
OWASP AppSecEU09 Poland

Copyright © The OWASP Foundation
Permission is granted to copy, distribute and/or modify this document
under the terms of the OWASP License.

The OWASP Foundation

OWASP
EU09 Poland

http://www.owasp.org

HTTP Parameter Pollution

Luca Carettoni
Independent Researcher
luca.carettoni@ikkisoft.com

Stefano di Paola
CTO @ Minded Security
stefano.dipaola@mindedsecurity.com

mailto:luca.carettoni@ikkisoft.com
mailto:stefano.dipaola@mindedsecurity.com

OWASP AppSecEU09 Poland 2

About us

Luca “ikki” Carettoni
Penetration Testing Specialist in a worldwide financial institution
Security researcher for fun (and profit)
OWASP Italy contributor
I blog @ http://blog.nibblesec.org
Keywords: web application security, ethical hacking, Java security

Stefano “wisec” Di Paola
CTO @ Minded Security Application Security Consulting
Director of Research @ Minded Security Labs
Lead of WAPT & Code Review Activities
OWASP Italy R&D Director
Sec Research (Flash Security, SWFIntruder...)
WebLogs http://www.wisec.it, http://blog.mindedsecurity.com

OWASP AppSecEU09 Poland

Agenda

Introduction
Server enumeration

HPP in a nutshell
HPP Categories

Server side attacks
Concept
Real world examples

Client side attacks
Concept
Real world examples

OWASP AppSecEU09 Poland

Fact

In modern web apps, several application layers are involved

OWASP AppSecEU09 Poland

Consequence

Different input validation vulnerabilities exist
SQL Injection
LDAP Injection
XML Injection
XPath Injection
Command Injection

All input validation flaws are caused by unsanitized data
flows between the front-end and the several back-ends of a
web application
Anyway, we still miss something here !?!

_ _ _ Injection

OWASP AppSecEU09 Poland

An unbelievable story…

There is no formal definition of an injection triggered by
query string delimiters
As far as we know, no one has never formalized an
injection based attack against delimiters of the most used
protocol on the web: HTTP
HPP is surely around since many years, however it is
definitely underestimated
As a result, several vulnerabilities have been discovered in
real-world applications

OWASP AppSecEU09 Poland

Introduction 1/2

The term Query String is commonly used to
refer to the part between the “?” and the end of
the URI
As defined in the RFC 3986, it is a series of field-
value pairs
Pairs are separated by “&” or “;”
The usage of semicolon is a W3C
recommendation in order to avoid escaping
RFC 2396 defines two classes of characters:

Unreserved: a-z, A-Z, 0-9 and _ . ! ~ * ' ()
Reserved: ; / ? : @ & = + $,

http://www.ietf.org/rfc/rfc3986.txt
http://www.w3.org/TR/1999/REC-html401-19991224/appendix/notes.html#h-B.2.2
http://www.w3.org/TR/1999/REC-html401-19991224/appendix/notes.html#h-B.2.2
http://www.w3.org/TR/1999/REC-html401-19991224/appendix/notes.html#h-B.2.2

OWASP AppSecEU09 Poland

Introduction 2/2

GET and POST HTTP request

Query String meta characters are &, ?, #, ; , =
and equivalent (e.g. using encoding)
In case of multiple parameters with the same
name, HTTP back-ends behave in several ways

GET /foo?par1=val1&par2=val2 HTTP/1.1
User-Agent: Mozilla/5.0
Host: Host
Accept: */*

POST /foo HTTP/1.1
User-Agent: Mozilla/5.0
Host: Host
Accept: */*
Content-Length: 19

par1=val1&par2=val2c

OWASP AppSecEU09 Poland

Server enumeration - List

OWASP AppSecEU09 Poland

Server enumeration - Summing up

Different web servers manage multiple
occurrences in several ways
Some behaviors are quite bizarre
Whenever protocol details are not strongly
defined, implementations may strongly differ
Unusual behaviors are a usual source of security
weaknesses (MANTRA!)

OWASP AppSecEU09 Poland

Additional considerations 1/2

As mentioned, ASP and ASP.NET concatenate the values
with a comma in between
This applies to the Query String and form parameters in
ASP and ASP.NET

Request.QueryString
Request.Form

Cookies have similar property in ASP.NET
Request.Params[“par”]
par = 1,2,3,4,5,6

POST /index.aspx?par=1&par=2 HTTP/1.1
User-Agent: Mozilla/5.0
Host: Host
Cookie: par=5; par=6
Content-Length: 19

par=3&par=4

OWASP AppSecEU09 Poland

Additional considerations 2/2

Unfortunately, application behaviors in case of multiple occurrences
may differ as well
This is strongly connected with the specific API used by our code
In Java, for example:

javax.servlet.ServletRequest Interface (Query String direct parsing)
java.lang.String getParameter(java.lang.String name)
Returns the value of a request parameter as a String, or null if the
parameter does not exist
java.lang.String[] getParameterValues(java.lang.String name)
Returns an array of String objects containing all of the values the given
request parameter has, or null if the parameter does not exist

As a result, the applications may react in unexpected ways…as you
will see!

OWASP AppSecEU09 Poland

A bizarre behavior 1/4 - HPPed !

OWASP AppSecEU09 Poland

A bizarre behavior 2/4 - HPPed !

OWASP AppSecEU09 Poland

A bizarre behavior 3/4 - HPPed !

OWASP AppSecEU09 Poland

A bizarre behavior 4/4 - HPPed !

Since this error generates
~100 lines in the log file, it
may be used to obfuscate
other attacks

OWASP AppSecEU09 Poland

HPP in a nutshell

HTTP Parameter Pollution (HPP) is a quite simple
but effective hacking technique
HPP attacks can be defined as the feasibility to override
or add HTTP GET/POST parameters by injecting query
string delimiters
It affects a building block of all web technologies thus
server-side and client-side attacks exist
Exploiting HPP vulnerabilities, it may be possible to:

Override existing hardcoded HTTP parameters
Modify the application behaviors
Access and, potentially exploit, uncontrollable variables
Bypass input validation checkpoints and WAFs rules

OWASP AppSecEU09 Poland

HPP Categories
We are not keen on inventing yet another buzzword.
However, the standard vulnerability nomenclature seems
lacking this concept

Classification:
Client-side
1. First order HPP or Reflected HPP
2. Second order HPP or Stored HPP
3. Third order HPP or DOM Based HPP
Server-side
1. Standard HPP
2. Second order HPP

According to our classification, Flash Parameter Injection*
may be considered as a particular subcategory of the HPP
client-side attack

* http://blog.watchfire.com/FPI.ppt

OWASP AppSecEU09 Poland

Encoding & GET/POST/Cookie precedence

Several well-known
encoding techniques may
be used to inject
malicious payloads

The precedence of
GET/POST/Cookie may
influence the application
behaviors and it can also
be used to override
parameters

Apache Tomcat/6.0.18

POST /foo?par1=val1&par1=val2 HTTP/1.1
Host: 127.0.0.1

par1=val3&par1=val4

FIRST occurrence, GET parameter first

OWASP AppSecEU09 Poland

HPP Server Side Attacks 1/2

Suppose some code as the following:

Which is the attack surface?

void private executeBackendRequest(HTTPRequest request){

String amount=request.getParameter("amount");
String beneficiary=request.getParameter("recipient");

HttpRequest("http://backendServer.com/servlet/actions","POST",
"action=transfer&amount="+amount+"&recipient="+beneficiary);

}

OWASP AppSecEU09 Poland

HPP Server Side Attacks 2/2

A malicious user may send a request like:

Then, the frontend will build the following back-end request:

Obviously depends on how the application will manage the
occurrence

http://frontendHost.com/page?amount=1000&recipient=Mat%26action%
3dwithdraw

action=transfer&amount=1000&recipient=Mat&action=withdraw

HttpRequest("http://backendServer.com/servlet/actions","POST",
"action=transfer&amount="+amount+"&recipient="+beneficiary);

OWASP AppSecEU09 Poland

HPP Server Side - WebApp Firewalls

What would happen with WAFs that do Query String parsing before
applying filters?
HPP can be used even to bypass WAFs ☺
Some loose WAFs may analyze and validate a single parameter
occurrence only (first or last one)
Whenever the devel environment concatenates multiple occurrences
(e.g. ASP, ASP.NET, AXIS IP Cameras, DBMan, …), an aggressor can
split the malicious payload.

http://mySecureApp/db.cgi?par=<Payload_1>&par=<Payload_2>

par=<Payload_1>~~<Payload_2>

OWASP AppSecEU09 Poland

HPP Server Side – URL Rewriting

URL Rewriting could be affected as well if
regexp are too permissive:

RewriteCond %{THE_REQUEST} ^[A-Z]{3,9}\ .+page\.php.*\ HTTP/
RewriteRule ^page\.php.*$ - [F,L]

RewriteCond %{REQUEST_FILENAME} !-f
RewriteCond %{REQUEST_FILENAME} !-d
RewriteRule ^([^/]+)$ page.php?action=view&page=$1&id=0 [L]

http://host/abc

becomes:

http://host/page.php?action=view&page=abc&id=0

OWASP AppSecEU09 Poland

HPP Server Side – URL Rewriting issues

An attacker may try to inject:
http://host/abc%26action%3dedit

and the url will be rewritten as:

http://host/page.php?action=view&page=abc&action=edit&id=0

Obviously, the impact depends on the
functionality exposed

24

OWASP AppSecEU09 Poland

Real World Examples

Server Side Attacks

OWASP AppSecEU09 Poland

Google Search Appliance - HPPed !

Once upon a time, during an assessment for XXX…

GSA was the LAN search engine exposed for public search as well,
with only three controllable values

The parameter named “afilter” is used unencoded
By polluting GSA parameters, appending %23 (“#”), we got full
access to internal results

OWASP AppSecEU09 Poland

ModSecurity - HPPed !

ModSecurity SQL Injection filter bypass
While the following query is properly detected

Using HPP, it is possible to bypass the filter

Other vendors may be affected as well
This technique could potentially be extended to
obfuscate attack payloads
Lavakumar Kuppan is credited for this finding

/index.aspx?page=select 1,2,3 from table where id=1

/index.aspx?page=select 1&page=2,3 from table where id=1

OWASP AppSecEU09 Poland

HPP Client Side attacks 1/2

HPP Client Side is about injecting additional
parameters to links and other src attributes
Suppose the following code:

There's no XSS, but what about HPP?
It’s just necessary to send a request like

To obtain

<? $val=htmlspecialchars($_GET['par'],ENT_QUOTES); ?>
<a href="/page.php?action=view&par='.<?=$val?>.'">View Me!

http:/host/page.php?par=123%26action=edit

View Me!

OWASP AppSecEU09 Poland

HPP Client Side attacks 2/2

Once again, it strongly depends on the
functionalities of a link
It's more about

Anti-CSRF
Functional UI Redressing

It could be applied on every tag with
Data, src, href attributes
Action forms with POST method

OWASP AppSecEU09 Poland

HPP Client Side - DOM based

It's about parsing unexpected parameters
It's about the interaction between IDSs and the application
It's about the generation of client side HPP via JavaScript
It's about the use of (XMLHttp)Requests on polluted parameters

// First Occurrence
function gup(name)
{
name = name.replace(/[\[]/,"\\\[").replace(/[\]]/,"\\\]");
var regexS = "[\\?&]"+name+"=([^&#]*)";
var regex = new RegExp(regexS);
var results = regex.exec(window.location.href);
if(results == null)
return "";

else
return results[1];

}

// Last Occurrence
function argToObject () {
var sArgs = location.search.slice(1).split('&');
var argObj={};
for (var i = 0; i < sArgs.length; i++) {
var r=sArgs[i].split('=')
argObj[r[0]]=r[1]
}

return argObj
}

OWASP AppSecEU09 Poland

HPP Client Side - FPI, the HPP way

As mentioned, an interesting case of HPP is the
Flash Parameter Injection by Ayal Yogev and
Adi Sharabani @ Watchfire
FPI is about including FlashVars in the html itself
when the vulnerable flash is directly dependent
on the page itself
A FPI will result in the injection of additional
parameters in the param tag
E.g. Piggybacking FlashVars

http://myFlashApp/index.cgi?language=ENG%26globalVar=<HPP>

OWASP AppSecEU09 Poland

Real World Examples

Client Side Attacks

OWASP AppSecEU09 Poland

Ask.com - HPPed !

Features:
Anti XSS using HtmlEntities
DOM HPP and Client Side
HPP compliant! ;)

OWASP AppSecEU09 Poland

Excite - HPPed !
Features:

Several parameters could be HPPed
Anti XSS using htmlEntities countermeasures
DOM HPP + Client Side HPP friendly!

http://search.excite.it/image/
?q=dog&page=1%26%71%
3d%66%75%63%6b%6f%
66%66%20%66%69%6e%
67%65%72%26%69%74%
65%6d%3d%30

OWASP AppSecEU09 Poland

Excite - HPPed !

35

Sweet dogs? Click anywhere on an image...

This is a kind of content pollution
Even if the example seems harmless, it may help to
successfully conduct social engineering attacks

OWASP AppSecEU09 Poland

MS IE8 XSS Filter Bypass - HPPed !

IE8 checks for XSS regexp in the query string
parameters, as well as it searches for them in the
output
When there's a .NET application, multiple
occurrences of a parameter are joined using “,”
So param=<script¶m=src=”....”> becomes
<script,src=”...”> in HTML
As you can imagine, it bypasses the IE8 XSS filter
Alex Kuza is credited for this finding

OWASP AppSecEU09 Poland

Yahoo! Mail Classic - HPPed !

Features
Check antiCSRF
Dispatcher View
Html Entities filtering, antiXSS
HPP compliant!

The dispatcher pattern helps the attacker
%26DEL=1%26DelFID=Inbox%26cmd=fmgt.delete
%2526cmd=fmgt.emptytrash
Attack payload: http://it.mc257.mail.yahoo.com/mc/showFolder?

fid=Inbox&order=down&tt=245&pSize=25&sta
rtMid=0%2526cmd=fmgt.emptytrash%26DEL=
1%26DelFID=Inbox%26cmd=fmgt.delete

OWASP AppSecEU09 Poland

Yahoo! Mail Classic - HPPed !

It’s show time!

Yahoo! has (silently) patched this issue…

OWASP AppSecEU09 Poland

PTK Forensic - HPPed !

PTK, an alternative Sleuthkit Interface
PTK is a forensic tool with a web based frontend
written in PHP, included in the SANS SIFT
The investigator can mount a DD image and
then inspect files, using the Web2.0 UI
Here, HPP is the key to exploit a critical
vulnerability*

* http://www.ikkisoft.com/stuff/LC-2008-07.txt

“...Once the investigator selects a specific file from the image filesystem, PTK
invokes the following script:
/ptk/lib/file_content.php?arg1=null&arg2=107533&arg3=<FILENAME>&arg4=1
...”

OWASP AppSecEU09 Poland

PTK Forensic - HPPed !

Vulnerable
code:

Since filenames are
contained within
the DD image, they
should be
considered as user-
supplied values

$offset = $_GET['arg1'];
$inode = $_GET['arg2'];
$name = $_GET['arg3']; //filename
$partition_id = $_GET['arg4'];
$page_offset = 100;
...
$type = get_file_type($_SESSION['image_path'], $offset, $inode);
...

function get_file_type($path, $offset, $inode){
include("../config/conf.php");
if($offset == 'null'){

$offset = '';
}else{

$offset = "-o $offset";
}
if($inode == 'null') $inode = '';
$result = shell_exec("$icat_bin -r $offset $path $inode | $file_bin

-zb -");
if(preg_match("/(image data)|(PC bitmap data)/", $result)){

$_SESSION['is_graphic'] = 1;
} return $result;}

OWASP AppSecEU09 Poland

PTK Forensic - HPPed !

Crafting a filename as
Confidential.doc&arg1=;EvilShell;...
It is actually possible to tamper the link, leading to code
execution since PHP considers the last occurrence

.../file_content.php?arg1=null&arg2=107533&arg3=Confidentia
l.doc&arg1=;EvilShell;...&arg4=1
Demonstration video of the attack: http://www.vimeo.com/2161045

As a result… …Stored HPP!

http://www.vimeo.com/2161045

OWASP AppSecEU09 Poland

PHPIDS - HPPed !

PHPIDS is a state-of-the-art security layer for
PHP web applications
When dealing with DOM based HPP, PHPIDS
could be fooled
If the DOM based location parsing gets the first
occurrence, then PHPIDS will consider only PHP
behavior
It means the last occurrence, thus no alert and
XSS attacks still possible!

OWASP AppSecEU09 Poland

Countermeasures

Speaking about HPP, several elements should be
considered:

Application business logic
Technology used
Context
Data validation (as usual!)
Output encoding

Filtering is the key to defend our systems!
Don't use HtmlEntities. They're out of context!

Instead, apply URL Encoding
Use strict regexp in URL Rewriting
Know your application environment!

OWASP AppSecEU09 Poland

Conclusion
HPP is a quite simple but effective hacking technique
HPP affects server side as well client side components
The impact could vary depending on the affected
functionality

We are going to release a whitepaper about these and
other issues, including all technical details. Stay tuned!
HPP requires further researches in order to deeply
understand threats and risks. Several applications are
likely vulnerable to HPP

Standard and guidelines on multiple occurrences of a
parameter in the QueryString should be defined
Awareness for application developers is crucial

OWASP AppSecEU09 Poland

Q&A

Time is over! Thanks!

If you have further inquiries, please contact us:
luca.carettoni@ikkisoft.com
stefano.dipaola@mindedsecurity.com

mailto:luca.carettoni@ikkisoft.com
mailto:stefano.dipaola@mindedsecurity.com

	HTTP Parameter Pollution
	About us
	Agenda
	Fact
	Consequence
	An unbelievable story…
	Introduction 1/2
	Introduction 2/2
	Server enumeration - List
	Server enumeration - Summing up
	Additional considerations 1/2
	Additional considerations 2/2
	A bizarre behavior 1/4 - HPPed !
	A bizarre behavior 2/4 - HPPed !
	A bizarre behavior 3/4 - HPPed !
	A bizarre behavior 4/4 - HPPed !
	HPP in a nutshell
	HPP Categories
	Encoding & GET/POST/Cookie precedence
	HPP Server Side Attacks 1/2
	HPP Server Side Attacks 2/2
	HPP Server Side - WebApp Firewalls
	HPP Server Side – URL Rewriting
	HPP Server Side – URL Rewriting issues
	Real World Examples����Server Side Attacks
	Google Search Appliance - HPPed !
	ModSecurity - HPPed !
	HPP Client Side attacks 1/2
	HPP Client Side attacks 2/2
	HPP Client Side - DOM based
	HPP Client Side - FPI, the HPP way
	Real World Examples����Client Side Attacks
	Ask.com - HPPed !
	Excite - HPPed !
	Excite - HPPed !
	MS IE8 XSS Filter Bypass - HPPed !
	Yahoo! Mail Classic - HPPed !
	Yahoo! Mail Classic - HPPed !
	PTK Forensic - HPPed !
	PTK Forensic - HPPed !
	PTK Forensic - HPPed !
	PHPIDS - HPPed !
	Countermeasures
	Conclusion
	Q&A

