
Eoin Fitzpatrick
@Celtikill | celtikill@celtikill.io

● Autodidact 4 lyfe.
● Software Security
● Startups . . . Fortune 500s
● Likes Hackers, Brazilian Jiu Jitsu

Credits
● Gary McGraw

○ McGraw, Gary. Software Security: Building
Security In. Upper Saddle River, NJ: Addison-
Wesley, 2006. Print.

○ Silver Bullet podcast (https://www.cigital.
com/podcast/)

● Pravir Chandra
○ OpenSAMM http://www.opensamm.

org/author/chandra/
○ youtubes.

● Sunny Wear
○ Wear, Sunny. Secure Coding Field Manual.

4th ed. Charleston, SC: Sunny Wear, 2015.
Print.

○ Local training

● US CERT
○ https://buildsecurityin.us-cert.gov/

https://www.cigital.com/podcast/
https://www.cigital.com/podcast/
https://www.cigital.com/podcast/
http://www.opensamm.org/author/chandra/
http://www.opensamm.org/author/chandra/
http://www.opensamm.org/author/chandra/

Software Assurance
The OWASP way

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Remixed SAMM 1.0 for presentation. All graphics marked for
reuse.

Note the license:
● The OpenSAMM is licensed under CC Attribution-ShareAlike v. 3.0.
● This work is licensed under the 4.0 version of the same license.

All images used were marked for reuse, none were modified from their original form.

http://creativecommons.org/licenses/by-sa/4.0/

OpenSAMM.org

Objective

Narrative overview.

Quick comprehension.

Introduce the model, then briefly illustrate each practice.

Goals:
● Enable quick understanding of Software Assurance for a wide audience.
● Inspire the adoption of assurance activity.

Why Care?

Why care?

Compliance has noticed.

Sadly, this is important to the adoption of Assurance in the SDLC:
● A group of buzzards is called a “wake”.
● The buzzards stick around when the herd’s experiencing significant loss

PCI-DSS 3.1 section 6.3:
“Without the inclusion of security during the requirements definition, design, analysis,
and testing phases of software development, security vulnerabilities can be
inadvertently or maliciously introduced into the production environment.”

HIPAA Security Rule:
- Speaks specifically to NIST.
- NIST SP 800-64 reads “To be most effective, information security must be

integrated into the SDLC from its inception.“
- It’s said so since 2003.

Why care?

No clear perimeter.

Not simple.

Trends in software:
● Perimeter dissolves
● Complexity increases
● Extensibility increases

Why care?
Poorly Developed

Software

Human
Behavior

InfoSec
Problems

Risk Convergence.

Software assurance in general addresses:
● Behavior
● Development of software

There are other places where this convergence exists . . .

Why OpenSAMM?

 ¯\ (°_o) /¯

“It Depends.”
● ISO, IEEE are not freely available.
● The freely-available consensus standards evolve faster, and do map up.

Options:
● BSIMM6

○ Descriptive
○ Answers “weakest zebra” question (-- McGraw)
○ More detailed, software focused

● OpenSAMM
○ Prescriptive
○ Great marketing collateral . . .
○ Easy to consume at all levels

Model Intro

Open Software Assurance Maturity Model
http://www.opensamm.org/downloads/SAMM-1.0-en_US.pdf

Assurance

Deeds not words. Deeds not tools.

Assurance = Integrity.

Saying “We care about security” . . . and proving it with our actions.

Maturity

Quantify progress.

Apply flexibly.

How much assurance do we really have?

Model

“All models are wrong . . . ”

“ . . . but some are useful.”

- George Box

Zen moment: models are not reality.

George Box has been called "one of the great statistical minds of the 20th
century". Use a Bayesean classifier?

https://en.wikipedia.org/wiki/George_E._P._Box

OpenSAMM

Look at the back of the handouts...

Activity Overview

Strategy & Metrics
[Leadership]

Difference between fear and risk?

Have we described the demons? Do we have a plan to escape them?

● Record your fears (define risk profile).
● Have a roadmap from fear to assurance (OpenSAMM roadmap).
● Inform with data (internal and external).

“The Triumph of Death” by Pieter Bruegel the Elder. Depicts 16th century security
fears.

https://en.wikipedia.org/wiki/The_Triumph_of_Death

● Profile your Risk
Tolerance

● Have an Assurance
Roadmap

● Classify Data /
Applications according
to Risk Profile

● Have Goals and
Measurements for each
Classification

● Compare spend to
peers

● Estimate history loss
due to incidents

Who are your risk managers?
● Senior, Strategic Leadership.

Policy & Compliance
Understand the vision, make it your own, ensure it’s not a fantasy.

● Understand and meet external requirements.
● Drive internal security standards.
● Maintain integrity through audit.

Regulatory framework is an imperfect vision of security, set forth by
well meaning people. They are a place to begin, not a place to end.

● Understand Regulatory
Drivers

● Establish Compliance
Guidelines

● Build Policy and
Standards

● Create audit service

● Gate Projects

● Aggregate and
automate compliance
checks

● Policy and Standard for SECURITY and regulation.

Education & Guidance

[Boat, Paddle] [Field Guide]

[Therapy]

● Offer help mitigating security bugs and flaws
○ Resources, guides advice
○ Coaching

● Continue education

When venturing into new territory, it’s easy to feel stranded. Don’t drop a
development team in the wilderness without a guide.

● Do Technical Security
Training

● Build Library of
Technical Guidance

● Do Role-Specific
Training

● Provide Expert
Consulting Service

● Create Support Portal

● Do Role-based
Certification

●

Threat Assessment

● Know thy threats.
● Understand how they act.
● Apply to systems.

Remember the demons? The Soviet Union was one of them post WWII (arguably).
U2 was commissioned by CIA to better understand Soviet
capability and intention. This info was applied to national
security.

Note: Threat assessment is NOT threat intelligence(™). It is threat intelligence
applied to the development of a system. [Deeds not tools!]

Post-WWII, only visual intelligence was from German spy planes. U2 could fly above
fighters, radar and SAM...
https://en.wikipedia.org/wiki/Lockheed_U-2

● Build Threat Models

● Profile Attackers

● Develop Abuse Cases

● Rate and Weight
Threats

● Risk-rate Third-party
Components

● Consider
Compensating Controls
in Models

●

Security Requirements

Specify the expected behaviors within a system.

How should they interact with each other, how should they interact with actors.

● Write Security into
Business Requirements

● Require Best Practice

● Understand Access
Control

● Match security
requirements to risk
profile

● Write security
requirements into 3rd-
party agreements

● Add security
requirements to audits

●

Secure Architecture

Define how you build the thing . . . Securely. This house had a
blueprint, but . . .
“We use this framework”
“We build in this way”

threat model = the cold. Architects said “because cold, 2” extra foundation, special
joints for the roof, and R32 minimum insulation ratings. Put your pipes in the middle
of the house”

Did the architect then leave the project? No.

● List recommended
software frameworks

● Apply security principles
checklist to design

● ID & Promote shared
security services

● ID & promote secure
design patterns

● Make Formal reference
architecture

● Validate usage of
frameworks, patterns,
architecture

●

Design Review
“They taught that if you don’t understand
something, you can’t design it …Design has to
be purposeful. It’s not about cosmetics and
decoration. It’s about substance.”

- Lee Green

● Consider design and architecture of built software.
● This is an exercise in detecting flaws:

○ does the design reflect the purpose of security?
○ Is the vision of architecture represented in the substance of what which

is created.

Lee Green, VP at IBM. In quote, he speaks of the Eames, who were credited with
inspiring IBM’s design philosophy.
https://en.wikipedia.org/wiki/Charles_and_Ray_Eame

Legs = Security mechanism

https://en.wikipedia.org/wiki/Charles_and_Ray_Eames
https://en.wikipedia.org/wiki/Charles_and_Ray_Eames

● Identify Attack Surface

● Match Design to
Requirements

● Inspect the Application
of security mechanisms

● Provide Design Review
Service

● Diagram key data flows

● Make release gates for
design review

●

Code Review

[1st]

[2nd]

Inspect the code for bugs.

Focus efforts based on risk.

● Create review checklist
from requirements

● Do reviews of high-risk
code

● Utilize automated code
review tools

● Do code review in
development

● Tuen code review for
application specifics

● Make release gates for
code review

●

Security Testing
“ What could go wrong . . . ”

● Inspect the monster in its runtime environment, living and breathing.
● Question and test assumptions made in building it.

No matter how good the Dr.’s intentions, the monster never quite cooperates...

● Make test cases from
requirements

● Pen test on release

● Utilize automated
testing tools

● Test security in
development

● Tune security tests to
application specifics

● Make release gates for
security testing

●

Vulnerability Management

● Define bat-team
● Provide bat-signal

● Do bat-things

Handling vulnerabilities, and handling incidents (two sides, same coin)
● Define Roles (the PM receives the report, the team lead forms the incident

response group)
● Define the bat-signal.

● Identify point of contact
for project

● Make loose incident
response team

● Define incident
response process

● Adopt a disclosure
process

● Do root cause analysis
on incidents

● Measure trends in
incidents

●

Environment Hardening
● Specify needs.
● Stay in touch with maintenance.

Ensure the underlying infrastructure is configured securely.
● Maintain a configuration spec (project group communicates effectively,

expressing the configurations needed to run the app securely)
● Manage patches (with communication…)

What happens when Infrastructure and the Project don’t communicate? patches
break apps, and apps confound infrastructure.

Note that infrastructure is much more than this: From the perspective of software
projects, they train the horse, and infrastructure puts the shoes on it.

● Specify assumptions of
operating environment

● Do security patching

● Establish routine patch
process

● Monitor baseline
configurations

● ID and deploy
protective controls

● Audit baselines for
configuration and
patching

●

Operational Enablement

“Alice, it’s Bob . . . ”

“ . . . Iet’s do it like this . . . ”

“ . . . [securely.]”

Communicate best way to use the software.
● Gather information critical to using an app securely.
● share that information to the appropriate people (users, operators,

administrators).

● Record security-related
configuration info

● Write procedures for
alerts

● Have change
management
procedures

● Maintain operational
security guidelines

● Audit for operational
enablement

● Do code signing

●

Case Study

Fin.

