
OWASP Top 10
Showing how MVC, .NET and IIS can solve

the low hanging fruit of the OWASP Top 10

James Davis

Overview

• Who is this guy?

• Quick Boot on MVC

• A1 – Injection

• A2 – Broken Authentication

• A3 – Cross Site Scripting (XSS)

• A4 – Insecure Direct References

• A5 – Security Configuration

Overview

• A6 – Sensitive Data Exposure

• A7 – Missing Function Level Access Control

• A8 – Cross-Site Request Forgery (CSRF)

• A9 – Using Components with Known Vulnerabilities

• A10 – Unvalidated Redirects and Forwards

• Wrap Up

Who is this guy?

• James Davis
• @debugthings
• LinkedIn

• Programmer for 10 years
• .NET for 10 years
• C++ for 5 years
• Various other languages

• Soul developer for (now defunct) www.elawnguys.com

• Interested in Security and Brewing Beer
• Working on the upper levels of IO in my spare time

(stopped at 27 when the baby came)
• Brewed a number of batches, love to make gadgets to help

https://twitter.com/debugthings
https://twitter.com/debugthings
http://www.linkedin.com/in/debugthings/

OWASP Site

• The OWASP MVC site is freely available on GitHub
• https://github.com/jldgit/OWASPTop10Tampa

• All of the code you see displayed is available in the repository

• All of the code is free to use

• I do not guarantee this code will work for you
• Please use them as guided examples.

• If you have issues running the site, feel free to contact me
• There is limited documentation on the repository

https://github.com/jldgit/OWASPTop10Tampa

MVC and ASP.NET Quick Boot

What is ASP.NET?

• Microsoft server side programming platform
• It is language agnostic (can be used with C# and VB.NET)

• Generally is a module that is run in IIS
• Executes in an IIS container called a worker process

• Can be run on Linux with Mono (offshoot of CLI Rotor)

• Can also be run from a custom container

• It’s versioned along with the main .NET assemblies

• Runs a few popular sites (microsoft.com)

• Primarily used in corporate environments

The old way of doing things
• TONS of events
• Kludgy insertion of data
• Controls were databound
• Viewstates (Ugh.)
• Validation was bound per control
• Complicated
• Lots of misinformation

If you google how to bind data to a control, you get a bunch of
possibilities. You also get a lot of hacks that--I'm sure--made it
into production.

Postbacks were a bit unruly and often required some complex
logic to change the course of the page load.

So, where do we put our code?

Here

Here

Here

Here

Here

Here

HereHere

Here

Here
Here

Here

Here

Here
Here

What is MVC?

• MVC is not new. It’s an old pattern revived for .NET (supplanted
MVVM)

• First iterations written by Scott Guthrie in 2009

• As of today latest version is 5.2

• Lots of built in goodies to help with security

• Model – Validation Logic, Business Logic, Data Access, Entity
Framework

• View – HTML markup, javascript

• Controller – Control Flow, how the data is handled that is sent to the
view

Controller

Model

View

User

HTML

Control Flow

Validation

Data Access

Business LogicIIS/
Routing

En
tity FW

Filters/Attributes

Legacy Application Design

• The Beginning (ASP, ASP.NET 1.0, old timers on new systems)
• Handful of browsers, limited servers

• A one to one relationship of all things

• Code lived inline with the ASP and ASP.NET tags

• Database calls were unchecked*

• User input was also unchecked*

• Lots of boilerplate code was needed, FOR EVERYTHING

• Web pages were really just e-mail forms

• Data access was limited

Legacy Application Design

• The Change (ASP.NET 2.0 takeover)
• Everyone fears change
• SOA became the “thing”

• The application 7-layer burrito

• Code is now separated from markup (mostly)
• Content sourced from more than one place
• Business developers became web developers
• Large adoption for in-house
• Low adoption for external
• Solve hard problems with a webpage, not a fat client
• Focus on complexity of systems
• Little focus on best practices

Modern Application Design

• The Excitement (ASP.NET in full swing, MVC and MVVM)
• Change is wildly embraced

• By now code was robust and applications solid

• WebForms (GOD AWFUL) were on the way out
• Web development became civilized

• Focus on UX and functionality

• New toys to help speed development

• Social media is big

• Content comes from dozens of places

• Best practices become accepted and used

• Security is getting noticed

Modern Application Design

• The Reality
• Things really don’t change

• Legacy code sits every where; it’s the glue you can’t remove

• WebForms are still around

• Changing code takes time and money

• Big companies are still the most prone

• “It doesn’t face the outside. So, we’re good right?”

• Business developers are still becoming web developers

• People still take the easy route

• People are still taking lessons from headlines

OWASP Top 10

A1 – Injection

Models

• Models provide built in validation for fields and parameters
• Both for backend and frontend data (jQuery validate)

• Entity Framework provides some safe guards
• Use Linq or Linq-to-SQL (properly performance tested of course)

• Use of custom model binders provides consistent validation

Controllers

• Controllers also provide a frontline for validation
of POST data [ValidateInput]; the default value is true

• Custom Action filters to provide repeatable actions cleanly

Injection – Vulnerable Site

String
Concatenation

Raw Query String

By using a raw query
string and string
concatenation we leave
this vulnerable to an
obvious injection.

What is more subtle is
the fact that we allow
search terms in the
query string by only
accepting a GET verb.

See my note on the next
slide about using POST

Explicit GET

Injection – Secure Site

By making a few changes
and leveraging the MVC
pattern we build in an
inherent type safety.

This allows for cleaner,
more secure, and more
maintainable code as
your product grows.

Explicit POST
Strongly Named Input

Also Strongly Typed

Uses LINQ

Uses Models

*Note on using GET v. POST. There is no hard and fast rule to use either. In the spirit of MVC and
clean URLs, using POST will get rid of the ?searchTerm= in the URL.

There is no inherent safety associated with using POST other than using the binding
mechanisms that are available when using MVC. It also requires the attacker to use specific
toolsets to mangle the HTTP request. These may not always be available from the attack
location.

A2 – Broken Authentication

Controllers

• No session information passed via query string
• Use of cookie based ASP.NET session

• Use web.config to enforce timeout rules

• Custom Filter to change session ID after logon

Extras

• Facebook, Twitter, Google, Microsoft?
• Use of Oauth and these identity providers is recommended to keep your data secure

• Built in support for things like 2 factor authentication

• There’s a NuGet pacakage for that!

Peek at web.config for session

Time in minutes that
session will be active

Default Value

Storage Location

The session timeout is perpetual. This means that it will
timeout in the interval from the last request the session
is being used.

See the code examples on creating a filter that will
handle a hard timeout.

A3 – Cross Site Scripting (Server-Side)

Views

• Views default to HTML encoding.

• Built in helper methods
• Html.Encode – Uses HTML Escaping >
• Url.Encode – Uses URL Encoding %3E
• Ajax.JavaScriptStringEncode – Uses JavaScript Escaping \u003e

Controllers

• If you are accepting data from a user you can also use these methods to encode from the Action;
beware as you may end up double encoding
• HttpUtility.UrlEncode
• HttpUtility.HtmlEncode
• HttpUtility.JavaScriptStringEncode

Extras

• Microsoft AntiXSS Library
• Uses whitelisting and is updated regularly

Cross Site Scripting – Vulnerable Site

Improper Use of
Url.Raw()

Disables all
Validation

This set of pages is getting
better as we can see that we’re
using Models. However the
problem lies with the disabling
of ALL validation for this model.

In the View we can also see
that we’re displaying RAW data
to the user. This is un-escaped
HTML data and will be inserted
into the HtmlWirter() as is.

Cross Site Scripting – Secure Site

Improper Use of
Url.Raw()

Use of AntiXSS
Library

Custom Model
Binder

Use of a Model Binder
and AntiXSS for both the
Model and the View will
ensure that you do not
take in bad data as well as
you will not display bad
data.

A4 – Insecure Direct Object References

http://www.mysite.com/4567/234/safe

Routing Engine

• The Routing Engine has a few tricks to help keep you safe
• You can define the types of data accepted by a route as well you can even do (limited) validation

and parsing of data before it hits your controller

Models

• The real meat of this vulnerability is taken care of when you use Models.
• You can create tight relationships between your data and authenticated users

Controllers

• Use of the [Authorize] class attribute (Filter)
• You can extend IAuthorizationFilter to create a custom authorization check for a page

Views

• Proper logic and partial pages can hide sensitive areas

http://www.mysite.com/4567/234/safe

Insecure Direct Object References – Vulnerable Site

Generic Route

Generic Action

Both the generic Route and the generic
Action lend to sloppy references.

Insecure Direct Object References – Secure Site

Specific Routes Specific Actions

Specific
Authorization

Using specific routes and specific actions together can help you
control the users and role allowed to access specific areas of your
application.

A5 – Security Misconfiguration

Non MVC Specific

• Be aware that your default application pool runs as IUSR which is a local
(least privileged) account

• If you are in a AD environment create a non human account
• You can revoke access at any time and also lock down more by policy

• Use Integrated security when possible for SQL connections

• IIS leaves anonymous access on by default; you have to explicitly turn it off

• Beware of the FullTrust trap
• Not everything needs full trust. Sometimes you just need to create a specific security

policy for your assemblies

• Try to use only signed assemblies from trusted sources

A6 – Sensitive Data Exposure

Controllers

• The most useful attribute for protecting sensitive data is [RequireHttps]
• The name implies the obvious. It only allows HTTPs for a specific Controller or Action

• Disable output caching for secure pages
• [OutputCache(NoStore = true)]

• Create secure cookies whenever possible
• HttpCookie.Secure = true
• HttpCookie.Sharable = false
• HttpCookie.HttpOnly = true

Views

• Remove comments from markup
• Use server side comments @* *@

IIS

• Turn off detailed exceptions and errors

• Turn off headers that identify your backend technology

Sensitive Data Exposure – Vulnerable Site

Allowing non
HTTPS

Allowing non HTTPS
Allowing

Client Side Cache

Not protecting
sensitive cookies

Exposing
Sensitive Info in

Comments

Sensitive Data Exposure – Secure Site

HTTPS Only
No Caching

Protecting
sensitive cookies

Using Server
Side Comments

A7 – Missing Function Level Access Control

Controllers

• This is where the use of the [Authorize] filter shines

• You can use [Authorize] to limit by Roles or Users
• [Authorize(Roles = “Admin”)]

• This is text based and uses the roles provider

• Can be applied to the Controller or the Action

Missing Function Level Access Control – Vulnerable Site

Zero Protection

Only Validates
User is Real

Almost no protection is on the Admin
function.

The only protection available is the
Authorize filter which just validates that
a user (any user) can access this area.

Missing Function Level Access Control – Secure Site

Just by adding the Roles attribute to the
Authorize filter we can limit an area to a
specific user role. Or even a set of user
roles.

By adding in simple checks in your views
you can avoid displaying secure areas by
mistake or omission.

Only Allows the
Admin Role

Check the User Role Inside
of the View

Attach a User to a
Model Item

A8 – Cross-Site Request Forgery

Controllers and Views

• Use [ValidateAntiForgeryToken] in conjunction with
HtmlHelper.AntiforgeryToken (@Html.AntiForgeryToken)
• Built in, works great.

• By default this is a hidden form parameter and a cookie; this is the safest way
to handle this.

• Create a filter that invalidates the session if they do not have a proper
referrer header

• Try to use post parameters wherever possible to modify data
• [HttpPost] attribute will limit the verbs to POST only

Cross-Site Request Forgery - Secure

Only Allows the
Admin Role

Use of
Anti-Forgery Token

Require POST verb
The Anti-Forgery Token built into MVC
is very easy to use and helps prevent a
number of attacks.

However, you don’t have to stop there.
You can extend a custom filter to check
the origin of the page request as well.

Custom Filter Attribute to
Check the Referrer Header

A9 – Using Components with Known
Vulnerabilities
• It's Microsoft, so, you know... Patch Tuesday

• Turn off services and components you don’t need
• FTP (CVE-2010-3972) – Denial of Service (IIS7)

• FastCGI (CVE-2010-2730) – Remote Code Execution (IIS 7 and 7.5)

• MVC 2 – 5.1 (CVE-2014-4075) -- XSS Vulnerability

• Beware of using third party applications from an untrusted source
• Use NuGet

• If you can get the code, look it over and compile it yourself

• Lock down permissions for 3rd party code, start at the most restrictive and
turn it up if needed.

A10 – Unvalidated Redirects and Forwards

Controllers, Views and Routing

• Clever use of Views can help here for internal redirects
• The old way of doing this was a Server.Redirect or Server.Transfer

• The new way is just to return a View

• Returning a View will not cause a redirect but instead change the content of the page

• You can even tell your action to return another action; this has the added benefit of
using the security filters you assign

• You can validate the URL with the Url.IsLocalUrl() method

• Routing and Controllers also can help here
• If you are taking in a parameter to redirect you can use your route to send it to a

more secure/robust Action to determine if the location is really yours

Unvalidated Redirects and Forwards – Vulnerable Site

Raw Redirect

This contrived example shows that we’re taking in a string
parameter, whether it’s a query string or POST parameter and
blindly redirecting to the destination.

Unvalidated Redirects and Forwards – Secure Site

Validates Origin

Validates Origin

Validates
Destination

Here we can see that we’re using
the referrer action from A8 in
conjunction with the
Url.IsLocalUrl.

On the A10Redirect() method,
you can see the use of the
NonAction filter. This tells MVC
that this is just a function and not
something that can be navigated
to.

This page has the potential for an
infinite loop if we included a
redirect query string along with
the input.

Cannot be
accessed directly

In a nutshell

• Use Entity Framework and Models to simplify and secure data access

• Use available tools for XSS and Injection attacks
• HtmlHelper library
• Microsoft XSS Library (WPL)

• Limit types of input by using the routing engine

• Make use of built in security filters
• [Authorize]
• [RequireHttps]
• [ValidateAntiForgeryToken]

• Properly configure other filters to be secure
• [OutputCache(NoStore = true)]

• Write your own extensions to perform custom actions
• Customer filters extended from FilterAttribute
• Custom HTML Helpers

• When in doubt, check NuGet

Questions and Comments

