well as analysis. (*) [Attack Vectors Analysis]
 - 2001: The attack is running in a few hours. (*) [Exploit]

Years of preparation to carry out an attack within hours! (*)http://en.wikipedia.org/wiki/September_11_attacks
1. Introduction

Key stages:
- Stage I: Web Application Discovery
- Stage II: Information Gathering
- Stage III: Attack Vectors Analysis
Agenda

- 1. Introduction
- **2. Web Application Discovery**
- 3. Information Gathering
- 4. Attack Vectors Analysis
- 5. Examples in the real world
- 6. References
2. **Stage I: Web Application Discovery**

- For a pentest is necessary to test all web applications accessible through the target.
- A web server can hide different applications. How?
 - 1. Different base URL
 - 2. Non-standard ports
 - 3. Virtual hosts
2. Stage I: Web Application Discovery

- Hidden applications based on **different base URL**
- Suppose that http[s]://www.example.com return:
 - "No web server configured at this address" (or a similar message).
- But there may be accessible applications:
 - http[s]://www.example.com/app1
 - http[s]://www.example.com/somepath/app2
 - http[s]://www.example.com/some-strange-URL
2. Stage I: Web Application Discovery

- Hidden applications based on **different base URL**
- How to discovery these applications?
 - Taking advantage of directory browsing
 - References from other(s) web page(s)
 - Analyzing the application code
 - Probing for URLs candidates.
 - For example:
 - /admin/
 - /downloads/
 - /partners/
 - Resources enumeration/discovery tools:
 - DirBuster
2. Stage I: Web Application Discovery

- Hidden applications based on non-standard ports
- The application can not be in the 80 or 443 ports
- For example:
 - http[s]://www.example.com:35000
2. Stage I: Web Application Discovery

- Hidden applications based on **non-standard ports**
- How to discovery these applications?
 - Require a full scan of the whole 64k TCP port address space
 - Example: `nmap -PN -sT -sV -p0-65535 <ip>`
 - Observe the response to a request (using a HTTP method) on the port detected will allow confirm the discovery
2. Stage I: Web Application Discovery

- Hidden applications based on **virtual hosts**
- A single IP address can have associate one or more symbolic names.
- For example, the IP address 192.168.1.61 might be associated to DNS names:
 - www.example.com
 - webmail.example.com
 - intranet.example.com
2. Stage I: Web Application Discovery

- Hidden applications based on **virtual hosts**
- How to discovery these applications?
 - DNS zone transfers
 - `dig @dns domain -t AXFR`
 - DNS inverse queries
 - `dig @dns -x <IP>`
 - Web-based DNS searches
 - `http://searchdns.netcraft.com/?host=microsoft.com`
 - `http://whois.webhosting.info/x.x.x.x`
 - `http://search.msn.com (syntax: "ip:x.x.x.x")`
 - Googling
2. Stage I: Web Application Discovery

- A penetration test or an application-focused assessment must identify all the applications available, and select those that are part of scope to analyze.

- Each application discovered can have known vulnerabilities and known attack strategies that can be exploited in order to gain remote control or data exploitation.

- Security through obscurity is a weak security control.

- It is necessary to implement additional security layers at different levels.

- As result of this stage, we have a list of webapp targets:
 - IP(s), domain(s), URL(s)
Agenda

1. Introduction
2. Web Application Discovery
3. Information Gathering
4. Attack Vectors Analysis
5. Examples in the real world
6. References
3. Stage II: Gathering Information

- Main purpose:
 - To create a base of knowledge useful in later stages (attacks?)
- The information should be as accurate as possible
- The information obtained will allow drive the attacks
- The questions are...
 - Which issues should be reviewed?
 - How obtain useful information?
3. Stage II: Gathering Information

- Which issues should be reviewed?
 - Relatives to:
 - Platform
 - Application
 - Users
 - Attack surface

- How to obtain useful information?
 - Through:
 - Search engines
 - Information repositories (including people!)
 - The target application
3. Stage II: Gathering Information

- Platform
 - Technologies
 - Web/Application servers
 - Authentication type and resources
 - Database fingerprinting
 - OS fingerprinting
 - Third-party components
3. Stage II: Gathering Information

- **Platform : Technologies**
 - Technologies analysis
 - For example: ASP.NET, JSP, PHP, Javascript, CGIs
 - How?
 - File extension
 - .aspx : .NET application
 - Error messages
 - .NET errors : .NET application
 - Stack Traces : Java
 - Source code revelation
 - Code Analysis
 - public code (and private downloaded code!)
 - Cookies: JSPSESSIONID, PHPSESSIONID
3. Stage II: Gathering Information

■ Platform: Web/ Application servers
 ▪ Web/Application servers analysis
 ▪ For example: IIS/6.0, Tomcat, WebLogic Server 10
 ▪ How?
 ▪ HTTP Headers analysis
 - Headers specifics
 - Response codes and code messages
 ▪ Error pages
 ▪ Tools:
 - netcat
 - HTTPrint
3. Stage II: Gathering Information

- **Platform: Authentication type and resources**
 - Authentication type and resources analysis
 - For example: form based, HTTP basic, NTLM
 - Which information is used?
 - Resources:
 - For example:
 - /admin/
 - /intranet/login.jsp
 - How?
 - Application browsing
 - Resources discovery
 - HTTP Headers analysis
3. Stage II: Gathering Information

■ Platform: Database fingerprinting

 ▸ Database usage/type analysis
 ▪ For example: SQL Server, Oracle, MySQL
 ▸ How?
 ▪ Error messages
 ▪ Probing different SQL injections
 - Database specifics
 ▪ Public documentation about the webapp?
 ▪ Database fingerprinting tools
3. Stage II: Gathering Information

- **Platform : OS Fingerprinting**
 - OS Fingerprinting analysis
 - For example: Windows 2000 SP2, Linux, CISCO IOS
 - How?
 - Simple: forcing the system to display the banner
 - TCP-based techniques
 - Tools
 - www.netcraft.com
 - p0f
 - nmap
3. Stage II: Gathering Information

- **Platform / Third-party components**
 - Third-party components analysis
 - For example: banners, embedded code
 - How?
 - Browsing the application
3. Stage II: Gathering Information

- Application
 - Standard software
 - Purpose
 - Web based administration
 - Client/Server side validation
 - Features related to authentication
 - Session state
 - Anti-automation systems
 - Error handling
3. Stage II: Gathering Information

- Application: Standard software
 - Standard software analysis
 - For example: Drupal, Wordpress, phpBB
 - How?
 - Search for known resources at known locations
 - Error messages pages
 - Client code analysis
3. Stage II: Gathering Information

- Application: Purpose
 - Purpose analysis
 - For example: Web Banking, Ticket Sales, CRM
 - How?
 - Browsing the application
 - Client code analysis
 - Resources enumeration/discovery
3. Stage II: Gathering Information

- Application: Web based administration
 - Web based administration analysis
 - For example: /backdoor, /admin
 - How?
 - Browsing the application
 - Evade access restrictions
 - Creating an account in the application
 - robots.txt
3. Stage II: Gathering Information

- Application: Client/Server side validation
 - Client/Server side validation analysis
 - For example: only client side validation
 - How?
 - Removing restrictions on the client side
 - Forcing entry parameters to certain values
3. Stage II: Gathering Information

Application: Features related to authentication

- Features related to authentication analysis
 - For example: password recovery, user registration
- How?
 - Browsing the application
 - Creating an account in the application
 - Analyzing which functionalities allow to auth a user
3. Stage II: Gathering Information

■ Application: Session state
 ▸ Session state analysis
 ▪ For example: session cookie, hidden field, URL
 ▸ How?
 ▪ Analyzing requests in authenticated mode
 ▪ Reviewing application cookies
 ▪ Client code analysis
3. Stage II: Gathering Information

- **Application: Anti-automation systems**
 - Anti-automation systems analysis
 - For example: captchas, lock account
 - How?
 - Identify which features can be executed by an automated process
 - Identify the mechanism(s) that not allow an automated process
3. Stage II: Gathering Information

- Application: Error handling
 - Error handling analysis
 - For example: customized error pages, display controlled/not controlled error messages,
 - How?
 - Analyzing error scenarios
 - Provoking error situations that may not be controlled by the application
3. Stage II: Gathering Information

- Users
 - Roles
 - Application users typology
3. Stage II: Gathering Information

- **Users : Roles**
 - Roles analysis
 - For example: administrator, manager, demo, standard user
 - How?
 - Analyzing client code
 - Spoofing users
 - Evade access restrictions
3. Stage II: Gathering Information

- Users: Application users typology
 - Application users typology analysis
 - For example: internal users, partners, public
 - How?
 - Browsing the application
 - Analyzing client code
3. Stage II: Gathering Information

- Attack Surface Analysis
 - Elements:
 - Code
 - Entry points
 - Services
 - Protocols
3. Stage II: Gathering Information

- Attack Surface Analysis: Code
 - Always will find vulnerabilities in the code
 - More code = more vulnerabilities
 - The aim of this stage is to identify/enumerate all the accessible code
 - The public code and the code accessible by remote users is particularly sensitive
3. Stage II: Gathering Information

- Attack Surface Analysis: **Entry points**
 - It's necessary to identify all the entry points to the application
 - More entry points = more attack vectors
 - Some examples of entry points:
 - URL parameter
 - Hidden field
 - Cookie
3. Stage II: Gathering Information

- Attack Surface Analysis: Services
 - The excess of services increases the exposure area
 - It's interesting to detect the privileges level with which you access these services
 - The aim of this stage is to identify/enumerate all the services available and their privilege level
3. Stage II: Gathering Information

- Attack Surface Analysis: **Protocols**
 - The most important:
 - TCP / UDP
 - UPD increases the attack surface
 - The aim of this stage is to identify/enumerate all the protocols availables
Agenda

- 1. Introduction
- 2. Web Application Discovery
- 3. Information Gathering
- 4. Attack Vectors Analysis
- 5. Examples in the real world
- 6. References
4. Stage III: Attack Vectors Analysis

- On the basis of information gathered in previous phases, it is possible to identify the attack vectors most likely to succeed

- Standard software?
- Disk access?
- Database access?
- Which information is used to authenticate a user?
- Anti-automation systems?
- Third-party components?
- Relationships with other systems?
- Critical operations?
Agenda

1. Introduction
2. Web Application Discovery
3. Information Gathering
4. Attack Vectors Analysis
5. Examples in the real world
6. References
5. Examples in the real world

- Exploiting **real vulnerabilities in real applications** from the **Real Santa Eulália Hotel**: 🎄
 - IMAP/SMTP Injection in Squirrelmail
 - CSRF in Gmail
 - ??? in Oracle
5. Examples in the real world

- IMAP/SMTP Injection in Squirrelmail

Suppose that we have obtained the next information from the previous stages:

 - Application Discovery:
 - http://x.x.x.x/sm/login.php
 - Information Gathering:
 - Squirrelmail 1.4.4
 - Attack Vectors Analysis:
 - IMAP/SMTP Injection
5. Examples in the real world

- IMAP/SMTP Injection in Squirrelmail
- Remember...
 - IMAP/SMTP Injection:
 - allows for arbitrary injection of IMAP or SMTP commands to the mail servers through a web application improperly validating user supplied data.
5. Examples in the real world

- IMAP/SMTP Injection in Squirrelmail

Some examples of attacks:

- Exploitation of vulnerabilities in the IMAP/SMTP protocol
- Application restrictions evasion
- Anti-automation process evasion
- Information leaks
- Relay/SPAM

The attack process:

- Identify vulnerable parameters
- Understanding the parameter and the context
- IMAP/SMTP command injection
5. Examples in the real world

- IMAP/SMTP Injection in Squirrelmail

- Detection and exploit!

- DEMO
 - Executing arbitrary IMAP commands (blind injection?)
 - Evading restrictions (CAPTCHA)
 - Port scanning internal systems

![Diagram](image.png)

Figure 1: Communication with the mail servers using the IMAP/SMTP injection technique.
5. Examples in the real world

■ CSRF in Gmail

■ Suppose that we have obtained the next information from the previous stages:
 ‣ Application Discovery:
 ▪ https://www.google.com/accounts/ServiceLogin
 ‣ Information Gathering:
 ▪ Google webmail
 ‣ Attack Vectors Analysis:
 ▪ CSRF (Cross-site Request Forgery)
5. Examples in the real world

- CSRF in Gmail
- Remember...
 - CSRF (Cross-site Request Forgery):
 - forces a logged-on victim’s browser to send a request to a vulnerable web application, which then performs the chosen action on behalf of the victim.
5. Examples in the real world

- CSRF in Gmail
- Detection and exploit!
- DEMO
 - What has happened to your Gmail password?
5. Examples in the real world

- ??? in Oracle

- I can not reveal details of this vulnerability because it's an UNPUBLISHED vulnerability.

- What allow the exploitation of this vulnerability?
 - Access to the target file system
 - Possible execution of arbitrary operating system commands
5. Examples in the real world

- ??? in Oracle

- Downloading the /etc/passwd and /etc/hosts files:

```bash
owaspedjoser:/owasp/pocs ..oracle-0day.pl $otn.oracle.com/etc/passwd
# Oracle Advy. PoC example.
# OWASP Summit Portugal 2008
# Vicente Aquilera Diaz. vaquillero@secauditors.com
# Downloading /etc/passwd from $otn.oracle.com ...
root:x:0:1:Super-User:/bin/sh
daemon:x:1:1:дачи
bin:x:2:2:/:usr/bin
sys:x:3:3:/
adm:x:4:4:Admin:/var/adm:
```

```bash
owaspedjoser:/owasp/pocs ..oracle-0day.pl $www.oracle.com/etc/hosts
# Oracle Advy. PoC example.
# OWASP Summit Portugal 2008
# Vicente Aquilera Diaz. vaquillero@secauditors.com
# Downloading /etc/hosts from www.oracle.com ...
#
# Internet host table
#
# 127.0.0.1 localhost
# web153.us.oracle.com web153 loghost
# web153-b
#
# for otn to resolve indexing issue -kbennett
# www.oracle.com www.oracle.com # web77-02.us.oracle.com
# Added by skraemer to allow precutover indexing of otn portal by ultrassearch
# oracle.com
# for www to resolve indexing issue -kbennett
# R.Ordona 10/12/02
# please put www.oracle.com after oracle.com otherwise,
# the order will make sendmail fail to work.
# oracle.com www.oracle.com # web80-01.us.oracle.com
#
# DB server
# WEB154 = WEB154
# WEB153 = WEB153
# DBSERV-W3PRD.us.oracle.com DBSERV-W3PRD
# DBSERV-ULTRAPRD.us.oracle.com DBSERV-ULTRAPRD
```
Agenda

1. Introduction
2. Web Application Discovery
3. Information Gathering
4. Attack Vectors Analysis
5. Examples in the real world
6. References
6. References

- Professional Pen Testing for Web Applications
 - Andres Andieu

- The Security Development Lifecycle
 - Michael Howard and Steve Lipner

- MX Injection: Capturing and Exploiting Hidden Mail Servers

- OWASP Development Guide

- OWASP Testing Guide

- and ALL the OWASP Projects!
 - http://www.owasp.org
Thank's!

Any question?

All your comments will be appreciated

vicente.aguilera@owasp.org
vaguilera@isecauditors.com