
SSL für alle

Peter Magnusson
Twitter: @Blaufish_, Sakerhetspodcasten.se & Omegapoint.se

Joachim Strömbergson
Twitter: @Kryptoblog, secworks.se

How to get good SSL security

What is HTTPS / SSL

Attacks on SSL

Attacks on related technology

Coding SSL/TLS

Agenda

Peter Magnusson, Twitter: @Blaufish_
Sakerhetspodcasten.se & Omegapoint.se

What is HTTPS and
SSL/TLS?

What is HTTPS?

ServerBrowser

HTTP HTTP HTTP

HTTP HTTP HTTP

SSL/TLS end-to-end tunnel

Peter Magnusson, Twitter: @Blaufish_
Sakerhetspodcasten.se & Omegapoint.se

What does SSL/TLS offer?

• Confidentiality
• Integrity / tamper resistance
• Authentication

–Server authentication
–Client authentication (option rarely used)

• Cryptographic agility
–Negotiate mutually accepted cipher suits

Authenticated handshake.
Communication is only MACed.

DOES NOT offer non
repudiation

Peter Magnusson, Twitter: @Blaufish_
Sakerhetspodcasten.se & Omegapoint.se

SSL/TLS versions

• SSL 3.0 (Netscape)
–1996, first widely used SSL. 1.0 & 2.0 broken.

• TLS 1.0
–1999, IETF standardization, & security fixes.

• TLS 1.1
–2006, CBC Cipher Block Chaining

improvements
• TLS 1.2

–2008, Authenticated Encryption suites, AES,
and many other security improvements.

Peter Magnusson, Twitter: @Blaufish_
Sakerhetspodcasten.se & Omegapoint.se

SSL/TLS not perfect

• SSL/TLS is not particularly well designed
–Evolution, with many hotfixes and workarounds
–Compatibility and legacy
–Horribly slow adoption rate of new protocol

versions and more secure cipher suites

• MAC is performed on plaintext not
ciphertext
–Most suites are by design vulnerable to chosen

ciphertext attacks

Algorithms and Cipher Suites

Symmetric ciphers

AES AESCM M

K K K

K

WTF?!?

Symmetric ciphers

● Bulk encryption
– AES, DES/3DES, Camellia, RC2, RC4
– Fast, efficient in SW and HW

● Provides confidentiality NOT integrity
– Encrypted message can be changed

● Must transfer secret key to receiver
– How to protect the secret key during transfer?
– Classic cipher with classic problem

Symmetric ciphers

Hebern (1918)Jefferson (1795)

Symmetric ciphers

Hagelin C-36

Enigma

Fialka

Keys for symmetric ciphers

Asymmetric ciphers

RSA RSACM M

KM
pub

KM
priv

KM
pub

WTF?!?

KM
priv

KJ
pub

KJ
priv

KM
pub

KJ
pub

KJ
pub

KM
pub

(KJ
priv

) (KJ
pub

)

Asymmetric ciphers

● Public key encryption – session init
– RSA, ECC, El Gamal
– 1000x-10000x slower than symmetric encryption
– Complex math – hard for embedded systems

● Provides confidentiality
– Can provide integrity, origin authentication
– Can provide exchange of secret keys (D-H)

● Must transfer public key to sender
– No need to protect the key – but need to trust the key
– CAs provides trust by proxy (assumed trust in CA)

0x557e8e7ed1534946462f4136623947ca

Hash functions

Hash functions

● Variable data size in, fixed size data out
– Fingerprint, digest, hash related to input

● Keyless function
– Security is based on collision resistance

● Provides data integrity
– Detect presence of changes (errors) in the data

0x557e8e7ed1534946462f4136623947ca

MACs

Key

MACs

● Variable data size in, fixed size data out
– HMAC, OMAC, UMAC, CBC-MAC

● Built using hash functions, block ciphers etc.

– Fingerprint, digest, hash related to input

● Keyed function
– Security is based on the secrecy of the key
– Must transfer key to recipient

● Provides data integrity and authentication
– Detect presence of changes (errors) in the data
– Validate that the data is from the owner of the key

Message Authentication Codes

NULL = NO
cipher!

Cipher
suites in

my OpenSSL

Source: Internet

The session
key!

The
SSL/TLS

handshake

Session keys in SSL/TLS
● Client generates session master secret

● Client send secret to server. The secret is
protected using the servers public key

● Session keys are then derived by client
and server (encryption, MAC)

If the private key of the server is lost all previous sessions
can be decrypted by extracting their master secrets

Perfect Forward Secrecy

● No master secret is transferred to server
– Client and server agrees on common secret
– Communicates using public messages

● D iffie-Hellman key exchange

● After the session all secrets are discarded

(Or simply Forward Secrecy)

Even if the private key of the server is lost all
previous sessions are protected

Source: https://www.ibm.com/developerworks/community/blogs/CloudComputing/entry/diffiehellmankeyexchange?lang=en

It is all about the keys!

Random Number Generation

Collect
data

Filter,
condition

Estimate
entropy

Generate
values

CSPRNG

Hard to get transparency
in RNG. Implicit trust

The problem with RNGs

Debian key generator

Security audit in Debian using Valgring, Purify
OKed by OpenSSL dev

http://marc.info/?l=openssl-dev&m=114651085826293&w=2

No mixing of random values
during init

Process ID became seed
At most ~17 bits strength

Affected SSL/TLS and a lot of
applications

Linux Debian (Etch, Lenny, Sid) 2006-2008

Z-Stack

Source: T Goodspeed

Key length and strength

Source: Ecrypt II Yearly Report (2012)
http://www.ecrypt.eu.org/documents/D.SPA.20.pdf

Source: Ecrypt II Yearly Report (2012)
http://www.ecrypt.eu.org/documents/D.SPA.20.pdf

RSA 2048

Source: Ecrypt II Yearly Report (2012)
http://www.ecrypt.eu.org/documents/D.SPA.20.pdf

Side note: Export rules

● Waasenaar agreement
● Limits the usage of strong encryption

– Symmetric keys: 56 bits
– RSA keys: 512 bits
– Elliptic Curve keys: 112 bits

● Anything above these limits requires registration or permit
– EU, USA, Japan etc – registration
– North Korea, Iran, China – permit (or NO)

Also depends on usage

End users vs components, equipment, market etc

Trust Stores

● Where does your app/OS find the CA cert?

● Trust Stores – the root of cert validation
– DB of CA certs in system, browser, libs
– Mozilla
– Apple – OSX, iOS
– Microsoft
– Google – Chrome, Oracle/Java

● Can you trust it?
– Not very transparent, easy to check

● Source code, blobs, Excel files

– No info when the stores are updated
and why

● NSA root?

We try to observe
the trust stores:

https://github.com/kirei/catt

Trust Store examples

Local CAs

Government CAs

Big boys being bad

What is HTTPS / SSL

Attacks on SSL

Attacks on related technology

Coding SSL/TLS

Agenda

Peter Magnusson, Twitter: @Blaufish_
Sakerhetspodcasten.se & Omegapoint.se

Cryptanalytic attacks against
SSL

A. Shamir: "Cryptography is
typically bypassed, not

penetrated"

Peter Magnusson, Twitter: @Blaufish_
Sakerhetspodcasten.se & Omegapoint.se

Padding
CBC XOR

Paddin
g

Oracle

Lucky1
3

CBC XOR

BEAST

Compressio
n

CRIME

BREAC
H

Weak
Algorithm

RC4

Peter Magnusson, Twitter: @Blaufish_
Sakerhetspodcasten.se & Omegapoint.se

Padding Oracle & Lucky13

Cryptanalytic attacks against SSL

Peter Magnusson, Twitter: @Blaufish_
Sakerhetspodcasten.se & Omegapoint.se

Padding Oracle (2002)

• Padding: terminating last plaintext block
–1337 => 1337060606060606 PKCS5Padding
–1337 => 1337000000000000 ZeroPadding

• PKCS5 Padding Oracle
–"OK" if message ends with either of:
–0808080808080808 xx07070707070707
–xxxx060606060606 xxxxxx0505050505
–xxxxxxxx04040404 xxxxxxxxxx030303
–xxxxxxxxxxxx0202 xxxxxxxxxxxxxx01

CBC & Padding Oracle

C[i -1] XOR

intermediate

DecryptC[i]

P[i]

CBC & Padding Oracle

C[i -1] XOR

intermediate

DecryptC[i]

P[i]

PO tells us if
P is one of 8

oracle values

CBC & Padding Oracle

C[i -1] XOR

intermediate

DecryptC[i]

P[i]

PO tells us if
P is one of 8

oracle values

Fixed (to be
cracked)

CBC & Padding Oracle

C[i -1] XOR

intermediate

DecryptC[i]

P[i]

PO tells us if
P is one of 8

oracle values

Fixed (to be
cracked)

Fixed (to be
cracked)

CBC & Padding Oracle

C[i -1] XOR

intermediate

DecryptC[i]

P[i]

PO tells us if
P is one of 8

oracle values

Fixed (to be
cracked)

CBC & Padding Oracle

C[i -1] XOR

intermediate

P[i]

PO tells us if
P is one of 8

oracle values

Fixed (to be
cracked)

CBC & Padding Oracle

C[i -1] XOR

intermediate

P[i]

PO tells us if
P is one of 8

oracle values

Fixed (to be
cracked)

 Attack here!!!

Peter Magnusson, Twitter: @Blaufish_
Sakerhetspodcasten.se & Omegapoint.se

Padding Oracle (2002)

• CBC + PKCS5 Oracle Attack
–Attacker replace C[i-1] with R, can choose any

R
–Attacker replace P[i] with unknown P

– intermediate = R XOR P when P=0808080808080808

–Padding Oracle: P is correct upon this R
–Padding Oracle leaks clues about intermediate

Peter Magnusson, Twitter: @Blaufish_
Sakerhetspodcasten.se & Omegapoint.se

Padding Oracle (2002)

• CBC + PKCS5 Oracle Attack
–Start with R = 0 (or a random number), change

LSB until Padding Oracle says OK!
–~128 messages find R: P = xx01 => OK!
–~256 messages find R: P = xx0202 => OK!
–~1024 messages find R: P = 0808080808080808 =>

OK!
–intermediate = R xor 0808080808080808
–P[i] = C[i] xor intermediate

Peter Magnusson, Twitter: @Blaufish_
Sakerhetspodcasten.se & Omegapoint.se

Padding Oracle (2002)

• Why did padding Oracle work?

• SSL/TLS CBC cipher suits are broken
–Authenticates AFTER decryption

• Real long term solution: new cipher suits
–Authenticated Encryption (AEAD)
–Authenticate BEFORE decryption

Peter Magnusson, Twitter: @Blaufish_
Sakerhetspodcasten.se & Omegapoint.se

Padding Oracle (2002)

• How was Padding Oracle fixed?

• Workaround: obfuscate the padding oracle

–Decode as if Zero Padded
–Failed padding => slightly longer plaintext
–Calculate MAC
–Fail with nearly the same execution time
–pretends MAC failed, not padding

Peter Magnusson, Twitter: @Blaufish_
Sakerhetspodcasten.se & Omegapoint.se

Padding Oracle (2002)

TLS RFC;

"This leaves a small timing channel, since
MAC performance depends to some extent
on the size of the data fragment, but it is not
believed to be large enough to be
exploitable, due to the large block size of
existing MACs and the small size of the
timing signal. "

Peter Magnusson, Twitter: @Blaufish_
Sakerhetspodcasten.se & Omegapoint.se

Lucky 13 (2013)

• Padding Oracle returns!
–SSL header size (13 bytes) is nearly optimal for

attacking the ZeroPad + HMAC timing channel

• The small time difference can be detected
–Many attempts & Statistical models
–Low latency between attacker and victim

required

• Second Padding Oracle / Lucky13
workaround:
–Complex coding solution to ensure constant

time

Peter Magnusson, Twitter: @Blaufish_
Sakerhetspodcasten.se & Omegapoint.se

BEAST

Cryptanalytic attacks against SSL

BEAST (2011)

Victim Web Server
Victim Web

Browser

BEAST
AGENT

Normal HTTPS

BEAST HTTPS

BEAST MitM

Peter Magnusson, Twitter: @Blaufish_
Sakerhetspodcasten.se & Omegapoint.se

BEAST (2011)

• Browser Assisted Exploitation Against
SSL/TLS
–Decrypts a message, usually a HTTP Cookie.
–Fools the browser to attack its own encryption

• Clever SOP rule bypass
–BEAST agent injected into HTTP://victim
–BEAST agent attacks HTTPS://victim
–BEAST agent doesn't know cookie itself, but it is

included in HTTPS sent from BEAST agent

Peter Magnusson, Twitter: @Blaufish_
Sakerhetspodcasten.se & Omegapoint.se

BEAST (2011)

• Browser Assisted Exploitation Against
SSL/TLS
–aka "Here come the XOR Ninjas".

• CBC Cipher Block Chaining mode

• Similar XOR-attack as seen in padding
oracle
–Send P* = C* XOR IV XOR (R||i)
–If one byte of C* == C, we know 1 byte of real

P.

Peter Magnusson, Twitter: @Blaufish_
Sakerhetspodcasten.se & Omegapoint.se

CRIME & BREACH

Cryptanalytic attacks against SSL

CRIME (2012)

GET /abcdefgh
Cookie: JSESSIONID=5eb63bbbe01eeed

GET /5eb63bbb
Cookie: JSESSIONID=5eb63bbbe01eeed

Compressed

Compressed

Peter Magnusson, Twitter: @Blaufish_
Sakerhetspodcasten.se & Omegapoint.se

CRIME (2012)

• Compression Ratio Info-leak Made Easy
• Attack HTTPS SSL/TLS compression

–GET /abc Cookie:
JSESSIONID=5eb63bbbe01eeed

–GET /5eb Cookie:
JSESSIONID=5eb63bbbe01eeed

–Shorter compressed message == guess is
better

• SOP bypass not needed to launch CRIME
–

Peter Magnusson, Twitter: @Blaufish_
Sakerhetspodcasten.se & Omegapoint.se

CRIME (2012)

• Various SSL changes to mitigate CRIME
–Many browsers refusing SSL Compression
–Some web servers refusing SSL Compression

• Jay! CRIME fixed, all done
–But… SSL Compression is not the most

common form of compression

BREACH (2013)

<H1>Your name is: abcdefgh</H1>
<input hidden name="anti_csrf_token"
value=5eb63bbbe01eeed">

<H1>Your name is: 5eb63bbbe</H1>
<input hidden name="anti_csrf_token"
value=5eb63bbbe01eeed">

Compressed

Compressed

Peter Magnusson, Twitter: @Blaufish_
Sakerhetspodcasten.se & Omegapoint.se

BREACH (2013)

• BREACH attacks HTTP response body:
–HTTP Compression must be enabled
–Response contains a secret
–Response reflects attacker input

• CRIME vs BREACH:
–Both use compression oracles to decrypt

HTTPS
–CRIME exploit SSL/TLS compression of request
–BREACH exploit HTTP compression of

response

Peter Magnusson, Twitter: @Blaufish_
Sakerhetspodcasten.se & Omegapoint.se

Weak Algorithms

Cryptanalytic attacks against SSL

Peter Magnusson, Twitter: @Blaufish_
Sakerhetspodcasten.se & Omegapoint.se

RC4 (2013)

• Designed 1987, very fast & useful

RC4 PRNG

Plaintext XOR Ciphertext

K (Key stream)

Peter Magnusson, Twitter: @Blaufish_
Sakerhetspodcasten.se & Omegapoint.se

RC4 (2013)

• Known to be weak since 2001
–Bias (not uniform random) key stream
–Key stream leaks some of internal state
–WEP completely broken due to RC4 & bad

design

• …but RC4 flaws did not affect SSL/TLS (?)

Peter Magnusson, Twitter: @Blaufish_
Sakerhetspodcasten.se & Omegapoint.se

RC4 (2013)

• Borderline practical attacks emerge
• RC4 for SSL/TLS can be broken

–Assuming a lot of messages
–Assuming a lot of time
–ANY improvement on these attacks => practical

• There is no dirty workaround for RC4
–Not a SSL/TLS protocol issue
–Fundamental algorithm flaw, it must be removed

What is HTTPS / SSL

Attacks on SSL

Attacks on related technology

Coding SSL/TLS

Agenda

Peter Magnusson, Twitter: @Blaufish_
Sakerhetspodcasten.se & Omegapoint.se

Related attacks

Peter Magnusson, Twitter: @Blaufish_
Sakerhetspodcasten.se & Omegapoint.se

MD5

2008
Rogue CA

2012 Flame

Stolen
keys

2009?
DUQU

2010
STUXNET

CA Breach

2011
Comodo

2011
DigiNotar

CA
Malpractic

e

2011
Malaysian

DigiCert

2012
Turktrust

Weak
keys

2008
Debian

weak keys

State sponsored
attacks(?)

Peter Magnusson, Twitter: @Blaufish_
Sakerhetspodcasten.se & Omegapoint.se

Related attacks: MD5 Pre-
image

MD5 Pre-image

M1

M2

MD5(M1) = h

MD5(M2) = h

Trust Third
Party

"Please sign M1"

"Here, I signed h=MD5(M1) for you"

Victim

"This was signed by trusted
third party so it must be good"

Peter Magnusson, Twitter: @Blaufish_
Sakerhetspodcasten.se & Omegapoint.se

 Rogue CA certificate (2008)

• Academic team of security researchers
• Supercomputer: 200+ PlayStation 3

• MD5 second-preimage attack
–M1 != M2, H(M1) == H(M2)
–RapidSSL, MD5
–M1 = basic constraint CA=FALSE
–M2 = basic constraint CA=TRUE

Peter Magnusson, Twitter: @Blaufish_
Sakerhetspodcasten.se & Omegapoint.se

Flame (2012)

• State sponsored malware?

• MD5 second-preimage attack
–M1 != M2, H(M1) == H(M2)
–M1 = Microsoft Terminal Services license
–M2 = Code signing cert valid in Window Update

• Similar but NOT SAME as Rouge CA
attack!

• Cryptanalyst team required to perform
attack.

Peter Magnusson, Twitter: @Blaufish_
Sakerhetspodcasten.se & Omegapoint.se

Related attacks: Stolen keys

Stolen keys

Vendor

Malware
authors

Customers
Vendor software, signed with vendor key

Victim

Malware author steal vendor key

Malware, signed with vendor key

Peter Magnusson, Twitter: @Blaufish_
Sakerhetspodcasten.se & Omegapoint.se

DUQU – stolen crypto keys

• State sponsored malware?

• Signed with stolen code sign certificate
–C-Media Electronics, Inc. (certificate issued

2009, signature not time stamped)

• Purpose
–Key logger & attacks targeting small CA's

according to McAfee. Espionage?

Peter Magnusson, Twitter: @Blaufish_
Sakerhetspodcasten.se & Omegapoint.se

STUXNET – stolen crypto keys

• State sponsored malware?

• Signed with stolen code signing certificate
–Realtek Semiconductor - Jan 25, 2010
–JMicron Technology Corp - July 14, 2010

• Purpose
–Disrupt Iranian nuclear enrichment

Peter Magnusson, Twitter: @Blaufish_
Sakerhetspodcasten.se & Omegapoint.se

Related attacks: CA Breach

CA Breach

Certificate
users

Attacker

CA Trust
Third Party

"Please sign my certificate request"

"Here you have your certificate"

Victim

Attacker steal CA key or issue certificates

"Hello I am whoever you want me to
be and I can prove it. Let me do evil"

Peter Magnusson, Twitter: @Blaufish_
Sakerhetspodcasten.se & Omegapoint.se

Comodo (2011)

• State sponsored attack, or only hackers?

• An affiliate Registration Authority (RA)
hacked

• 9 certificates fraudulently issued
–Revoked

Peter Magnusson, Twitter: @Blaufish_
Sakerhetspodcasten.se & Omegapoint.se

DigiNotar (2011)

• State sponsored attack or only hackers?

• Iranian Man in the Middle attack
–MitM detected by Google Chrome browsers
–DigiNotar hacked by Iranian hackers

• 531 or more fake certificates signed

• Trust revoked, DigiNotar files for
bankruptcy

Peter Magnusson, Twitter: @Blaufish_
Sakerhetspodcasten.se & Omegapoint.se

Related attacks: CA
Malpractice

CA Malpractice

Hello CA! Do you do
your important job

well?
DERP DERP DERP

Peter Magnusson, Twitter: @Blaufish_
Sakerhetspodcasten.se & Omegapoint.se

Digicert Malaysia (2011)

• Not an attack; severe malpractice
–512 bit RSA keys (crackable by ordinary

criminals)
–Certs issued w/o extensions (effectively CA,

code signing, Server auth, etc… "do
everything")

• Trust revoked for Digicert Malaysia
–Small CA name squatting on Digicert. Why

would browsers etc allow different CAs with
same name?

–Some zealots removed all Digicert, breaking the
web

Peter Magnusson, Twitter: @Blaufish_
Sakerhetspodcasten.se & Omegapoint.se

Turktrust (2012 XMAS!)

• Not an attack; severe malpractice
–Accidentally issued intermediate CA to Turkish

gov in 2011. Didn't clean up when becoming
aware.

• Accidental Man-in-the-Middle Attack
–Christmas December 24 2012
–Turkish gov accidentally install intermediate CA

from Turktrust into SSL inspecting firewall
–Google Chrome users alert Google to MitM

Trust Post Snowden

Snowden revelations
● Open algorithms are in general good (hard for NSA)

– AES, Diffie-Hellman, Curve25519, Blake
– Communication security in general works

● NSA targets implementations
– Looks for weaknesses
– Influence/strong arm of implementations

● SW, HW and systems

● NSA targets std development
– NIST, ISO, ETSI/SAGE, IEEE
– IETF (SSL/TLS)

● NSA targets data at rest/in use
– Cloud services – Google, Appe, MS etc

Math works!

Goal:
Find or create easier

methods to gain access

Track users and
communication

What is suspect ?
● Random generators

– Intel True RNG (Bull Mountain) in Ivy Bridge, Haswell
– NIST specified Dual_EC_DRBG

● Algorithms
– NIST DES/3DES
– NIST SHA-1
– NIST, IEEE Elliptic Curves
– SAGE 3G, 4G algorithms
– China SMS4, ZUC
– Russia GOST

● Protocols
– SSL/TLS

● Implementations
– HSMs
– Closed Source libs, applications, systems
– MS, Cisco, IBM etc

Suspect backdoor now
confirmed

NSA huge patent owner for
ECC. Big influence in std.

Can we trust security that is not
open and has no transparent

background?

What is the risk?
● Random generators

– Weak keys, no real random numbers

● Algorithms
– Weak algorithms – not expected strength

● Protocols
– Key leakage, session hijacking

● Implementations
– Backdoors, unauthorized access

Is NSA really
the main adversary?

Weaknesses are blind
can be used by other

adversaries

What is being done?
● Random generators

– Push to open entropy source for Bull Mountain
– Bull Mountain not replacing CSPRNG in Linux
– Create open, transparent HSM

● Algorithms
– Push to define new EC curves
– Replace RC4 in SSL/TLS with modern, open stream cipher
– Move away from dependency of NIST

● Protocols
– Reevaluation of SSL/TLS and other IETF sec standards

● Implementations
– Several efforts to audit, evaluate, validate sec implementations
– MS scramble to regain trust

Fundraiser to audit TrueCrypt
https://www.fundfill.com/fund/TrueCryptAudited

16k USD raised to date

NIST has lost a huge
amount of trust

SHA-3

What can you do?
● Random generators and keys

– Test you generator and generated keys
– Use longer keys (though it has costs)

● Algorithms
– Move away from RC4, DES/3DES – AES
– Move away from MD5, SHA-1 to SHA-2 (256, 384, 512)
– Be wary of ECC.

● Protocols
– Move towards TLS 1.x

● Implementations
– Use open implementations and libs
– Test your applications and systems
– Consider where you store (systems, services) stuff

Perfect Forward Secrecy
uses ECDSA

Normal security strategy

Need to be done anyway

What is HTTPS / SSL

Attacks on SSL

Attacks on related technology

Coding SSL/TLS

Agenda

Peter Magnusson, Twitter: @Blaufish_
Sakerhetspodcasten.se & Omegapoint.se

Developing SSL/TLS code is
hard

Developing SSL/TLS code is
hard

Please make changes to this
huge security stack which is

poorly documented, you barely
understood, and throws strange
error messages upon failures

Sure!
How hard can it be?

Peter Magnusson, Twitter: @Blaufish_
Sakerhetspodcasten.se & Omegapoint.se

Why is developing SSL/TLS
code hard?

• There are so many security aspects to
authentication and SSL/TLS, that very few
fully understand all of it.
–Authentication: There ~ 14 rules to be checked,

probably more!
http://en.wikipedia.org/wiki/Certification_path_va
lidation_algorithm

–Failure: everything works great (only insecure)

• Your defaults are HOPEFULLY pretty
secure
–DO NOT REMOVE STANDARD CHECKS

• Public example code is HORRIBLY wrong
–Google & use search results copying flaws

Peter Magnusson, Twitter: @Blaufish_
Sakerhetspodcasten.se & Omegapoint.se

Why is developing SSL/TLS
code hard?

• BE PARANOID
–Test test test
–Think through many times what the code does

• Understand incomprehensive errors
–don't rush code changes to deal with SSL errors
–SSL error are usually logical, technical and

security oriented. Unhelpful but CAN be
understood.

Peter Magnusson, Twitter: @Blaufish_
Sakerhetspodcasten.se & Omegapoint.se

Classic WTF Horror

BEWARE this section contain DO
NOTs you should NOT copy into

your own code

https://www.fundfill.com/fund/TrueCryptAudited

Classic WTF Horror

Client Server

https://api.google.com

"I am: Russian.Malware.Ru"

"Okay!"

Peter Magnusson, Twitter: @Blaufish_
Sakerhetspodcasten.se & Omegapoint.se

Classic WTF Horror

HttpsURLConnection.setDefaultHostnameVer
ifier(new HostnameVerifier() {
 public boolean verify(String s,
SSLSession sslSession) {
 return true;
 }
 });
• Any valid certificate for ANY site may spoof
the site

• Sadly, this is "best answer" in various
forums

Peter Magnusson, Twitter: @Blaufish_
Sakerhetspodcasten.se & Omegapoint.se

Stacks and libraries

SSL/TLS used insecurely

http://crypto.stanford.edu/~dabo/pubs/abstracts/ssl-client-bugs.html

SSL used through layers with different APIs

SSL/TLS used insecurely

http://crypto.stanford.edu/~dabo/pubs/abstracts/ssl-client-bugs.html

Complex APIs makes for easy mistakes

SSL/TLS used insecurely

http://crypto.stanford.edu/~dabo/pubs/abstracts/ssl-client-bugs.html

Validation
control in

cURL

Example code
from Amazon
FPS (PHP)

SSL/TLS used insecurely

http://crypto.stanford.edu/~dabo/pubs/abstracts/ssl-client-bugs.html

Even worse example code
provided by PayPal

SSL/TLS used insecurely

http://crypto.stanford.edu/~dabo/pubs/abstracts/ssl-client-bugs.html

Hostname
validation

in
Apache
Libcloud

google.com = *oogle.com
moogle.com, scroogle.com are BAD domains

Peter Magnusson, Twitter: @Blaufish_
Sakerhetspodcasten.se & Omegapoint.se

Handling SSL/TLS dev
challenges

Peter Magnusson, Twitter: @Blaufish_
Sakerhetspodcasten.se & Omegapoint.se

Handling SSL/TLS dev
challenges

• Test environments
–Don't create code to "handle SSL errors for

dev/test"
–Start dev environments with a Test trust store

which trust the test environments
–Run with secure standard code in dev/test

• Special cases
–If you absolutely have to mess around, mess

with specific connections instead of changing
defaults

Peter Magnusson, Twitter: @Blaufish_
Sakerhetspodcasten.se & Omegapoint.se

Cerificate Pinning

https://www.owasp.org/index.php/
Certificate_and_Public_Key_Pinni

ng#Android

Certificate Pinning

Client Server

https://api.google.com

"I am: api.google.com
according to A Trusted CA

Today I have a new public key"

FU! disconnecting!

Peter Magnusson, Twitter: @Blaufish_
Sakerhetspodcasten.se & Omegapoint.se

Certificate Pinning

• Force your system to only trust a specific
certificate
–If you do not trust certificate authorities
–CA breaches
–CA malpractice
–Compelled certificates by a malicious

government

• But only add security, don't remove checks
–https://www.owasp.org/index.php/Certificate_an

d_Public_Key_Pinning#Android

Peter Magnusson, Twitter: @Blaufish_
Sakerhetspodcasten.se & Omegapoint.se

Certificate Pinning (1/2)

private static String PUB_KEY =
"30820122300d06092a864886f70d0101 …";

public void checkServerTrusted(X509Certificate[] chain, String authType)
throws CertificateException {
…
 // Perform customary SSL/TLS checks
 try {
 TrustManagerFactory tmf = TrustManagerFactory.getInstance("X509");
 tmf.init((KeyStore) null);
 for (TrustManager trustManager : tmf.getTrustManagers()) {
 ((X509TrustManager) trustManager).checkServerTrusted(chain,
authType);
 }
…

Peter Magnusson, Twitter: @Blaufish_
Sakerhetspodcasten.se & Omegapoint.se

Certificate Pinning (2/2)

 // Hack ahead: BigInteger and toString(). We know a DER
encoded Public Key begins
 // with 0x30 (ASN.1 SEQUENCE and CONSTRUCTED), so
there is no leading 0x00 to drop.

 RSAPublicKey pubkey = (RSAPublicKey)
chain[0].getPublicKey();
 String encoded = new BigInteger(1 /*
positive */,
pubkey.getEncoded()).toString(16);

 // Pin it!
 final boolean expected =
PUB_KEY.equalsIgnoreCase(encoded);
 if (!expected) {
 throw new
CertificateException("checkServerTrusted:
Expected public key: "
 + PUB_KEY + ", got public key:" +
encoded);

Peter Magnusson, Twitter: @Blaufish_
Sakerhetspodcasten.se & Omegapoint.se

Force crazy TLS Security?

Peter Magnusson, Twitter: @Blaufish_
Sakerhetspodcasten.se & Omegapoint.se

Force crazy TLS Security?

SecureSocketFactory extends SSLSocketFactory
{
public Socket createSocket(Socket s, ……) throws
IOException {

 s.setEnabledProtocols(new String[] { "TLSv1.2" });

 s.setEnabledCipherSuites(new String[]
{ "TLS_DHE_RSA_WITH_AES_256_GCM_SHA384",
"TLS_ECDH_RSA_WITH_AES_256_CBC_SHA384" });

AES GCM and other AEAD cipher
suites not officially supported in
java7

SSL Best Practice

USE HTTPS!

Cost of longer keys

● Rapidly decreased performance
– But Keepalives is more important
– Upgrade of openssl can improve performance

● Interoperability
– OSX, iOS supports max 4096 bits by default
– Chrome, Android max ~2300 bits until recently

Source: AndreasJ - Romab

Source: AndreasJ - Romab

Source: AndreasJ - Romab

http://technet.microsoft.com/en-us/security/advisory/2880823

No root certs issued with SHA-1 after 2016

Use certs with SHA-2 (there are broblems though)

CA, Trust Store requirements
Microsoft

https://wiki.mozilla.org/CA:MD5and1024

CA, Trust Store requirements

No root certs with 1024 bit keys in January 2014

Check your root

Mozilla

Deploying Forward Secrecy

● Upgrade server and libs
– Apache 2.4
– Nginx 1.0.6, 1.1.0
– OpenSSL 1.0.1c
– GnuTLS 3.2.7

● Performance cost
– Est 15% CPU and comm during init

TEST HTTPS!

https://www.ssllabs.com/ssltest/

Server validation

Check & change in-app suites

http://op-co.de/blog/posts/android_ssl_downgrade/

Android uses the
cipher suite order

in Java

AES-256 and SHA1 to
RC4 and MD5 in 2010

Change the order
in your app

https://www.ssllabs.com/ssltest/viewMyClient.html

Client validation

Client Stress Testing

● TLSpretense
– Check that your client does not fail open
– Accepts certs for wrong domain
– Accepts broken chains
– Null byte host name

https://github.com/iSECPartners/tlspretense/

Sslyze
● Open source SSL/TLS testing tool

– Test public AND private servers

● IIS sponsored development of new functions
– OCSP, CRL, Multiple Trust Stores, SNI etc
– HSTS, HTTP vs HTTPs (content)

● Upstream merge of some parts
– New generation with API breakage during project

Sslyze

SSL Status

November 02, 2013

Source: https://www.trustworthyinternet.org/ssl-pulse/

Source: https://www.trustworthyinternet.org/ssl-pulse/

Peter Magnusson, Twitter: @Blaufish_
Sakerhetspodcasten.se & Omegapoint.se

Source: https://www.trustworthyinternet.org/ssl-pulse/

Peter Magnusson, Twitter: @Blaufish_
Sakerhetspodcasten.se & Omegapoint.se

Source: https://www.trustworthyinternet.org/ssl-pulse/

Peter Magnusson, Twitter: @Blaufish_
Sakerhetspodcasten.se & Omegapoint.se

Questions?

These slides will be available at:
www.slideshare.net/blaufish

www.owasp.org/index.php/Gothenburg

References

● OpenSSL Cookbook

– https://www.feistyduck.com/books/openssl-cookbook/

● SSL/TLS Deployment Best Practice

– https://www.ssllabs.com/projects/best-practices/index.html

● Sslyze

– IIS version: https://github.com/kirei/sslyze

– Upstream: https://github.com/iSECPartners/sslyze

●

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 152
	Slide 153

