The Bank in the Browser
Defending Web Infrastructures from Malware Attacks

Giorgio Fedon
Owasp Antimalware Project Founder

OWASP EU09 Poland

Copyright © The OWASP Foundation
Permission is granted to copy, distribute and/or modify this document under the terms of the OWASP License.

The OWASP Foundation
http://www.owasp.org
About Anti-malware Project

- Antimalware is not a product, but a free and open Owasp project:
 - Embrace the philosophy of protecting the banking customer: *The Bank in the Browser*
 - Document Banking Malware Attacks
 - Model and Evaluate exposure of Banking provided security Measures to Malware Attacks
 - Define the best practices and how to fight Banking Malware
 - Rise Awareness

- Join us at: owasp-anti-malware@lists.owasp.org
Owasp Antimalware Goals

- Create a strong knowledge base about what malware do against Banking Portals
 - Build an updated reference focusing on malware features used to attack Web security measures

- Define security requirements to counter-attack malware
 - Tell to the industry what works against malware and what’s not
 - Often victims of malware have not been compensated on suspicion of policy infringement

- Open Awareness program
 - Teach users about risks connected to malware
About Myself

Research

- OWASP Antimalware project leader
- Testing Guide Contributor
- Analysis and discovery of important security vulnerabilities

Work at Minded Security

- Chief Operation Officer
- Leading hundreds of Penetration Testing activities and Code Reviews; many of them for the Bank Industry
- Blog: http://blog.mindedsecurity.com
Agenda

- Introduction
- Banking Attack Process
- Banking Malware Families
- Threat Modeling for Banking Malware Attacks
- Security Rating
- Best Practices Against Banking Malware
Introduction
Recent items in the news

- “Swedish bank has informed the press that it has been stung for between seven and eight million Swedish krona — up to £580,000” by a single Malware attack
- “Silent Banker Trojan Targets 400 Banks, Circumvents Two-Factor Authentication, just for starters”
- “Banking Spyware use stealth Techniques to hide and some of them are very advanced, e.g. Mebroot”
- A security breach hit CardSystems Solutions resulting in the compromise of 40 million credit card account numbers.
- Custom Keyloggers at Sumitomo provided IDs and passwords to intruders in an attempt to wire $423 Million out of the bank.
What are you up against?

- Malware threats are often made up by professional tools developed by specialized software factories
 - Unethical companies trade this type of tools across the Black market

- Companies are the main target
 - Organized crime wants the big money
 - Vast majority of transaction frauds
 - Downgrade trend (XP vs. Vista, Static Passwords vs. Dynamic Tokens)

- Remember that Malware targets anyone
Attack Statistics

Source: Verizon Data Breach Report 2009
Banking Attack Process
Beginning of Banking Attack

ATTACKER

Infrastructural Attack

WEB APPLICATIONS

NETWORK

Critical Vulnerabilities are Found?

Yes

Malware Attack

Data Collection And Analysis

Identify Targets and Weaknesses

Custom Impersonation Attacks

FINANCIAL GAIN

Else

Target: BANK

Target: USERS

Phishing works?

Yes

Else

Else
Attack Interactions

- **Mutual Empowerment**
 - Direct infrastructural attacks increase the strength of user attacks and vice-versa
 - Web Application security design, should involve the definition of security requirements also to contain user attacks

![Diagram showing interactions between different attack vectors.](chart)

- Attacks against infrastructure
- Attacks against the users

OWASP AppSecEU09 Poland
Attack Interactions (2)

■ Bank infrastructure
 ▸ Web Attacks: direct attacks against the web infrastructure
 ▸ Others: Network Attacks

■ User devices
 ▸ Phishing Attacks: luring the user into doing something wrong
 ▸ Malware Attacks: execute malicious code on a remote client, in order to control or spy the victim
 ▸ Others: DNS Rebinding, Router Hacks, etc.
Attack Interactions (3)

- Web Attacks add points to Malware Attacks
 - Challenge Code Predictability permits to phish the next token code (e.g. next grid-card value)

- Malware Attacks add points to Web Attacks
 - Attacker steals session using Malware, then exploits an internal SQL Injection
Details of Malware Attack process

Malware Attack

1. Dropzones are the places where data is collected; preliminary attacks just log any HTTP traffic from the banking session.

2. From the obtained info, the attacker studies the bank security measures and what the bank offers (transition graphs and security boundaries).

3. The attacker creates a custom configuration entry and updates the malware remotely.
Data collection and analysis

■ Analysis of information harvested (Silent Banker)
 ‣ The attacker tries to harvest all information about user browsing session
 ‣ Following configuration tells to log all HTML coming from the website (use of wildcards is important):

    ```
    ghjfe87=0
    hgknc87=*
    hgknn87 = <html>
    ```

 ‣ HTML pages harvested are in order of millions. This help to familiarize with unknown portal structures
 ‣ Recent analysis of Torpig, shows the same approach
Identify the target

Choose the target

- From our analysis we can tell for sure that targets are chosen from usage statistics
- Usage statistics are influenced by the behavior of the infected population

Malware author monitors URL visited

- from analysis of security measures, they decide if a customize impersonation attack is needed
Custom Impersonation Attacks

- **Attack Strategy**
 1. Intercept user credentials in clear text and reuse them
 2. Trick the user into authorizing the wrong transaction

- **Most effective way to reach these goals**
 - Rewrite the user interface (Local MITM aka MITB Man in The Browser aka HTTP injection)
 - Monitor Mouse Clicks (screen grab feature)

- **Attacks need to be customized**
 - Bank pages to monitor
 - HTML code to be injected
Custom Impersonation Attack (2)

■ Custom HTML injection (Silent Banker)

```
[jhw144]
pok=insert
qas=secureportal.bank.cm/index.do
dfr=16
req=100
xzq=9
rek=<input type="hidden" name="username_phish" value="">
<input type="hidden" name="password_phish" value="">
njd=name="login_Form"
xzn=value="">
```

This configuration will make the malware searching for the “login_Form” string as an anchor point, and then inserting the fields in defined in “rek” after next value="" string
Return on Investment

Zeus and Nethell Dropzones

<table>
<thead>
<tr>
<th>Information Category</th>
<th>Number</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credit Cards</td>
<td>5682</td>
<td>3.44</td>
</tr>
<tr>
<td>Paypal</td>
<td>5000</td>
<td>3.02</td>
</tr>
<tr>
<td>Bank Accounts</td>
<td>5200</td>
<td>3.15</td>
</tr>
<tr>
<td>Email Passwords</td>
<td>149458</td>
<td>90.39</td>
</tr>
</tbody>
</table>

Rif: Holz, Engelberth, Freiling - Learning more About the Underground Economy

Silent Banker Dropzone

<table>
<thead>
<tr>
<th>Information Category</th>
<th>Number</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credit Cards</td>
<td>1120</td>
<td>6.35</td>
</tr>
<tr>
<td>Bank Accounts</td>
<td>865</td>
<td>4.91</td>
</tr>
<tr>
<td>Paypal</td>
<td>220</td>
<td>1.25</td>
</tr>
<tr>
<td>Email Passwords</td>
<td>15430</td>
<td>87.5</td>
</tr>
</tbody>
</table>

Rif: Owasp Antimalware

Torpig Dropzone

<table>
<thead>
<tr>
<th>Information Category</th>
<th>Number</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paypal</td>
<td>1170</td>
<td>1.84</td>
</tr>
<tr>
<td>Bank Accounts</td>
<td>6600</td>
<td>10.39</td>
</tr>
<tr>
<td>Credit Cards</td>
<td>1160</td>
<td>1.83</td>
</tr>
<tr>
<td>Email Passwords</td>
<td>54590</td>
<td>85.94</td>
</tr>
</tbody>
</table>

Rif: Stone, Cavallari, Vigna and others

Your Botnet is My Botnet: Analysis of Botnet takeover
The Rise of Javascript Banking Malware

- Crime-ware injects locally HTML and Javascript into the pages surfed by the user.
- This attack is called Local Man in the middle or Man in the Browser.
- Local Man in the Middle can be performed without compromising either the user host or the banking website?
The Rise of Javascript Banking Malware (2)

- Many pages include and not validate third parties content
 - Tracking Javascript code
 - Callcenter help buttons
 - News, Market Trends etc.
- Partner websites are constantly checked? Answer: NO
- “Modifying the Javascript Code, the attacker gets full control on the browser”, like with a local MITM malware attack*
- Potential backdoor in “https://www.bank.com/login.do”

* “Subverting Ajax Paper” – Prototype hijacking Active MITM Attacks paper – Saltzman, Sharabani
Banking Malware Families
Banking Malware Evolution

- In 2003 very few malicious codes were able to bypass javascript keyboards.
- In 2008 Banking Malware starts using amazing rootkit technologies. Mebroot (New Version of Trojan Anserin) is able to infect the MBR (Windows XP and Vista) and to patch the kernel in real time to hide his presence.
- In 2009 more and more custom attacks are emerging, as ATM Machine rootkits and Malware able to render visual Captchas*

Banking Malware Evolution (2)

- We assisted to the born of different banking malware samples:
 - Silent Banker
 - Haxdoor
 - Banker.C (aka Zeus/Zbot/NTOS)
 - Banker.D (aka Limbo/NetHell)
 - Torpig/Sinowal/Anserin-MebRoot

- Banking Malware aka Crimeware are modified versions of common threats known as password stealing trojan. However they have additional features to attack bank authentication systems, such as *multiple factor authentications*
Features of Banking Malware

- Following features are the ones used to attack the Bank security measures
 - **Browser API Hooking**: Ability to intercept submitted text in forms or HTTP traffic
 - **Local Man in The Middle**: Ability to manipulate the HTTP traffic from the local machine
 - **Remote Man in The Middle**: Ability to redirect HTTP requests to remote sites
 - **Screencapture**: Ability to defeat JS keyboards or sim.

- Banking Malware has many features
 - Rootkit technology, Control Center, Covert Channels, etc.
Silent Banker

- Found in the wild targeting more than 400 banks
 - The “engine” is separated from the configuration files
 - Settings vary from region to region
 - From our analysis less than \(\frac{1}{4} \) of all banks have fine customized rule-sets

<table>
<thead>
<tr>
<th>Feature</th>
<th>Need Specific Configuration Entry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Browser API Hooking</td>
<td>No (generic patterns are defined)</td>
</tr>
<tr>
<td>Local MITM</td>
<td>Yes</td>
</tr>
<tr>
<td>Remote MITM</td>
<td>Yes</td>
</tr>
<tr>
<td>Screencapture</td>
<td>Yes (needs URL to target)</td>
</tr>
<tr>
<td>Remote Update</td>
<td>Yes (upgrades and additional features)</td>
</tr>
</tbody>
</table>
Haxdoor → Adrenaline

- Responsible of Nordea attack in 2005
 - Discontinued since 2006
 - Found to target not more than 20 different banks
 - Available in the black market for 1500 euros

<table>
<thead>
<tr>
<th>Feature</th>
<th>Need Specific Configuration Entry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Browser API Hooking</td>
<td>Yes</td>
</tr>
<tr>
<td>Redirection to pharming sites</td>
<td>Yes</td>
</tr>
<tr>
<td>Remote Update</td>
<td>Yes (upgrades and additional features)</td>
</tr>
</tbody>
</table>

- Features added in Adrenaline

<table>
<thead>
<tr>
<th>Feature</th>
<th>Need Specific Configuration Entry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local MITM</td>
<td>Yes</td>
</tr>
<tr>
<td>Screencapture</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Zeus

■ One of the most spreaded
 ▸ Trojan Horse, some versions are packaged with a custom Mp3 player
 ▸ Similar to Nethell
 ▸ Crime-ware authors copy from each other

<table>
<thead>
<tr>
<th>Feature</th>
<th>Need Specific Configuration Entry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Browser API Hooking</td>
<td>Yes</td>
</tr>
<tr>
<td>Local MITM</td>
<td>Yes</td>
</tr>
<tr>
<td>Remote MITM</td>
<td>Yes</td>
</tr>
<tr>
<td>Screencapture</td>
<td>Yes (Needs URL to target)</td>
</tr>
<tr>
<td>Remote Update</td>
<td>Yes (upgrades and additional features)</td>
</tr>
</tbody>
</table>
Net Hell

- Flexible configuration
 - Very similar to Silent Banker and Zeus
 - Samples as late 2008 has a powerful html injection and remote control system

<table>
<thead>
<tr>
<th>Feature</th>
<th>Need Specific Configuration Entry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Browser API Hooking</td>
<td>No (generic patterns are defined)</td>
</tr>
<tr>
<td>Local MITM</td>
<td>Yes</td>
</tr>
<tr>
<td>Remote MITM</td>
<td>Yes</td>
</tr>
<tr>
<td>Screencapture</td>
<td>Yes (Needs URL to target)</td>
</tr>
<tr>
<td>Remote Update</td>
<td>Yes (upgrades and additional features)</td>
</tr>
</tbody>
</table>

Torpig/Sinowal/MebRoot

- Crimeware with the most powerful rootkit
 - MBR infection
 - Engine is updated once a month to remain undetectable

<table>
<thead>
<tr>
<th>Feature</th>
<th>Need Specific Configuration Entry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Browser API Hooking</td>
<td>No (generic patterns are defined)</td>
</tr>
<tr>
<td>Local MITM</td>
<td>Yes</td>
</tr>
<tr>
<td>Remote MITM</td>
<td>Yes</td>
</tr>
<tr>
<td>Screencapture</td>
<td>Yes (Needs URL to target)</td>
</tr>
<tr>
<td>Remote Update</td>
<td>Yes (upgrades and additional features)</td>
</tr>
</tbody>
</table>

Considerations about Malware

- In 2003 we were used to talk about “Common Malware”
 - We can no-more discriminate since most of the capabilities are the same for all the different banking malware families analyzed
- Most of Banking malware need customized settings to work properly
 - However If your bank institution is not in the list doesn’t mean to be safe
 - Configuration are easy to make
 - Banking Malware can be installed as a component
Threat Model for Banking Malware Attacks
Banking Malware Attacks

- Malware Attack takes place when malicious code is executed on user client
 - Banking Malware Attacks resemble Phishing Attacks, but they can manipulate data in real time, in both directions

- To evaluate the exposure of an infrastructure to malware attack, we need to consider
 - The strength of authentication/authorization security measures adopted
 - Probability of Malware diffusion among the users
 - Difficult to know without sampling
Evaluate Exposure To Malware Attacks

■ Threat Modeling Process
 1) Enumerate the interesting targets
 2) Define the path to the targets (Transition graphs)
 3) Apply trust boundaries (security measures)
 4) Define the weaknesses of the security measures adopted

■ Risk Rating
 ▹ Rate the effort to trespass the security measures by attacks performed with different kind of Malware
Tipical Banking Attacker Targets

- Get Important Information
 - Credit card information
 - User Credentials and Transaction Tokens
 - User Details

- Abuse Banking Functionalities
 - Transfer Money
 - Modifying user details for receiving goods (e. Checks)

- Abuse Trading Functionalities
 - Buy, Sell (Pump and Dump)

- Covering Tracks
 - Disable Notification Alerts
Transition Graphs

- Show all the known paths in the application to reach a target
- Visual representation of authentication/authorization checks
- Separate attacker’s goals from attack trees
- Portals with similar subsets of functionalities can have very different transition graphs
- Important to define the effect of layered security measures
- This approach follows the logic of the attacker
Example of Money Transfer

1. USER
2. Tab: Banking
3. Menu: Money Transfer
4. MT Step 2
5. MT Step 3
6. Execute
Transition Graphs (3)

Define Primary Nodes

- Represents the least number of steps to complete the process

USER

Tab: Banking → Menu: Money Transfer → MT Step 2

MT Step 3 → Execute
CodeReview and Transition Graphs

- Global view and representation of all functionalities, even the hidden ones from the user interface
- Comprehensive check of Cross Site Request Forgeries vulnerabilities
- Control all nodes to have the appropriate Authentication/Authorization set
- Check for old functionalities that are still active and their duplicates
Apply the Trust Boundaries

Example of Money Transfer

Applies to: corporate.bank.cm retail.bank.cm

1. USER
 State: Not Authenticated

2. MT Step 2
 State: Authenticated

3. Execute
 State: Authenticated for transaction

OWASP AppSecEU09 Poland
Apply the Trust Boundaries (2)

- Trust Boundaries are defined by security checks

Applies to: retail.bank.cm

Flowchart:
- **USER**
 - State: Not Authenticated
- **Login Step: Username + Pin + OTP**
- **MT Step 2**
 - State: Authenticated
- **2° level Auth: OTP**
 - State: Authenticated for transaction
- **Execute**
Apply the Trust Boundaries (3)

- Different profiles may have different security measures applied

```
Applies to: corporate.bank.cm
```

```
Login Step: Username + Password

MT Step 2

2° level Auth: Password 2

Execute
```

State: Not Authenticated

State: Authenticated

State: Authenticated for transaction

OWASP AppSecEU09 Poland
List Nodes and their associated Security

- Following table is very important from the point of a security assessor
 - Understand Authentication and Authorization steps
 - Report anomalies from the defined policies
 - Es. Security Measure Downgrade for corporate users

<table>
<thead>
<tr>
<th>Functionality</th>
<th>ID</th>
<th>Primary</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transfer Money</td>
<td>Menu_TF</td>
<td>no</td>
<td>Authenticated</td>
</tr>
<tr>
<td>Transfer Money</td>
<td>step1_TF</td>
<td>no</td>
<td>Authenticated</td>
</tr>
<tr>
<td>Transfer Money</td>
<td>step2_TF</td>
<td>Yes</td>
<td>Authenticated</td>
</tr>
<tr>
<td>Transfer Money</td>
<td>Execute_TF</td>
<td>Yes</td>
<td>Authenticated For Transaction</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Level</th>
<th>Profile</th>
<th>Security Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authenticated</td>
<td>Retail</td>
<td>username + PIN + OTP</td>
</tr>
<tr>
<td>Authenticated</td>
<td>Corporate</td>
<td>Username + Password</td>
</tr>
<tr>
<td>Authenticated For Transaction</td>
<td>Retail</td>
<td>OTP</td>
</tr>
<tr>
<td>Authenticated For Transaction</td>
<td>Corporate</td>
<td>Password2</td>
</tr>
</tbody>
</table>
Web Application Security is a requirement

- Lack of server side application security has significant effects on our analysis
Effects of Web Vulnerabilities on Analysis

- Highly critical Vulnerabilities on any web page can lead to system compromise or to bypass the Authentication / Authorization controls.
- Unknown Web Vulnerabilities, if discovered, change consistently the transition graphs or create new path for attacks.

- On the other hand client-side (eg. XSS) attacks are equivalent Malware Attacks.
 - The attacker gets control over the victim browser.
Es. Broken Access Control and CSRF

- 2nd Level Auth effectiveness is lowered to 0

![Diagram showing the process of a user accessing banking services through money transfer and the authentication steps]

- USER
- Login Step: Username + Pin + OTP
 - Tab: Banking
 - Menu: Money Transfer
 - MT Step 2

- Execute
- 2\textdegree Level Auth: OTP
 - MT Step 3
Banking Provided Measures
Banking provided Security measures

- **Password**

- **TAN (Gridcard, Scratch Card)**
 - Transaction Authorization Numbers

- **OTP (Time Based, Click Based)**
 - One Time password

- **CAP (Random Nonce, Challenge Response)**
 - Card Authentication Protocol; Random Nonce is like OTP

- **SMS Challenges**

- **Cellphone Caller-ID**
Unified Attack Flow*

Goal: **Authenticate**

- Web Client is monitored?
 - No → Repeat user attack
 - Yes → Authenticate

 - user authenticates
 - No → Auth via JS keyboard?
 - No → Interface can be rewritten?
 - No → Failure
 - Yes → Attack flow continues
 - Yes → Interface can be rewritten?
 - No → Failure
 - Yes → Remote or Local MITM

 - Yes → Keylogger (API Hook)
 - No → Success
 - Yes → Remote or Local MITM

- Auth via Keyboard?
 - No → Interface can be rewritten?
 - No → Failure
 - Yes → Remote or Local MITM
 - Yes → Remote or Local MITM

- Remote or Local MITM
 - Does user send requested data?
 - No → Failure
 - Yes → Does user send requested data?
 - No → Failure
 - Yes → Does user send requested data?
 - No → Failure
 - Yes → Success

- Token is Valid for Next operations?
 - No → Success
 - Yes → Linked to Transaction?
 - No → Success
 - Yes → Does user send requested data?
 - No → Success
 - Yes → Does user send requested data?
 - No → Success
 - Yes → Success

- Expires soon?
 - Yes → Silent banking
 - No → Human Assistance

* it’s supposed that user is banking from an infected PC or from any other equivalent device
Password

Goal: Authenticate

- Web Client is monitored?
 - Yes: User authenticates
 - No: Auth via JS keyboard?
 - Yes: Screen Capture
 - No: Keylogger (API Hook)
 - Auth via Keyboard?
 - Yes: Remote or Local MITM
 - Does user send requested data?
 - Yes: Success
 - No: Linked to Transaction?
 - Yes: Local MITM
 - No: Repeat user attack
 - No: Interface can be rewritten?
 - Yes: Success
 - No: Repeat user attack
 - No: Repeat user attack

- Token is Valid for Next operations?
 - Yes: Success
 - No: Expires soon?
 - Yes: Silent banking
 - No: Human Assistance

Attacker could control or interfere with Additional auth devices/channels?

OWASP AppSecEU09 Poland
CAP Attack

Goal: Authenticate

Web Client is monitored?
- No: Repeat user attack
- Yes: Interface can be rewritten?
 - No: Failure
 - Yes: Continue

Auth via JS keyboard?
- No: Continue
- Yes: User authenticates

Screen Capture

Keylogger (API Hook)
- No: Continue
- Yes: Remote or Local MITM

Remote or Local MITM
- No: Continue
- Yes: Does user send requested data?
 - No: Continue
 - Yes: Token is valid for next operations?
 - No: Continue
 - Yes: Success

Expires soon?
- Yes: Silent banking
- No: Human Assistance

Attacker could control or interfere with Additional auth devices/channels?
- Yes: Success
- No: Repeat user attack

OWASP AppSecEU09 Poland
Cellphone Caller-ID

Goal: Authenticate

- Web Client is monitored?
 - Yes: Fail
 - No: Repeat user attack

- User authenticates

- Auth via JS keyboard?
 - Yes: Success
 - No: Repeat user attack

- Auth via Keyboard?
 - Yes: Success
 - No: Repeat user attack

- Interface can be rewritten?
 - Yes: Fail
 - No: Repeat user attack

- Sim Swap Attack
 - Yes: Fail
 - No: Success

Success

- Token isValid for Next operations?
 - Yes: Success
 - No: Repeat user attack

- Linked to Transaction?
 - Yes: Success
 - No: Repeat user attack

- Does user send requested data?
 - Yes: Fail
 - No: Repeat user attack

- Expires soon?
 - Yes: Silent banking
 - No: Human Assistance

Human Assistance

Silent banking

OWASP AppSecEU09 Poland
TLS

Goal: Authenticate

- Web Client is monitored? [No → Repeat user attack]
- User authenticates [Yes → Auth via JS keyboard?]
 - Yes [Yes → Screen Capture]
 - No [No → Local MITM]
- Auth via Keyboard? [No → Interface can be rewritten?]
 - Yes [Yes → Keylogger (API Hook)]
 - No [No → Remote or]
- Remote or Local MITM [Yes → Does user send requested data?]
 - No [No → Token is Valid for Next operations?]
 - Yes [Yes → Linked to Transaction?]
 - No [No → Human Assistance]
 - Yes [Yes → Success]
- Expires soon? [Yes → Silent banking]
TLS (2)

Goal: Authenticate

Web Client is monitored?

- Yes
 - Get certificate with Jail Break*
 - Repeat user attack

- No
 - Interface can be rewritten?
 - No
 - Failure
 - Yes
 - Auth via JS keyboard?
 - Yes
 - Screen Capture
 - No
 - Keylogger (API Hook)
 - Token is Valid for Next operations?
 - Yes
 - Remote or Local MITM
 - Does user send requested data?
 - No
 - Human Assistance
 - Yes
 - Silent banking
 - No
 - Linked to Transaction?
 - Yes
 - Success
 - No
 - Repeat user attack

Remote MITM + Human Assistance

Herein is assumed that the customer is banking from an infected machine.

“Human Assistance” is provided by people working for the attacker.

1) Attacker updates the Malware through the Dropzone
2) When Customer performs a transaction the malware re-routes the Token information to the Attackers
3) User is impersonated and transaction is performed

© OWASP AppSecEU09 Poland
Local MITM + Human Assistance

Herein is assumed that the customer is banking from an infected machine.

“Human Assistance” is provided by people working for the attacker.

1) Keylogger data is constantly sent to the dropzone
2) When Customer performs a transaction the malware deletes the cookie
3) User is impersonated using the stolen token stored in the dropzone
Local MITM + Silent Banking

Herein is assumed that the customer is banking from an infected machine.

“Banking in silence”* is the ability to perform autonomous transactions.

1) Attacker updates the Malware through the Dropzone, including their bank account number
2) When Customer performs a transaction the malware silently substitutes the details
3) The user authorizes a different transaction from the one desired

MITM traffic Manipulation lures the user into authorizing a different transaction

Banking provided Security measures

- Password
- TAN (Gridcard, Scratch Card)
 - Transaction Authorization Numbers
- OTP (Time Based, Click Based)
 - One Time password
- CAP (Random Nonce, Challenge Response)
 - Card Authentication Protocol; Random Nonce is like OTP
- SMS Challenges
- Cellphone Caller ID

VULNERABLE TO MALWARE ATTACKS
Why Attacker succeeds?

- User can’t understand where the money go if the user interface is rewritten
 - Will the user confirm the right transaction?
 - Local MITM can defeat even security solutions based upon Caller-ID confirmation, if the user confirms!

- Most measures are vulnerable to race attacks
 - Who is getting the authentication token first? The Bank or the Attacker?
 - Tokens can be used only once, but needs to reach the bank before the attacker.
Failure Flows

Goal: Authenticate

Web Client is monitored?
- No → Repeat user attack
- Yes → Interface can be rewritten?
 - No → Failure
 - Yes → Auth via JS keyboard?
 - No → Auth via Keyboard?
 - No → Remote or Local MITM
 - Yes → Does user send requested data?
 - No → Failure
 - Yes → Helper
 - Yes → Screen Capture
 - Yes → Keylogger (API Hook)
 - Yes → Does user send requested data?
 - No → Failure
 - Yes → Helper
 - No → Failure
HAT Model for Malware Attacks

■ HACK IT
 ▸ The device can be attacked? To which degree?

■ ASK HIM
 ▸ Is it possible to ask the user for information? Which information may ask?

■ TELL YOU
 ▸ To which degree the user will tell the information required? Is there any barrier?
Antimalware Design Requirements

- **Attacker should not** control or interfere with Additional auth devices/channels
 - Additional devices must be hard to attack

- **User should not** tell
 - Authenticate transactions to the user

- **Attacker should not** ask
 - UI Protection: could imply client-side protections, build completely independent channels or policy restrictions

Priority
- Very High
- Medium

Effort estimated as high here
Security Rating
Security Rating

- No-more common malware, instead there is:
 1. Banking Malware with “custom rulesets”
 2. Banking Malware with “no custom rulesets”

1. In the first case all security measures are failing!

2. In the second case:
 - Passwords are very exposed
 - TAN - Gridcards are exposed if tokens are rotated
Rising the bar

- Solution Designed to be malware-resistant
 1. Proprietary solutions
 2. SMS-Challenges with transaction details
 3. CAP with transaction details
 4. Banking Dongle Prototype

- SMS-Challenges with Transaction Details

Transfer to UK: cc **1293 – Mark Fr**** eur 200 – Token: 3398393883

- Visual Banking Dongle

Rif. A New Approach to Internet Banking – Matthew Johnson
SMS-C. with transaction details

Compliance to our design guidelines

- Authenticate transactions to the user
 - Yes, transaction details are displayed on a separate channel

- Hard to attack
 - Partially: Sim Swap Attacks, OTA messages, Mobile Viruses are a risk

- User Interface Protection
 - Interface is full rewritable. All steps are performed via infected Browser

Compliance

- Full
- Low
- Partial
CAP with transaction details

Compliance to our design guidelines

- **Authenticate transactions to the user**
 - Yes, transaction details are displayed in a secure manner

- **Hard to attack**
 - Yes: external device no connection, some vulnerabilities are already known*

- **User Interface Protection**
 - Partial: communication is not bidirectional, but HTML interface can still be rewritten

Visual Banking Dongle

Compliance to our design guidelines

- Authenticate transactions to the user
 - Yes, transaction details are displayed in a secure manner

- Hard to attack
 - Partial (but still a prototype): external device, strong cryptography, open protocol, but exposed to DOS attacks

- User Interface Protection
 - Partial: bidirectional communication on the last step, but HTML interface can still be rewritten
SMS challenge + TD on Gridcard

- Add user authentication and rise the security of grid-cards
- Cheaper than OTP and CAP

<table>
<thead>
<tr>
<th>SMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transfer to UK: cc 1293 – Mark Fr** eur 200</td>
</tr>
<tr>
<td>Token: 3398</td>
</tr>
<tr>
<td>Gridcard (x,y): 1,10</td>
</tr>
</tbody>
</table>

- Authenticates transaction to the user
- OTP linked to the transaction
- External channel against SIM Swap Attacks, Cell phone theft and credential harvesting
SMS challenge + TD on Gridcard

Compliance to our design guidelines

- **Authenticate transactions to the user**
 - Yes, transaction details are displayed in a secure manner

- **Hard to attack**
 - Achieved control over mobile phone still requires time to gather grid-card values, but not ideal solution for phone banking

- **User Interface Protection**
 - Partial: interface (browser HTML interface) can still be rewritten

Compliance

- Full
- Partial
- Partial
Phishing Protection Dilemma

- Attacks leveraged by the fact that interface can be rewritten could be contained?
 - Answer: Yes. But not only with technology

- Process: Unify Security Measures
 - Old access functionalities downgrade to password
 - Password complexity is not a constrain for keyloggers
 - Downgrade to static secrets is always possible (PCI)
 - So far (May 09) “Secured-by Visa” code prevents only CVV2 from bruteforcing attacks

- Train the user
 - The user will tell his secrets if the bank asks at the right moment
Guerrilla Awareness

- Train the user, with simulated test cases
 - Use the techniques developed by attackers
 - Have a program with different type of attacks
 - Tell the user if he did something wrong

- Users will authenticate to bank honeynet
 - Detailed risk profiling on customer population
 - exposure to basic or advanced user attacks (ex. Flash Codec)

- Note: Users must agree with the program
 - Anyway advertisements and spam are divided by the thin line of consent
Best Practices
Against Banking Malware
Best Practices

- Build on solid bases
 - No Web Security = no need of malware attacks
 - Partial web security = more exposure to malware

- Include partners in the SDLC process
 - You have security, they do not. You do not have security (Ex. Js Malware via Included Tracking Scripts)

- Remove Weakest Links
 - Unify the security measures
 - Exactly know where security measures downgrade
 - Ex. Voice Banking: PIN (static password) and Sister surname.
 - Be sure that possible targets are well protected
 - Ex. 1 Credit Card PAN available at level one is obfuscated
 - Ex. 2 User alerts can be disabled only after 2nd level auth
Best Practices (2)

- Transactions should authenticate to the user
 - The user should be able to discriminate
 - Transaction details announced over a clean channel
 - Geolocation helps (Ex. You are connecting from Rome area)

- Additional channels should be Hard to Attack
 - Ex. Mobile Phones alone are not
 - Sim Swap Attacks (Jpg of Id card can be obtained via Malware)

- Contain impact of User Attacks
 - Train the user by means of attacks and real test cases
 - Lower the likelihood of attacks
 - Enforce Authorization Policies for advanced users
 - Ex. PIN 1: Full Control; PIN 2: Do transfer only to friend list.