
Copyright © The OWASP Foundation
Permission is granted to copy, distribute and/or modify this document
under the terms of the OWASP License.

The OWASP Foundation

OWASP

http://www.owasp.org

Cross Site Location Jacking
(XSLJ) (not really)

sirdarckcat and thornmaker

http://twitter.com/sirdarckcat
http://twitter.com/thornmaker

23.June.2010

Copyright © The OWASP Foundation
Permission is granted to copy, distribute and/or modify this document
under the terms of the OWASP License.

The OWASP Foundation

OWASP

http://www.owasp.org

Fun With Redirects

sirdarckcat and thornmaker

http://twitter.com/sirdarckcat
http://twitter.com/thornmaker

23.June.2010

OWASP 3

About us...

 Eduardo Vela Nava (sirdarckcat)

 Enjoys
 Making up absurd names for presentation titles
 Managing IBOS (International Buzzword Organization

for Security)
 Hacking on anything produced by google|microsoft

OWASP 4

About us...

 David Lindsay (thornmaker)
 Enjoys

 TV shows about likeable serial killers
 Finnish chocolate
 Finnish sauna

 Works for Cigital Inc
 Offices in USA, England, and Amsterdam
 And yes, we're hiring :)

OWASP 5

Redirects

 300 Multiple Choice
 301 Moved Permanently
 302 Found
 303 See Other
 307 Temporary Redirect

OWASP 6

Location Header

 Contains destination of redirect
 Location: http://example.org
 Cannot redirect to javascript:

 That's all, right?

 Nope...

OWASP 7

Refresh

 Refresh: 0; url=http://example.org

 The initial 0 is the time delay before redirection

 Works with status code 200, and many others

OWASP 8

Meta Redirects

 <meta http-equiv="Refresh" content="0;
url=http://www.example.com/" />

 Location header redirect always trumps

OWASP 9

JavaScript Redirects

 window.open('http://0x.lv')
 location.replace('http://0x.lv')
 location.assign('http://0x.lv')
 location.href='http://0x.lv/'
 location='http://0x.v/'
 location.port='8080' //sorta
 etc...
 document.URL (IE only)
 URL (in event handlers, IE only)

OWASP 10

Others methods

 Flash
 LoadVars().send()
 getURL()
 etc

 PDFs
 Java
 Special URI handlers
 and more

OWASP 11

Owasp Top 10

 2010 version of Owasp Top 10
 http://owasptop10.googlecode.com/files/OWASP

Top 10 - 2010.pdf
 "Attacker links to unvalidated redirect and tricks

victims into clicking it."

 Unvalidated redirect?
 http://example.com/redirect?url=0x.lv

OWASP

Open Redirects

Security Problem?

Yes!
- They enable phishing/malware.
- Make browser/plugin vulnerabilities exploitable.
- Break trust on whitelists of URLs for resources.

No!
- If you take care of phishing/malware.
- If you decide to require browser/plugin vendors to fix vulns.
- If you decide not to trust, and tell everyone not to trust
whitelists on your applications.
- It's hard.. very hard.

OWASP

Open Redirects

Security Problem?

More or less
- You have to remember you have open redirects.
- You have to find an alternative for URL whitelists.
- You have to rely on the security of browser/plugin vendors.

Generally?
- You have to assume everyone has open redirects.
- You can't use URL whitelists most of the times.
- C'est la vie.
- You may as well just use them..

OWASP

Open Redirects

Are open redirects ever useful?

Sometimes...
- Track user clicks/activities (a@ping didn't work).
- Handle complex session interaction (login/logout).
- Interrupt/modify navigation flow.
- etc..

OWASP

Open Redirects

Solutions?

- Attempt #1: Signing/encrypting the URL to redirect.
- FAIL: If attacker can just let you sign it for them.

- Attempt #2: Check the URL, and verify who it belongs to
- FAIL: URLs aren't easy to parse, everyone does it differently:

Following demos and more available at:
 http://www.sirdarckcat.net/uritest.html

OWASP

URL Parsing

URL Parsing is hard.

- Example 1 (fixed, found by WHK):
http://www.google.com/url?q=http://evil.com/ <- Error
http://www.google.com/url?q=http://google.com/ <- OK
http://www.google.com/url?q=http:///evil.com/ <- OK

How do you parse http:///evil.com/attack? (with 3 /)

http: -> scheme
/// -> scheme-host separator
evil.com -> hostname
/ -> host-path separator
attack -> path

http: -> scheme
// -> scheme-host separator
 -> hostname
/ -> host-path separator
evil.com/attack -> path

OWASP

URL Parsing

- Example 2 (unfixed, PHP):

We have: http://hostname/path/to/file.php
PHP_SELF = /path/to/file.php

http://hostname//www.google.com%2F../path/to/file.php

We have:
Links to: http://www.google.com/

http://www.google.com/

OWASP

How to parse URLs correctly?

Don't try to do it! (or at least be very careful when
you do)

- Even if you get it right, browsers won't.

- Simple examples (all your answers will be wrong):

OWASP

How to do it correctly?

Whats the TLD?

http://facebook.com。.google.com／.yahoo.com

It depends!!!

OWASP

How to do it correctly?

What's the hostname?

http:/www.google.com/

When the URL is loaded at http://www.example.com/
then it will point to
http://www.example.com/www.google.com

When the URL is loaded at https://ssl.example.com/
then it will point to http://www.google.com/ or to
https://ssl.example.com/http:/www.google.com
(depending upon the browser)

OWASP

How to do it correctly?

Which domain will be loaded?

http://google.com:paypal.com/

Firefox 3.5 and Opera will send you to google.com

Other browsers will give an error

OWASP

URL Parsing

All exceptions we've found are each a different judgment call on
an unexpected situation.

 URLs represent:
 Relative links (to the current document? not really)
 Absolute links (how to know if they are absolute?)

 People will tell you there are rules, don't believe them.

 RFC's are not as clear as they could be.

 HTML5 refers you to the unclear RFC's.

 Lot's of implementation differences.

OWASP

Exceptions

Note the following sites allow redirects:

1. Search engines (google/bing/yahoo)

2. Some login sites (facebook/youtube)

3. OpenID customers/providers (almost all.. a few don't)

OWASP

Conclusion..

 Don't trust hostname-based whitelists unless you are
completely sure they don't have open redirects.

 Check how your URL parser behaves on several
browsers.

 Redirects are a main component of HTTP
functionality.. we won't take them away, and they are
used a lot.

 They are dangerous because of developers that
forget about them.

OWASP

Reminder

URLs are evil!

Even if you check that the URL you are loading is

•  http://www.ponies.com/

It may endup redirecting to

•  file://etc/shadow

URLs don't represent a resource, and they are not uniform..

Remember URLs as: Unfortunate Redirect Launchers

OWASP

The content of this slide has
been removed by request of

OWASP

The content of this slide has
been removed by request of

OWASP

The content of this slide has
been removed by request of

OWASP

The content of this slide has
been removed by request of

OWASP 30

URL Shorteners - <rant>

 URL shorteners are EVIL! Why?
 Condition users to click links that take them to an

unknown location

 http://www.example.com/redirect?url=http://
evilwebsite.com/pwnz.html <--- looks a bit suspicious,
right?

 http://www.example.com/redirect?url=
%68%74%74%70%3A%2F%2F%65%76%69%6C
%77%65%62%73%69%74%65%2E%63%6F%6D
%2F%70%77%6E%7A%2E%70%68%70 <--- a bit
suspicious still, no?

 http://tinyurl.com/36lnj2a <--- When was the last
time you clicked on a link just like this?

OWASP 31

URL Shorteners (rant continued)

 Theory is one thing... what about real life?

 https://blogs.apache.org/infra/entry/
apache_org_04_09_2010 (09.April.2010)

 Jira message (05.April.2010):
 ive got this error while browsing some projects

in jira http://tinyurl.com/XXXXXXXXX

OWASP 32

URL Shorteners (rant continued)
 What were the consequences?

 Clicking on tinyurl.com clink -> XSS
 XSS + Bruteforcing login -> Compromised JIRA

admin account
 -> disable notifications
 -> change upload path
 -> upload JSP files
 -> copy user's home directories + backdoor access
 -> install jar file to collect logins + passwords
 -> use admin's password to access other server with

root privileges
 -> use cached svn passwords to access other server

OWASP 33

URL Shorteners (rant continued)

 Can URL shorteners be made more secure?
 Blacklisting destinations? um... no.
 Whitelisting destinations? better but no.

wouldn't have helped apache.
 Request Policy (FF Extension): prompts on every

redirect. Can be annoying but is configurable.
 Mandatory page preview e.g.

http://tinyurl.com/preview.php
 </rant>

OWASP 34

Reading Redirects

 If a page makes a request for a URL which is
redirected, the launching page cannot access the
destination URL

 Why? The launching page could learn sensitive
information such as login names, user IDs,
authentication and authorization tokens (in the
URL) and so forth

OWASP 35

Reading Redirects – First known example

 Martin Straka -
http://www.mozilla.org/security/announce/2008/
mfsa2008-10.html

 URL token stealing via stylesheet redirect

 ".href property of stylesheet DOM nodes [...]
reflect the final URI of the stylesheet after
following any 302 redirects"

OWASP 36

Reading Redirects – Second example

 Cesar Cerrudo -
http://nomoreroot.blogspot.com/2010/01/little-
bug-in-safari-and-google-chrome.html

 Exact same issue with webkit (was fixed)

 "There are still similar redirect leak bugs floating
around other browsers though. " – kuza55

OWASP 37

Reading Redirects – Third example

 Soroush Dalili -
http://soroush.secproject.com/downloadable/
XSUH_FF_1.pdf and
http://0me.me/demo/XSUH/
XSUH_demo_firefox_all_in_1.html

 Uses the IBOS non-approved term XSUH (should
be XSLJ because it has cross-site *and* jacking
in it!)

 <script src="http://www.yahoo.com">

OWASP 38

Reading Redirects – Latest to be released

 Eduardo Vela -
http://eaea.sirdarckcat.net/weirdyes.php?loc=//
www.google.com/profiles/me#//0x.lv/xss.php?
plain_xss=

 Firefox only, same-origin policy bypass

 Referred to as XSLJ, making it officially IBOS
compliant :)

OWASP 39

Play Tool

 http://0x.lv/xss.php?source

 http://0x.lv/xss.php?
status=307&redir_xss=http://slithy.org

 The tool was developed for XSS testing but is
great for playing with redirection issues too :)

OWASP 40

IBOS Work

 We are now accepting nominations for additional
buzzwords to attach to the following issues:

 XSS + Clickjacking
 XSRF + HPP
 SQLi + XSS
 SJ + RFI

OWASP 41

Thanks

 Thanks to AppSecEU committee for the drinks,
the contests, and for the invitation :)

 Thanks to kuza55 (for you know what)

 Thanks to you all for attending!!!

