
Copyright © The OWASP Foundation
Permission is granted to copy, distribute and/or modify this document
under the terms of the OWASP License.

The OWASP Foundation

OWASP

http://www.owasp.org

An In-Depth Introduction to
the Android Permission Model
and How to Secure Multi-Component Applications

Jeff Six

jeffsix.com

3 April 2012
Presented at AppSecDC 2012

OWASP 2

About Jeff

Jeff Six (http://jeffsix.com)

MEE and BCpE, University of Delaware
Eight+ years working computer and network security for

NSA/DoD; five+ years for major financial institutions
Author of Application Security for the Android Platform
 (see me for discount coupons after the talk!)

 Interests (Professional)
Computer, network, and application security
Android software development
STEM education

 Interests (Other)
Triathlon, SCUBA diving, other outdoor sports
Lifeguarding (19yr), LGI (16yr), EMS

Family
1 wife, 1 cat

http://jeffsix.com

OWASP

Introduction

This talk introduces the application permissions system
for the Android operating system/environment.

 It does not address the overall security model of Android,
which is largely based on the underlying Linux kernel.
Just know that each application (normally) runs under its
own UID on an Android device and this is the
fundamental construct for application separation.

Application permissions allow components to control
which other applications are allowed to interact with
them.

3

OWASP

Android IPC Calls Using Intents

 Interprocess communication between applications is
accomplished using the Binder interface and Intents.

One application can create an Intent and send it to all
apps running that are registered to receive that particular
type of Intent (this is an implicit Intent). Intents can also
be created that specify exactly which app should receive
them (this is an explicit Intent).

Each Android component can be either public or private. If
it is public, other components can interact with it. If it is
private, the only components that can interact with it are
those that are part of the same app (or one that runs with
the same UID).
Each component type is either public or private by default,

depending on how it is used (if it specifies a filter to receive
implicit Intents, then it is public…otherwise, it is private).

OWASP

Android Permissions Model

The permissions model is based on permissions, which
are constructs that various APIs require calling apps to
have before they will provide certain services.

Applications must declare (in their manifest) which
permissions they request/require. When an application is
installed, the Android system will present this list to the
user and the user must decide to allow the installation or
not.
This is an all-or-nothing decision; the user can install the app or

not, but cannot choose to install it with reduced permissions.

This imparts a significant responsibility to both the developer (to
accurately specify required permissions) and the user (to
understand the risk involved and make an informed decision).

OWASP

Android Permissions Model

The Android permissions model was designed with two
fundamental goals.

Inform the User – By listing all “sensitive” operations that an
application could perform, the user is more aware of the risks
involved in installing the application. This assumes that the user
will actually read the permission dialog and make a rationale
yes/no install decision based on that information, which may or
may not be true.

Mitigate Exploits – By limiting application access to sensitive
APIs, the ability of an attacker to cause damage if an application
is successfully exploited is somewhat mitigated (Dan Geer’s
“ding” versus “shatter”).

Most system permissions are all-or-nothing, by design.
For example, an app gets unlimited Internet access or
none at all.

6

OWASP

Specifying Required Permissions

Making use of a system API that requires a permission
simply requires you to specify that permission in your
application’s manifest (AndroidManifest.xml).

For example, if you application needs access to the
Internet, specify the INTERNET permission…

7

<manifest xmlns:android=“http://schemas.android.com/apk/res/android”

 package=“com.example.testapps.test1”>

 …

 <uses-permission android:name=“android.permission.INTERNET” />

 …

</manifest>

OWASP

Permission Levels

Android permissions fall into four levels.

Normal – These permissions cannot impart real harm to the user
(e.g. change the wallpaper) and, while apps need to request
them, they are automatically granted.

Dangerous – These can impart real harm (e.g. call numbers,
open Internet connections, etc) and apps need to request them
with user confirmation.

Signature – These are automatically granted to a requesting app
if that app is signed by the same certificate (so, developed by the
same entity) as that which declared/created the permission. This
level is designed to allow apps that are part of a suite, or
otherwise related, to share data.

Signature/System – Same as Signature, except that the system
image gets the permissions automatically as well. This is designed
for use by device manufacturers only.

OWASP

Custom Permissions

Custom permissions can be used by developers to
restrict access to various services/components.

Any application that interacts with another application’s
component would need to possess the required
permission for the call to succeed.

First, a permission must be declared/created in an
application’s manifest.

 <permission android:name=“com.example.perm.READ_INCOMING_MSG”

 android:label=“Read incoming messages from the EX service.”

 android:description=“Allows the app to access any messages received by

 the EX service. Any app granted this permission will be able to read all

 messages processed by the ex1 application.”

 android.protectionLevel=“dangerous”

 android:permissionGroup=“android.permission-group.PERSONAL_INFO”

/>

OWASP

Enforcing Permissions Programmatically

Applications can check to see if calling apps have
permissions programmatically.

This will ensure that the calling process (via IPC) has the
necessary permission. There are other forms of this call
that can check to see if a specific PID/UID combination
has a certain permission or if a specific package has that
permission.

int canProcess = checkCallingPermission(

 “com.example.perm.READ_INCOMING_MSG”);

if (canProcess != PERMISSION_GRANTED)

 throw new SecurityException();

OWASP

Enforcing Permissions Programmatically

One caveat…there is a method that will check to see if a
calling process OR the currently active process has a
specific permission.

This is a dangerous model, and should not be used,
as it can lead to permission leaking. It can allow a
process without a certain permission to call your code,
which does have that permission, and trick it into
performing an unauthorized operation.

int canProcess = checkCallingOrSelfPermission(

 “com.example.perm.READ_INCOMING_MSG”);

if (canProcess != PERMISSION_GRANTED)

 throw new SecurityException();

OWASP

Enforcing Permissions via Manifest

 It is also possible to enforce permissions to interact with
certain components by specifying those permissions
within the containing application’s manifest.

This method is generally preferred over programmatic
checks, as permissions are more easily managed by
including them all in a central place and decoupled from
the application’s source code.

Each component type can specify required permissions
using straightforward attributes in their manifest entries.

12

OWASP

Securing Activities

An Activity is a component that represents a
presentation layer experience for an Android application.

You can use permissions to restrict what apps can cause
an Activity to start by including a permission attribute in
the manifest entry for the Activity in question.

<activity android:name=“.Activity1”

 android.permission=“com.example.perm.START_ACTIVITY”>

 <intent-filter>

 …

 </intent-filter>

</activity>

OWASP

Securing Activities

14

Application 1

Activity A

Activity B

Application 2

Application 3

android.permission.INTERNET

android.permission.INTERNET

com.example.perm.START_ACTIVITY

<
a
n
d
ro

id
:p

e
rm

issio
n
=

“co

m
.e

x
a
m

p
le

.p
e
rm

.S
T
A
R
T
_
A
C
T
IV

IT
Y
” INVOKE

Success Failure

OWASP

Securing Services

A Service is a component that runs in the background
and provides some services to other components.

You can use permissions to restrict what apps can
interact with a Service (creating an instance of it,
binding to it, or calling methods on it) by including a
permission attribute in the manifest entry for the Service
in question.

<service android:name=“.MailListenerService”

 android:permission=“com.example.perm.BIND_TO_MSG_LISTENER”

 android:enabled=“true”

 android:exported=“true”

 <intent-filter></intent-filter>

</service>

OWASP

Securing Services

The permission specified in a Service’s manifest entry is
required to create, bind to, and call methods on, the
Service. This general case does not allow you to specify
different permissions for specific callable methods of a
bound Service.

You can accomplish this (requiring different permissions for
different callable Service methods) by inserting programmatic
checkCallingPermission() calls in the various methods.

This is an example of where programmatic checks may be
necessary and why the ability to call checkCallingPermission() at
arbitrary points within an application is important.

Note that such checks would be in addition to the check
performed for the permission specified in the manifest entry.

16

OWASP

Securing Services

17

Application 3

Service A

<
a
n
d
ro

id
:p

e
rm

issio
n
=

“co

m
.e

x
a
m

p
le

.p
e
rm

.B
IN

D
_
T
O

_
M

S
G

_
L
IS

T
E
N

E
R
”

>

CREATE

Success Failure

BIND

Method 2

Method 1

Application 1

Application 2

android.permission.INTERNET

android.permission.INTERNET

com.example.perm.BIND_TO_MSG_LISTENER

ch
e
ck

C
a
llin

g
P
e
rm

issio
n
(

“co
m

.e
x
a
m

p
le

.p
e
rm

.C
A
L
L
_
M

E
T
H

O
D

2
”)

com.example.perm.CALL_METHOD2

OWASP

Securing Content Providers

A Content Provider is the standard way for Android apps
to make data available to other apps, and is normally
used as the front-end for a database or similar store.

Content Providers are not accessed via Intent-based IPC, but via
connections to URIs that point into a Content Provider
namespace.

Content Providers can specify permissions required to
either read or write to them (write does not imply read).

 <provider android:name=“com.example.test.app1.MailProvider”

 android:authorities=“com.example.test.app1.mailprovider”

 android:readPermission=“com.example.perm.DB_READ”

 android:writePermission=“com.example.perm.DB_WRITE”>

</provider>

OWASP Success Failure

Application 1

Securing Content Providers

19

Content Provider A

<
a
n
d
ro

id
:re

a
d
P
e
rm

issio
n
=

“co

m
.e

x
a
m

p
le

.p
e
rm

.D
B
_
R
E
A
D

” READ

WRITE

<
a
n
d
ro

id
:re

a
d
P
e
rm

issio
n
=

“co

m
.e

x
a
m

p
le

.p
e
rm

.D
B
_
W

R
IT

E
”

Application 2

Application 3

android.permission.INTERNET

android.permission.INTERNET

com.example.perm.DB_READ

com.example.perm.DB_WRITE

OWASP

Securing Content Providers

This basic level of permissions would require read/write
permissions to the entire Content Provider to be granted.
As Content Providers typically expose access to an
underlying database, this is not ideal. URI Permissions are
also available, which allows permissions to be granted to
specific URIs within the provider.

To use this, a Content Provider must be configured to
allow it. There are two ways of doing this (either the
entire Provider at once or specific subbranches).

Note that this configuration only allows permissions for
other apps to access this content to be granted. The
permissions are not automatically granted and the app
must take this second, programmatic, step to actually
share the data.

OWASP

Securing Content Providers

One can either enable the granting of URI-based
permissions throughout the entire Provider…

Or to specific subbranches within the Provider…

<provider android:name=“com.example.test.app1.MailProvider”

 android:authorities=“com.example.test.app1.mailprovider”

 android:readPermission=“com.example.perm.DB_READ”

 android:writePermission=“com.example.perm.DB_WRITE”

 android:grantUriPermission=“true”>

</provider>

<provider android:name=“com.example.test.app1.MailProvider”

 android:authorities=“com.example.test.app1.mailprovider”

 android:readPermission=“com.example.perm.DB_READ”

 android:writePermission=“com.example.perm.DB_WRITE”>

 <grant-uri-permission android:path=“/attachments/”>

</provider>

OWASP

Securing Content Providers

To grant permissions to whatever application handles an
implicit Intent, add that permission to the Intent.

To grant permissions to a specific application on the
device, add the permission to that application directly.

uri = “content://com.example.test.provider1/attachments/42”;

Intent intent = new Intent(Intent.ACTION_VIEW);

intent.setFlags(Intent.FLAG_ACTIVITY_NEW_TASK);

intent.addFlags(Intent.FLAG_GRANT_READ_URI_PERMISSION);

intent.setDataAndType(uri, “image/gif”);

startActivity(intent);

uri = “content://com.example.test.provider1/attachments/42”;

Context.grantUriPermission(“com.example.test.app2”, uri,

 intent.FLAG_GRANT_READ_URI_PERMISSION);

OWASP

Application 1

Securing Content Providers

23

Content Provider A

<
a
n
d
ro

id
:re

a
d
P
e
rm

issio
n
=

“co

m
.e

x
a
m

p
le

.p
e
rm

.D
B
_
R
E
A
D

”

READ

Application 2

android.permission.INTERNET

/messages

/indices

/attachments

/alerts

/41

/42

Success Failure

OWASP Success Failure

Application 1

Securing Content Providers

24

Content Provider A

<
a
n
d
ro

id
:re

a
d
P
e
rm

issio
n
=

“co

m
.e

x
a
m

p
le

.p
e
rm

.D
B
_
R
E
A
D

”

READ

Application 2

android.permission.INTERNET

uri = “content://com.example.app1.providerA/attachments/42”;

Context.grantUriPermission(“com.example.app2”, uri,

 intent.FLAG_GRANT_READ_URI_PERMISSION);

/messages

/indices

/attachments

/alerts

/41

/42

URI Permission:app2 can
read /attachments/42

OWASP

Securing Broadcast Intents

Broadcast Intents (Implicit Intents) are messages sent
out, across the system, to all apps that would like to
receive them.

A developer can restrict which apps are allowed to
receive a broadcast by requiring a permission to do so…

One can also configure a broadcast receiver to only
receive broadcasts from apps that have a permission…

Intent bcastIntent = new Intent(MESSAGE_RECEIVED);

context.sendBroadcast(bcastIntent, “com.example.perm.MSG_NOTIFY_RCV”);

IntentFilter intentFilter = new IntentFilter(MESSAGE_RECEIVED);

UIMailBroadcastReceiver rcv = new UIMailBroadcastReceiver();

context.registerReceiver(rcv, intentFilter,

 “com.example.perm.MSG_NOTIFY_SEND”, null);

OWASP

Securing Broadcast Intents

The two-sided nature of Broadcast Intents, broadcasting
them out and listening for them, allow developers to
properly secure both ends.

By requiring a permission to receive specific Broadcast Intents,
an originator can specify which applications are allowed to be
notified when specific messages are broadcast.

By requiring a permission from Broadcast Intent senders,
applications that are listening for broadcasts can choose to only
accept such messages from specific applications.

26

OWASP

Securing Broadcast Intents

27

System Broadcast Mechanism

Broadcast Message

com.example.perm.MSG_NOTIFY_RCV

Application 2

android.permission.INTERNET

com.example.perm.MSG_NOTIFY_RCV

Application 3

android.permission.INTERNET

Success Failure

Application 1

OWASP

Securing Broadcast Intents

28

System Broadcast Mechanism

Broadcast Message

Application 2

android.permission.INTERNET

Application 3

android.permission.INTERNET

Success Failure

Application 1

com.example.perm.MSG_NOTIFY_SEND

OWASP

And That’s It…Thanks For Attending!

Questions? Comments?

29

