Exploring the ecosystem of malicious domain registrations in the .eu TLD

Lieven Desmet – OWASP BeNeLux Day 2017 – Tilburg, NL

Lieven.Desmet@cs.kuleuven.be – @lieven_desmet
Joint research between KU Leuven and EURid

› EURid:
 ‣ Dirk Jumpertz
 ‣ Peter Janssen
 ‣ Marc Van Wesemael

› DistriNet, KU Leuven:
 ‣ Thomas Vissers
 ‣ Jan Spooren
 ‣ Pieter Agten
 ‣ Frank Piessens
 ‣ Wouter Joosen
 ‣ Lieven Desmet
Overview

› Research Context
› Domain name registrations in .eu
› Longitudinal campaign analysis
› Towards automatic campaign identification
› Towards pro-active detection and prevention
› Conclusion
Research context
Malicious use of domain names

- Domain names are often abused by cyber criminals
 - Spam, botnet C&C infrastructure, phishing, malware, …

- To avoid blacklisting, malicious actors often deploy a hit-and-run strategy
 - Fast flux in domain names
 - Single shot: 60% are only active for 1 day after registration [Hao et al]¹

¹ Hao et al. “Understanding the Domain Registration Behavior of Spammers” IMC 2013
Research hypothesis:

“Malicious actors register domains in bulk, and do so for longer periods of time.”
Research question

› “Can we identify such bulk behavior based on commonalities between individual registrations?”

› Long-term goal of this research:
 › Understand the malicious domain registration ecosystem in order to detect and prevent malicious registrations.
Domain name registrations in .eu
Domain name registrations in the .eu TLD

- .eu – 7th largest ccTLD (European Economic Area)
 - ~3.8 million domain names

Dataset used in this research:
- 824,121 new registrations over 14 months (Apr 2015 – May 2016)
- 20,870 registrations end up on blacklists (2.5%)
Available registration data

› Basic registration information
 » domain name, datetime of registration, and registrar

› Contact information of the registrant
 » company name, name, language, email address, phone, fax, as well as postal address

› Name server information
 » Name servers and/or glue records
Dataset enrichments

› Maliciousness of a domain name
 » Spamhaus DBL
 » SURBL multi list
 » Google Safe Browsing

› Geolocation information of name servers
 » MaxMind GeoLite2 Free database
Longitudinal campaign analysis
Concept of a “registration campaign”

- Set of registrations with malicious intent
- Most probably linked to the same actor
- Running over a longer period of time

- Our approximation: Manually selected based on common characteristics in the registration details
Example campaign (c_11)

› Fixed email domain
 » j***n.com

› Multiple fake registrant details
 » Combinations of
 2 email accounts,
 3 phone numbers,
 2 street addresses

› 4 registrars used back-to-back

• 8 months active (Jun 3, 2015 – Feb 3, 2016)
• 1,275 blacklisted registrations
Activity of identified campaigns

Registrations per day

TOTAL MALICIOUS REGISTRATIONS: 879
1333
1715
1672
177
194
93
324
1624
125
1275
490
154
989
514
842
283
1291
752
1978
Campaign identification process
Manual campaign identification process

- Start from maliciously flagged registrations
- Identify:
 - days with high number of malicious registrations
 - most reused registrations details (email address, phone, street, …)
 - recognizable patterns in registration details (e.g. …202@mymail.com)
 - frequent combinations of two independent registration details
- Apply selection criteria over benign and malicious registrations
a) Days with high number of malicious registrations

- Malicious registrations outside campaigns
- Malicious registrations

Percentage of registrations

---|---|---|---|---
0% | 5% | 10% | 0% | 0%
b) Frequent combinations of registration details

The diagram illustrates the number of registrations for various email providers and countries. It categorizes the registrations into different groups:

- Black circles represent 1000 registrations.
- Black squares represent 2000 registrations.
- Black triangles represent 3000 registrations.

The diagram also distinguishes between malicious registrations that are not part of campaigns (red dots) and those that are inside campaigns (cyan dots).

The x-axis represents the email providers, while the y-axis represents the countries.

The graph shows a clear distribution of registrations across different providers and countries, with some countries and providers having a higher concentration of registrations than others.
Campaign selection criteria

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Registrant</th>
<th>Campaign</th>
</tr>
</thead>
<tbody>
<tr>
<td>domain name</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>registrar</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>nameservers</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>name</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>address</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>organization</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>email account</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>email provider</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

- represents a string match, and ☆ a regular expression pattern
Insights in malicious domain registration
Insight 1: Hit-and-run strategies

› Small window of opportunity:
 › Domain rendered useless once blacklisted
 › 73% is blacklisted 5 days after registration, 98% after 30 days
Insight 2: Campaigns are primarily linked to spam

<table>
<thead>
<tr>
<th>Campaign</th>
<th>Abuse types</th>
<th>Blacklist sources</th>
<th>Google</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Spam</td>
<td>Botnet</td>
<td>Malware</td>
</tr>
<tr>
<td>c.01</td>
<td>100.00%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c.02</td>
<td>100.00%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c.03</td>
<td>100.00%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c.04</td>
<td>99.88%</td>
<td>0.12%</td>
<td>1.38%</td>
</tr>
<tr>
<td>c.05</td>
<td>83.05%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c.06</td>
<td>100.00%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c.07</td>
<td>91.40%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c.08</td>
<td>100.00%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c.09</td>
<td>99.63%</td>
<td>0.12%</td>
<td>1.97%</td>
</tr>
<tr>
<td>c.10</td>
<td>99.20%</td>
<td></td>
<td>1.60%</td>
</tr>
<tr>
<td>c.11</td>
<td>85.18%</td>
<td></td>
<td>0.08%</td>
</tr>
<tr>
<td>c.12</td>
<td>99.59%</td>
<td></td>
<td>0.20%</td>
</tr>
<tr>
<td>c.13</td>
<td>96.75%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c.14</td>
<td>100.00%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c.15</td>
<td>97.28%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c.16</td>
<td>100.00%</td>
<td></td>
<td>0.12%</td>
</tr>
<tr>
<td>c.17</td>
<td>100.00%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c.18</td>
<td>99.85%</td>
<td></td>
<td>0.15%</td>
</tr>
<tr>
<td>c.19</td>
<td>72.07%</td>
<td>27.93%</td>
<td></td>
</tr>
<tr>
<td>c.20</td>
<td>99.29%</td>
<td></td>
<td>0.96%</td>
</tr>
<tr>
<td>All malicious</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Insight 3: Variety in intensity and duration

Registrations per day: 100 200 300 400

TOTAL MALICIOUS REGISTRATIONS:
- 879
- 1333
- 1715
- 1672
- 177
- 194
- 93
- 324
- 1624
- 125
- 1275
- 490
- 154
- 989
- 514
- 842
- 283
- 1291
- 752
- 1978

Campaigns:
- c_01
- c_02
- c_03
- c_04
- c_05
- c_06
- c_07
- c_08
- c_09
- c_10
- c_11
- c_12
- c_13
- c_14
- c_15
- c_16
- c_17
- c_18
- c_19
- c_20

306 days – 154 registrations
37 days – 1978 registrations
Insight 4: Some campaigns align with regular business activity patterns (1)
Insight 4: Some campaigns align with regular business activity patterns (2)
Insight 4: Some campaigns align with regular business activity patterns (3)
Insight 5: Some campaigns are fully automated

Campaign c_19

European Summer Time
Insight 6: Top facilitators for malicious registrations

<table>
<thead>
<tr>
<th>Rank</th>
<th>Domain</th>
<th>Nb of malicious</th>
<th>Contribution</th>
<th>Benign</th>
<th>Toxicity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>registrar_5</td>
<td>10,353</td>
<td>49.61%</td>
<td>2.27%</td>
<td>36.25%</td>
</tr>
<tr>
<td>2</td>
<td>registrar_3</td>
<td>3,004</td>
<td>14.39%</td>
<td>2.64%</td>
<td>12.41%</td>
</tr>
<tr>
<td>3</td>
<td>registrar_7</td>
<td>2,327</td>
<td>11.15%</td>
<td>0.46%</td>
<td>38.67%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rank</th>
<th>Domain</th>
<th>Nb of malicious</th>
<th>Contribution</th>
<th>Benign</th>
<th>Toxicity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>gmail.com</td>
<td>4,221</td>
<td>20.23%</td>
<td>24.79%</td>
<td>2.08%</td>
</tr>
<tr>
<td>2</td>
<td>yahoo.com</td>
<td>3,348</td>
<td>16.04%</td>
<td>1.49%</td>
<td>21.85%</td>
</tr>
<tr>
<td>3</td>
<td>aol.com</td>
<td>2,134</td>
<td>10.23%</td>
<td>0.31%</td>
<td>46.28%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rank</th>
<th>Domain</th>
<th>Nb of malicious</th>
<th>Contribution</th>
<th>Benign</th>
<th>Toxicity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>m...s@c...k.com</td>
<td>1,265</td>
<td>6.06%</td>
<td>0.00%</td>
<td>99.37%</td>
</tr>
<tr>
<td>2</td>
<td>abuse@j...n.com</td>
<td>1,240</td>
<td>5.94%</td>
<td>0.12%</td>
<td>54.89%</td>
</tr>
<tr>
<td>3</td>
<td>n...t@gmail.com</td>
<td>989</td>
<td>4.74%</td>
<td>0.01%</td>
<td>95.37%</td>
</tr>
</tbody>
</table>

~17% of all registrations
Insight 7: Campaigns vs blacklists

› Manual analysis of non-blacklisted domains
› Result: < 1% false positives
› About 20% extra on top of existing blacklists
Insight 8: Adaptive campaign strategies

Campaign c_11

Number of registrations for registrars_04, registrars_06, registrars_11, and registrars_13 from Jul 2015 to Jan 2016.
Insight 8: Adaptive campaign strategies (2)

Nb of registrars	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	
Nb of phones	3	1	2	1	1	1	1	1	1	1	1	1	1	1	1	1	3	1	1	1	1
Max domains per phone	338	1026	385	169	177	158	93	20	590	125	1220	24	154	989	16	372	283	1265	752	237	
Max phone usage (days)	90	71	69	276	129	1	359	2	155	204	246	15	307	41	232	147	50	75	226	35	
Nb of email addresses	6	18	71	54	177	2	1	29	13	1	2	29	29	1	98	8	1	4	1	14	
Max domains per email	263	103	68	169	1	158	93	20	590	125	1240	24	126	989	16	373	283	1265	752	237	
Max email usage (days)	50	8	14	267	–	1	359	2	155	204	157	15	255	41	232	147	50	75	226	35	

Email Providers	Public	–	1	1	2	–	–	–	6	1	–	–	1	–	1	–	3	1	1	1	1
	Private	5	–	–	–	–	2	1	–	–	1	1	–	1	–	–	–	–	–	–	
	Campaign	–	–	–	–	–	–	–	–	–	–	–	–	–	–	28	–	98	–	–	
	WHOIS privacy	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	
Towards automatic campaign identification
Campaign validation: clustering algorithm

- Machine learning technique to group registrations based on similarities between registration details
 - Agglomerative clustering of blacklisted registrations
 - Iteratively merge two closest clusters
- 30 largest (of 432) clusters represent 92% of campaign registrations
Cluster - campaign mapping

Number of Registrations: 400, 800, 1200, 1600
Finding 1: Some campaigns are linked to each other
Finding 2: Some registrations were missed during campaign analysis
Finding 3: Advanced campaigns are not part of large clusters
Finding 3: Advanced campaigns are not part of large clusters

Registrations per day: 50 100

Clusters with c_15 domains

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>c_15</td>
<td>217</td>
<td>197</td>
<td>179</td>
<td>173</td>
<td>171</td>
<td>122</td>
<td>113</td>
<td>108</td>
<td>89</td>
</tr>
</tbody>
</table>
Example of an advanced campaign (c_15)

- Campaign c_15 is much more advanced
 - 514 domains registrations during 258 days
 - 98 registrants generated by Laravel Faker tool
 - Domain names consist out of 2-3 Dutch words
 - Dutch words are reused across registrants
 - Batches of 8, 16, 24 or 32 registrations

- Hard to automatically detect this type of patterns
Towards pro-active detection and prevention
“Given the commonalities between registrations in long-running campaigns, can newly registered domains with malicious intent be detected or prevented?”
Pro-active detection and prevention

Based on previously-registered domain names, prediction models are trained:

- Similarity-based agglomerative clustering
- Reputation-based classification

Early results:

- About 60% of the malicious domain name registrations can proactively be detected and/or prevented at registration time

Currently being deployed as part of EURid’s Trust & Security program
Conclusion
Campaign analysis on 14 months of registration data

› Hit-and-run strategies
› Some long-running campaigns
› Variety in intensity, duration and complexity/adaptiveness
› Alignment with business activity
› Top 3 facilitators have huge footprint
› Campaign analysis can strengthen existing blacklists
Towards …

› Automatic campaign identification
 » Validation of manual analysis process
 » Nice interplay between manual and automatic analysis

› Pro-active detection and prevention
 » Early results look promising
 » More to come within next 6 months!

Abstract. This study extensively scrutinizes 14 months of registration data to identify large-scale malicious campaigns present in the .eu TLD. We explore the ecosystem and modus operandi of elaborate cybercriminal entities that recurrently register large amounts of domains for one-shot, malicious use. Although these malicious domains are short-lived, by incorporating registrant information, we establish that at least 80.04% of them can be framed in to 20 larger campaigns with varying duration.
Exploring the ecosystem of malicious domain registrations in the .eu TLD

Lieven Desmet – OWASP BeNeLux Day 2017 – Tilburg, NL

Lieven.Desmet@cs.kuleuven.be – @lieven_desmet