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About us... 

 Eduardo Vela Nava (sirdarckcat) 

 Enjoys  
 Making up absurd names for presentation titles 
 Managing IBOS (International Buzzword Organization 

for Security) 
 Hacking on anything produced by google|microsoft 
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About us... 

 David Lindsay (thornmaker) 
 Enjoys  

 TV shows about likeable serial killers 
 Finnish chocolate 
 Finnish sauna  

 Works for Cigital Inc 
 Offices in USA, England, and Amsterdam 
 And yes, we're hiring :) 
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Redirects 

 300 Multiple Choice 
 301 Moved Permanently 
 302 Found 
 303 See Other 
 307 Temporary Redirect 
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Location Header 

 Contains destination of redirect 
 Location: http://example.org 
 Cannot redirect to javascript: 

 That's all, right? 

 Nope... 
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Refresh 

 Refresh:  0; url=http://example.org 

 The initial 0 is the time delay before redirection 

 Works with status code 200, and many others 
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Meta Redirects 

 <meta http-equiv="Refresh" content="0; 
url=http://www.example.com/" /> 

 Location header redirect always trumps 
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JavaScript Redirects 

 window.open('http://0x.lv') 
 location.replace('http://0x.lv') 
 location.assign('http://0x.lv') 
 location.href='http://0x.lv/' 
 location='http://0x.v/' 
 location.port='8080' //sorta 
 etc... 
 document.URL (IE only) 
 URL (in event handlers, IE only) 
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Others methods 

 Flash 
 LoadVars().send() 
 getURL() 
 etc 

 PDFs 
 Java 
 Special URI handlers 
 and more 
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Owasp Top 10 

 2010 version of Owasp Top 10  
 http://owasptop10.googlecode.com/files/OWASP 

Top 10 - 2010.pdf 
 "Attacker links to unvalidated redirect and tricks 

victims into clicking it." 

 Unvalidated redirect?  
 http://example.com/redirect?url=0x.lv 
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Open Redirects 

Security Problem? 

Yes! 
- They enable phishing/malware. 
- Make browser/plugin vulnerabilities exploitable. 
- Break trust on whitelists of URLs for resources. 

No! 
- If you take care of phishing/malware. 
- If you decide to require browser/plugin vendors to fix vulns. 
- If you decide not to trust, and tell everyone not to trust 
whitelists on your applications. 
- It's hard.. very hard. 
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Open Redirects 

Security Problem? 

More or less 
- You have to remember you have open redirects. 
- You have to find an alternative for URL whitelists. 
- You have to rely on the security of browser/plugin vendors. 

Generally? 
- You have to assume everyone has open redirects. 
- You can't use URL whitelists most of the times. 
- C'est la vie. 
- You may as well just use them.. 
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Open Redirects 

Are open redirects ever useful? 

Sometimes... 
- Track user clicks/activities (a@ping didn't work). 
- Handle complex session interaction (login/logout). 
- Interrupt/modify navigation flow. 
- etc.. 
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Open Redirects 

Solutions? 

- Attempt #1: Signing/encrypting the URL to redirect. 
- FAIL: If attacker can just let you sign it for them. 

- Attempt #2: Check the URL, and verify who it belongs to 
- FAIL: URLs aren't easy to parse, everyone does it differently: 

Following demos and more available at: 
    http://www.sirdarckcat.net/uritest.html 
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URL Parsing 

URL Parsing is hard. 

- Example 1 (fixed, found by WHK):  
http://www.google.com/url?q=http://evil.com/ <- Error 
http://www.google.com/url?q=http://google.com/ <- OK 
http://www.google.com/url?q=http:///evil.com/ <- OK 

How do you parse http:///evil.com/attack? (with 3 /) 

http: -> scheme 
/// -> scheme-host separator 
evil.com -> hostname 
/ -> host-path separator 
attack -> path 

http: -> scheme 
// -> scheme-host separator 
 -> hostname 
/ -> host-path separator 
evil.com/attack -> path 
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URL Parsing 

- Example 2 (unfixed, PHP): 

We have: http://hostname/path/to/file.php 
PHP_SELF = /path/to/file.php 

<a href='$PHP_SELF'> 
http://hostname//www.google.com%2F../path/to/file.php 

We have: <a href="//www.google.com"> 
Links to: http://www.google.com/ 

<a href="//www.google.com/../path/to/file.php"> 
http://www.google.com/ 
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How to parse URLs correctly? 

Don't try to do it!  (or at least be very careful when 
you do) 

- Even if you get it right, browsers won't. 

- Simple examples (all your answers will be wrong): 
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How to do it correctly? 

Whats the TLD? 

http://facebook.com&#12290;.google.com&#65295;.yahoo.com 

It depends!!! 
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How to do it correctly? 

What's the hostname? 

http:/www.google.com/ 

When the URL is loaded at http://www.example.com/ 
then it will point to 
http://www.example.com/www.google.com 

When the URL is loaded at https://ssl.example.com/ 
then it will point to http://www.google.com/ or to 
https://ssl.example.com/http:/www.google.com 
(depending upon the browser) 
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How to do it correctly? 

Which domain will be loaded? 

http://google.com:paypal.com/ 

Firefox 3.5 and Opera will send you to google.com 

Other browsers will give an error 



OWASP 

URL Parsing 

All exceptions we've found are each a different judgment call on 
an unexpected situation. 

 URLs represent: 
 Relative links (to the current document? not really) 
 Absolute links (how to know if they are absolute?) 

 People will tell you there are rules, don't believe them. 

 RFC's are not as clear as they could be. 

 HTML5 refers you to the unclear RFC's. 

 Lot's of implementation differences. 
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Exceptions 

Note the following sites allow redirects: 

1. Search engines (google/bing/yahoo) 

2. Some login sites (facebook/youtube) 

3. OpenID customers/providers (almost all.. a few don't) 
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Conclusion.. 

 Don't trust hostname-based whitelists unless you are 
completely sure they don't have open redirects. 

 Check how your URL parser behaves on several 
browsers. 

 Redirects are a main component of HTTP 
functionality.. we won't take them away, and they are 
used a lot. 

 They are dangerous because of developers that 
forget about them. 
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Reminder 

URLs are evil! 

Even if you check that the URL you are loading is 

•  http://www.ponies.com/ 

It may endup redirecting to 

•  file://etc/shadow 

URLs don't represent a resource, and they are not uniform.. 

Remember URLs as: Unfortunate Redirect Launchers 
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URL Shorteners - <rant> 

 URL shorteners are EVIL!     Why? 
 Condition users to click links that take them to an 

unknown location 

 http://www.example.com/redirect?url=http://
evilwebsite.com/pwnz.html  <--- looks a bit suspicious, 
right? 

 http://www.example.com/redirect?url=
%68%74%74%70%3A%2F%2F%65%76%69%6C
%77%65%62%73%69%74%65%2E%63%6F%6D
%2F%70%77%6E%7A%2E%70%68%70 <--- a bit 
suspicious still, no? 

 http://tinyurl.com/36lnj2a  <--- When was the last 
time you clicked on a link just like this? 
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URL Shorteners (rant continued) 

 Theory is one thing... what about real life? 

 https://blogs.apache.org/infra/entry/
apache_org_04_09_2010  (09.April.2010) 

 Jira message (05.April.2010): 
   ive got this error while browsing some projects 

in jira http://tinyurl.com/XXXXXXXXX 
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URL Shorteners (rant continued) 
 What were the consequences? 

 Clicking on tinyurl.com clink -> XSS 
 XSS + Bruteforcing login -> Compromised JIRA 

admin account 
 -> disable notifications 
 -> change upload path 
 -> upload JSP files 
 -> copy user's home directories + backdoor access 
 -> install jar file to collect logins + passwords 
 -> use admin's password to access other server with 

root privileges 
 -> use cached svn passwords to access other server 
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URL Shorteners (rant continued) 

 Can URL shorteners be made more secure? 
 Blacklisting destinations?  um... no. 
 Whitelisting destinations? better but no.  

wouldn't have helped apache. 
 Request Policy (FF Extension): prompts on every 

redirect.  Can be annoying but is configurable. 
 Mandatory page preview e.g. 

http://tinyurl.com/preview.php  
 </rant> 
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Reading Redirects 

 If a page makes a request for a URL which is 
redirected, the launching page cannot access the 
destination URL 

 Why? The launching page could learn sensitive 
information such as login names, user IDs, 
authentication and authorization tokens (in the 
URL) and so forth 
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Reading Redirects – First known example 

 Martin Straka - 
http://www.mozilla.org/security/announce/2008/
mfsa2008-10.html 

 URL token stealing via stylesheet redirect 

 ".href property of stylesheet DOM nodes [...] 
reflect the final URI of the stylesheet after 
following any 302 redirects" 
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Reading Redirects – Second example 

 Cesar Cerrudo - 
http://nomoreroot.blogspot.com/2010/01/little-
bug-in-safari-and-google-chrome.html 

 Exact same issue with webkit (was fixed) 

 "There are still similar redirect leak bugs floating 
around other browsers though. " – kuza55 
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Reading Redirects – Third example 

 Soroush Dalili - 
http://soroush.secproject.com/downloadable/
XSUH_FF_1.pdf and 
http://0me.me/demo/XSUH/
XSUH_demo_firefox_all_in_1.html 

 Uses the IBOS non-approved term XSUH (should 
be XSLJ because it has cross-site *and* jacking 
in it!) 

 <script src="http://www.yahoo.com"> 
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Reading Redirects – Latest to be released 

 Eduardo Vela - 
http://eaea.sirdarckcat.net/weirdyes.php?loc=//
www.google.com/profiles/me#//0x.lv/xss.php?
plain_xss= 

 Firefox only, same-origin policy bypass 

 Referred to as XSLJ, making it officially IBOS 
compliant   :)   
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Play Tool 

 http://0x.lv/xss.php?source 

 http://0x.lv/xss.php?
status=307&redir_xss=http://slithy.org 

 The tool was developed for XSS testing but is 
great for playing with redirection issues too :) 
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IBOS Work 

 We are now accepting nominations for additional 
buzzwords to attach to the following issues: 

 XSS + Clickjacking 
 XSRF + HPP 
 SQLi + XSS 
 SJ + RFI 
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Thanks 

 Thanks to AppSecEU committee for the drinks, 
the contests, and for the invitation  :) 

 Thanks to kuza55 (for you know what) 

 Thanks to you all for attending!!! 


