Introduction to VOIP Security

Angad Singh and Rohit Shah
goldfish21@gmail.com
rohit.shah@yahoo.co.in

OWASP
30-October-2010

Copyright © The OWASP Foundation
Permission is granted to copy, distribute and/or modify this document
under the terms of the OWASP License.

The OWASP Foundation
http://www.owasp.org
Agenda

VoIP Basics – An Introduction

VoIP – Call Setup

VoIP Security – Threats, Vulnerabilities, Attacks

VoIP Security – Countermeasures

VoIP Security – Assessing Security Controls

Q&A, Feedback and Closing
VoIP Basics
VOIP Basics

What is Voice Over IP?
The packetisation and transport of classic public switched telephone system audio over an IP network
A suite of IP-based communications services
Provides multimedia communications over IP networks
Operates over any IP network (not just the Internet)
Low-cost alternative to PSTN calling

Few examples . . .

Soft phones: Skype, Microsoft Net meeting, ohphone, gphone, Asterisk* etc.
Enterprise: Small IP phone deployments, IP PBX, Cisco Call manager.
The protocols combining any IP Telephony architecture are divided into the following roles:

Signaling Protocols
Signaling protocols manage the set up, modification and termination of a phone call between the two of them.

Media Transport Protocols
Media transport protocols are used to carry voice samples (such as RTP).
VOIP overview – Signaling Protocols

The VoIP Signaling Protocols perform the following services:

- **Locate User** – The ability to locate another user with whom a user wishes to communicate.

- **Session Establishment** – The ability of the called party to accept a call, reject a call, or redirect the call to another location or service.

- **Session Setup Negotiation** – The ability of the communicating parties to negotiate the set of parameters to be used during the session. This includes, but not limited to, Audio encoding.

- **Modify Session** – The ability to change a session’s parameters such as using a different Audio encoding, adding/removing a session participant, etc.

- **Teardown Session** – The ability to end a session.
The VoIP Media Transport protocols perform the following services:

- **Digitize using CODEC**: The ability to digitize voice using a codec.

- **Compression**: The ability to compress voice into smaller samples.

- **Encapsulation**: The ability to encapsulate the compressed voice samples within an IP transport protocol.

- **Transportation**: The ability to transport the digitized compressed packet over an IP network.
Let’s have a look at these VOIP Protocols in detail...
VOIP protocols – SIP overview

- SIP is a **signaling protocol**, widely used for controlling multimedia communication sessions such as voice and video calls over Internet Protocol (IP). It allows two speaking parties to set up, modify, and terminate a phone call between the two of them.

- The SIP protocol is an **Application Layer protocol** designed to be independent of the underlying transport layer; it can run on Transmission Control Protocol (TCP), User Datagram Protocol (UDP).

- SIP clients typically use TCP or UDP on port numbers 5060 and/or 5061 to connect to SIP servers and other SIP endpoints. Port 5060 is commonly used for non-encrypted signaling traffic whereas port 5061 is typically used for traffic encrypted with **Transport Layer Security** (TLS).
SIP Architecture Elements

- SIP Location Server
- SIP Registration Server
- biloxy.com Proxy Server
- SIP Phones
SIP Requests

Following are the SIP Requests that are sent at the time of session establishment:

<table>
<thead>
<tr>
<th>SIP request</th>
<th>Description</th>
<th>RFC Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>BYE</td>
<td>Terminates an existing connection between two users in a session.</td>
<td>RFC 3261</td>
</tr>
<tr>
<td>OPTIONS</td>
<td>Determines the SIP messages and codecs that the UA or server understands.</td>
<td>RFC 3261</td>
</tr>
<tr>
<td>REGISTER</td>
<td>Registers a location from a SIP user.</td>
<td>RFC 3261</td>
</tr>
<tr>
<td>ACK</td>
<td>Acknowledges a response from an INVITE request.</td>
<td>RFC 3261</td>
</tr>
<tr>
<td>CANCEL</td>
<td>Cancels a pending INVITE request, but does not affect a completed request (for instance, stops the call setup if the phone is still ringing).</td>
<td>RFC 3261</td>
</tr>
<tr>
<td>REFER</td>
<td>Transfers calls and contacts external resources.</td>
<td>RFC 3515</td>
</tr>
<tr>
<td>SUBSCRIBE</td>
<td>Indicates the desire for future NOTIFY requests.</td>
<td>RFC 3265</td>
</tr>
<tr>
<td>NOTIFY</td>
<td>Provides information about a state change that is not related to a specific session.</td>
<td>-</td>
</tr>
</tbody>
</table>
SIP Responses

Following are the SIP Responses that are sent at the time of session establishment:

- 482 Loop Detected
- 483 Too Many Hops
- 484 Address Incomplete
- 485 Ambiguous
- 486 Busy Here
- 5xx responses: Server failure responses
 - 500 Internal Server Error
 - 501 Not Implemented
 - 502 Bad Gateway
 - 503 Service Unavailable
 - 504 Gateway Time-out
 - 505 SIP Version Not Supported
- 6xx responses global failure responses
 - 600 Busy Everywhere
 - 603 Decline
 - 604 Does Not Exist Anywhere
 - 606 Not Acceptable
VOIP protocols – RTP overview

- RTP (Real Time Transmission Protocol) is a data transfer protocol, which deals with the transfer of real-time multimedia data.

- Information provided by this protocol include timestamps (for synchronization), sequence numbers (for packet loss detection) and the payload format which indicates the encoded format of the data.

- RTP does not assure delivery or order of packets. However, RTP's sequence numbers allow applications, such as an IP phone, to check for lost or out of order packets.

- RTP includes the RTP control protocol (RTCP), which is used to monitor the quality of service and to convey information about the participants in an ongoing session.
VoIP - Call Setup
ABC uses a **SIP application** on her PC (referred to as a softphone) to call XYZ on his **SIP phone** over the Internet. ABC sends an **INVITE** to User B to initiate a phone call.

The two **SIP proxy servers** that act on behalf of ABC and XYZ facilitate the session establishment. XYZ **receives** the request (his phones rings).

While XYZ’s phone is ringing, he sends **updates** (TRYING, SESSION PROGRESS, and so on). User B picks up the phone and sends an **OK** response to the caller.

ABC responds with an **ACK** acknowledgment.

The conversation via **RTP** is established directly between the two parties.

XYZ hangs up and sends a **BYE** message.

ABC accepts the BYE message, and sends an **OK** as an acknowledgment.

Let’s have a look at SIP call establishment in detail …
SIP Call setup – Registration

The proxy server learns about the current location of XYZ, in the previous example through the process of Registration.

- F1 REGISTER Bob -> Registrar
- REGISTER sip:registrar.biloxi.com SIP/2.0
- Via: SIP/2.0/UDP

 bobspc.biloxi.com:5060;branch=z9hG4bKnaehds7
- Max-Forwards: 70
- To: Bob <sip:bob@biloxi.com>
- From: Bob <sip:bob@biloxi.com>;tag=456248
- Call-ID: 84381763768430998sdasdh09
- CSeq: 1826 REGISTER
- Contact: <sip:bob@192.0.2.4>
- Expires: 7200
- Content-Length: 0

Associating Bob’s URI <sip:bob@biloxi.com> with the machine he is currently logged (the Contact information) <sip:bob@192.0.2.4>

The information expires after 2 hours
INVITE is an example of a SIP method that specifies the action that the requestor (ABC) wants the server (XYZ) to take.

- **INVITE**: sip:bob@biloxi.com SIP/2.0
- **Via**: SIP/2.0/UDP pc33.atlanta.com;branch=z9hG4bK776asdhds
- **Max-Forwards**: 70
- **To**: Bob <sip:bob@biloxi.com>
- **From**: Alice <sip:alice@atlanta.com>;tag=1928301774
- **Call-ID**: a84b4c76e66710@pc33.atlanta.com
- **CSeq**: 314159 INVITE
- **Contact**: <sip:alice@pc33.atlanta.com>
- **Content-Type**: application/sdp
- **Content-Length**: 142
In the previous example, the example.com proxy server if wished to remain in the SIP messaging path beyond the initial INVITE, it would add to the INVITE a required routing header.

This header field, known as **Record-Route** contains a URI resolving to the hostname or IP address of the proxy.

This information would be received by both XYZ’s SIP phone and (due to the Record-Route header field being passed back in the 200 (OK)) ABC’s softphone and stored for the duration of the dialog.
VoIP Security - Vulnerability, Threats, Attacks
VOIP Vulnerabilities

- Protocol
 - Unencrypted traffic
 - Unauthenticated requests
 - Weak encryption
- Infrastructure
 - Insecure configuration of devices
 - Host OS weaknesses
- Architecture
 - Network topology and association with other network elements (e.g. routing)
What are the Threats?

<table>
<thead>
<tr>
<th>Threats</th>
<th>Attack types</th>
<th>Attack subtypes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Social Threats</td>
<td>SPIT</td>
<td>Text/Fax</td>
</tr>
<tr>
<td></td>
<td>Vishing</td>
<td>Video</td>
</tr>
<tr>
<td>Misrepresentation</td>
<td>Spoofed messages</td>
<td>MITM on Proxy server</td>
</tr>
<tr>
<td></td>
<td>Malformed Messages</td>
<td>MITM on User agent</td>
</tr>
<tr>
<td></td>
<td>Caller ID Spoofing</td>
<td>MITM on Registration server</td>
</tr>
<tr>
<td>Interception</td>
<td>Eavesdropping</td>
<td>Registration hijacking</td>
</tr>
<tr>
<td></td>
<td>Man in the Middle Attack</td>
<td>Media Hijacking</td>
</tr>
<tr>
<td></td>
<td>Call Hijacking</td>
<td>Denial of service</td>
</tr>
<tr>
<td>Service Disruption</td>
<td>Denial of service</td>
<td>DOS on Proxy server</td>
</tr>
<tr>
<td></td>
<td>Fuzzing</td>
<td>DOS on User Agent</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DOS on Registration server</td>
</tr>
</tbody>
</table>
Social Threats – Associated Attacks
Spam over Internet Telephony (SPIT)

What is SPIT?
Anyone using a PC is familiar with email SPAM. Voice SPAM refers to bulk, automatically generated, unsolicited phone calls. Voice SPAM or SPAM over Internet Telephony (SPIT) is a similar problem that will affect VoIP.

But how does it effect me?
- SPIT is like telemarketing on steroids. You can expect SPIT to occur with a frequency similar to email SPAM.
- As with email SPAM, it is very unlikely that SPIT calls can be identified based on caller ID and other information in the signaling.
- Another issue with SPIT is that you can't analyze the call content before the phone rings. Current SPAM filters do a reasonable job of blocking SPAM.
- Not an issue yet, but will become prevalent when:
 - The network makes it very inexpensive or free to generate calls
 - Attackers have access to VoIP networks that allow generation of a large number of calls
 - It is easy to set up a voice SPAM operation, using Asterisk, tools like “spitter”, and free VoIP access
Social Threats – Associated Attacks

Vishing

What is Vishing?

Similar to the Phishing attack, vishing is a type of identity theft attack wherein the attack is delivered through email or voice. Victims are usually lured into the spoofed site and giving up vital information such as passwords, mother’s maiden name, credit card numbers, and Social Security numbers.

But how does it effect me?

![Image of phishing email from PayPal]

This email appears to be from PayPal, but it is actually a vishing attempt. The email claims that the recipient’s PayPal account is at risk and requires them to call a number to verify their account.
Misrepresentation – Associated attacks

Spoofed Messages

Example:
Attacker spoofs the SIP-Proxy's IP, here: 10.1.1.1 Victim 10.1.1.2
UDP-Message from Attacker to Victim:

Session Initiation Protocol
Request-Line: NOTIFY sip:login@10.1.1.2 SIP/2.0
Message Header
Via: SIP/2.0/UDP 15.1.1.12:5060;branch=0000000000000000
From: "asterisk"
<sip:asterisk@10.1.1.1>;tag=0000000000
To: <sip:login@10.1.1.2>
Contact: <sip:asterisk@10.1.1.1>
Call-ID: 0000000000000000@10.1.1.1
CSeq: 102 NOTIFY
User-Agent: Asterisk PBX
Event: message-summary
Content-Type: application/simple-message-summary
Content-Length: 37
Message body
Messages-Waiting: yes
Voicemail: 3/2

Spoofed messages
- Due to ignoring the value of 'Call-ID' and even 'tag' and 'branch' while processing NOTIFY messages.
Misrepresentation – Associated attacks

Malformed Messages

An attacker may create and send **malformed messages** to the target server or client for the purpose of service interruption. A malformed message is a protocol message with wrong syntax. The following shows an example with a SIP INVITE message.

```
INVITE Hi this is a PETER sip:UserB@example.com SIP/2.0
Via: SIP/2.0/UDP userAclient.example.com:5060;branch=z9hG4bK74bf9
Max-Forwards: 70
From:.......... UserA <sip:UserA@example.com>;tag=9fxced76sl
To: UserB <sip:UserB@example.com>
Call-ID: 2xTb9vxSit55XU7p8@example.com
CSeq: 1 INVITE
Contact: <sip:UserA@userAclient.example.com>
Content-Type: application/sdp
Content-Length: 151
v=----------------
o=UserA 2890844526 2890844526 IN IP4 userAclient.example.com
s=-
c=IN IP4 192.0.2.101
t=0 0
m=audio 49172 RTP/AVP 0
a=rtpmap:0 PCMU/8000
```
Interception – Associated attacks

Man in the middle (MITM) Attacks

What is MITM?

In a VOIP man-in-the-middle attack, the attacker intercepts call-signaling SIP message traffic and masquerades as the calling party to the called party, or vice versa. Once the attacker has gained this position, he can hijack calls via a redirection server.

Which VOIP Elements can be attacked?

- SIP Registrar
- SIP Proxy Server
- SIP Redirect Server
- SIP UA
Interception – Associated attacks

MITM on Proxy – 302 Moved Temporarily

1. INVITE
2. 302 Moved Temporarily
3. INVITE
4. FW: INVITE'
5. 100 Trying
6. FW: INVITE

pqr is now acting as a SIP Proxy

SIP UA [A]
SIP: abc@example.com

SIP Proxy
 sip.example.com

“pqr’s Proxy”

SIP UA [B]
SIP: xyz@test.com

sip.test.com
Interception – Associated attacks
MITM on Registrar

1. Register
2. 301 Moved Permanently
3. Register'
4. Unauthorized
5. Register" request with appropriate credentials
6. Confirm Registration
7. Register request for xyz’s credentials
8. Store

SIP:xyz@test.com
SIP:pqr@test.com
SIP UA [B]
SIP UA [C]
Location Service
SIP Registrar
Interception – Associated attacks
MITM on Proxy - 305 Use Proxy

pq is now acting as a SIP Proxy

“pq’s Proxy”

1. INVITE

2. 305 Use Proxy

3. INVITE

4. FW: INVITE

5. 100 Trying

sip.proxy.com

sip.example.com

sip.test.com

SIP UA [B]
SIP:xyz@test.com

SIP:abc@example.com
Interception – Associated attacks

Call Hijacking - Using Manipulation of the Registration Records

1. Register
2. Store
3. Query
4. INVITE
5. 100 Trying
6. FW: INVITE
7. 100 Trying
8. Register
9. Reply
10. FW: INVITE

Interception – Associated attacks

Call Hijacking - Using Manipulation of the Registration Records
Interception – Associated attacks

Call Hijacking - Using 301 Moved Permanently Response Code

1. INVITE
2. 100 Trying
3. FW: INVITE
4. 301 Moved Permanently
5. INVITE
6. FW: INVITE
Service Disruption – Associated attacks

Denial of service

What is Denial of service?

A **denial-of-service** attack (DoS attack) is an attack on a computer system or network that causes a loss of service to users, typically the loss of network connectivity and services by consuming the bandwidth of the victim network or overloading the computational resources of the victim system.

Which VOIP Elements can be attacked?

- SIP Registrar
- SIP Proxy Server
- SIP Redirect Server
- SIP UA
Service Disruption – Associated attacks

DOS on User Agent - DOS Cancel

1. Register
2. Store
3. INVITE
4. 100 Trying
5+6 DNS Query
7. FW: INVITE
8. 100 Trying
9+10. Query & Respond
11. FW: INVITE
12. 180 Ringing
13. 180 Ringing
14. 180 Ringing
15. CANCEL

SIP: pqr@test.com
SIP: xyz@test.com
SIP: abc@example.com
SIP: sip.example.com
SIP: sip.test.com
SIP Proxy
DNS Server
SIP Registrar
Location Service
SIP UA [A]
SIP UA [B]
SIP UA [C]
Service Disruption – Associated attacks

DOS on Proxy - DOS BYE

1. Register
2. Store
3. INVITE
4. 100 Trying
5. FW: INVITE
6. 100 Trying
7. Query
8. Reply
9. FW: INVITE
10. 100 Trying
11. FW: 100 Trying
12. FW: 100 Trying
13. 200 OK
14. FW: 200 OK
15. FW: 200 OK
16. BYE
Service Disruption – Associated attacks
DOS on Proxy - DOS BYE to both

16. \textit{BYE} (B-->A)

17. \textbf{200 OK}

18. \textit{FW: 200 OK}

19. \textit{FW: 200 OK}

SIP:abc@example.com
SIP:pqr@test.com
SIP:xyz@test.com

16. \textit{BYE (A-->B)}

17. \textbf{200 OK}

18'. \textit{FW: 200 OK}

19'. \textit{FW: 200 OK}

sip.example.com
test.com

Service Disruption – Associated attacks
DOS on Proxy - DOS BYE to both
Service Disruption – Associated attacks

VOIP Flooding Attack

INVITE: SIP:u1@2d4fww.hard-to-resolution.domain SIP/2.0
Via: SIP/2.0/UDP 10.147.65.91; branch=z9hG4bk29FE738
CSeq: 16466 INVITE
To: sip:u1@2d4fww.hard-to-resolution.domain
Content-Type: application/sdp
From: SIP: u2@2d4fww.hard-to-resolution.domain; tag=24564
Call-ID: 1163525243@10.147.65.91
Subject: Message
Content-Length: 184
Contact: SIP: u2@2d4fww.hard-to-resolution.domain

...<SDP part not shown>
Fuzzing

What is fuzzing?
Fuzzing is a method for finding bugs and vulnerabilities by creating different types of packets for the target protocol that push the protocol’s specifications to the breaking point. The practice of fuzzing, otherwise known as robustness testing or functional protocol testing.

Buffer Overflows
Buffer overflow occurs when a program or process tries to store more data in a memory location than it has room for, resulting in adjacent memory locations being overwritten.

Test case - Incrementally increase the length of the URL until crashing the IIS process.
Why traditional Logical Controls won’t work . . .

- Dynamic assignment of Ports
- Quality of Service
- Firewall Limitations
- Nat Bindings
Countermeasures

Logical Controls

- **Protocol**
 - Authentication
 - Selective Encryption
 - Authorization

- **Infrastructure**
 - Malware protection for host OS
 - Timely patching for host OS

- **Network**
 - Segregate VoIP and data networks in zones and VLANs
 - Deploy Intrusion Prevention/ Detection System
 - Filter traffic using application-level Gateway between Trusted and Un-trusted Zones
 - Encrypt (VPN) VoIP traffic over critical segments
Countermeasures
Logical Controls - Protocols

- **Authentication**
 - Digest Authentication
 - Used during UA registration
 - Authenticates UA to SIP proxy
 - Similar to HTTP digest from web browser to web server
 - Cannot be used between proxies

- **Encryption**
 - Transport Layer Security (TLS)
 - Used to secure signaling path
 - Authenticates each endpoint on a link
 - Provides encrypted path between each link
 - Non-transitive trust
 - Can be used between proxies
 - Requires X.509 certificates

- **Authentication and Encryption**
 - Secure RTP (SRTP)
 - Used to secure the media path
 - Provides end-to-end security
 - Requires X.509 certificates

- **Zphone (ZRTP)**
 - Used to secure the media path
 - Provides end-to-end security
 - Requires no X.509 certificates
 - Relies on OSI layer 8 authorization
Countermeasures
Logical Controls – Application Level Gateway

Application Level Gateways (ALGs) are the typical commercial solution to the firewall/NAT traversal problem. An ALG is embedded software on a firewall or NAT, that allows for dynamic configuration based on application specific information.
Countermeasures
Logical Controls – Session Border Controller

[Diagram showing the interaction between a SIP phone, firewall, session controller, and registration server.]

- Firewall can restrict signalling and media destinations to the session controller.
- Your public address SIP:you@net.com appears on the session controller.
- Session controller dynamically allocates media ports for your calls.

Real addresses only known to the session controller.
VoIP Security – Assessing Security Controls
Footprinting is usually the first step in gathering information prior to an attack - sensitive details hanging out in the public domain and available to any resourceful hacker who knows how and where to look:

- Footprinting does not require network access
- An enterprise website often contains useful information
- Google is very good at finding details on the web:
 - Vendor press releases and case studies
 - Resumes of VoIP personnel
 - Mailing lists and user group postings
 - Web-based VoIP logins
 - \texttt{inurl:"ccmuser/logon.asp"}
 - \texttt{inurl:"ccmuser/logon.asp" site:example.com}
 - \texttt{inurl:"NetworkConfiguration" cisco}
 - \texttt{inurl:sip -intitle:ANNOUNCE -inurl:lists}
 - \texttt{intitle:asterisk.management.portal web-access}
Scanning

Scanning is probing each IP address in the target range for evidence of live systems and identify the services running on each system. **Nmap** is commonly used for this purpose.

Example: `nmap 192.168.1.2`

- **Open** An application is actively accepting TCP connections or UDP packets on this port.
- **Closed** A closed port is accessible (it receives and responds to Nmap probe packets), but there is no application listening on it.
- **Filtered** Nmap cannot determine whether or not the port is open because packet filtering prevents its probes from reaching the port. The filtering could be from a dedicated firewall device, router rules, or host-based firewall software.
- **Unfiltered** The unfiltered state means that a port is accessible, but Nmap is unable to determine whether it is open or closed.
- **open|filtered** Nmap places ports in this state when it is unable to determine whether a port is open or filtered. This occurs for scan types in which open ports give no response.
- **closed|filtered** This state is used when Nmap is unable to determine whether a port is closed or filtered. It is only used for the IPID Idle scan.
- **tcpwrapped** TCP Wrapper is a public domain computer program that provides firewall services for UNIX servers and monitors incoming packets.
Scanning

- After hosts are found, scans are used to find running services
 - `nmap -sV 192.168.1.2`
- After hosts are found and ports identified, the type of device can be determined
 - `nmap -O -P0 192.168.1.2`
- Network stack fingerprinting is a common technique for identifying hosts/devices

Example: `nmap -O -P0 192.168.1.2 - UDP PORT STATE SERVICE`
- 67/udp open|filtered dhcpserver
- 69/udp open|filtered tftp
- 111/udp open|filtered rpcbind
- 123/udp open|filtered ntp
- 784/udp open|filtered unknown
- 5060/udp open|filtered sip
- 32768/udp open|filtered omad
Enumeration involves testing open ports and services on hosts to gather more information

- Includes running tools to determine if open services have known vulnerabilities
- Also involves scanning for VoIP-unique information such as phone numbers
 - Automated REGISTER, INVITE, and OPTIONS Scanning with SIPSCAN Against SIP Servers
- Includes gathering information from TFTP servers and SNMP

Enumeration TFTP

- Almost all phones use TFTP to download their configuration files
- The TFTP server is rarely well protected
- If you know or can guess the name of a configuration or firmware file, you can download it without even specifying a password
- The files are downloaded in the clear and can be easily sniffed
- Configuration files have usernames, passwords, IP addresses, etc. in them
Enumeration

```
[root@attacker]# tftp 192.168.1.2
tftp> get example.cnf
root@attacker]# cat example.cnf
SIP Configuration Generic File (start)
Line 1 Settings line1_name: "502"
Line 1 Extension\User ID line1_displayname "502"
Line 1 Display Name line1_authname: "502"
Line 1 Registration Authentication
line1_password: "test123"
Line 1 Registration Password
```

SNMP Enumeration
- Simple Network Management Protocol (SNMP) version 1 is another inherently insecure protocol used by many VoIP devices
- `snmpwalk -c public -v 1 192.168.1.53 1.3.6.1.4.1`
Tools

- Footprinting
- Google
- ARIN
- APNIC
- Archieve.org
- Enumeration
- Netcat
- SiVuS
- Smap
- Scanning
- fping
- Nessus
- nmap
- SNMP walk
- SNSscan
- SuperScan
- Metasploit

Infrastructure Denial of Service
- DNS Auditing tool
- Internetwork Routing Protocol Attack Suite
- UDP Flooder
- Wireshark

Eavesdropping
- Cain and Abel
- dsniff
- VoIPong
- vomit

Network and Application Interception
- arpwatch
- Cain and Abel
- Dsniff
- Ettercap
- siprogu

Fuzzing
- ohrwurm RTP fuzzer
- PROTOS SIP fuzzing suite
- TCPView
References

- NIST
 - Security Considerations for VoIP Systems
 - Voice over Internet Protocol (VoIP), Security Technical Implementation Guide (DISA)
 - IP Telephony with SIP - www.iptel.org/sip/
- SIP Tutorials
 - The Session Initiation Protocol (SIP)
 - SIP and the new network communications model
- H.323 ITU Standards - http://www.imtc.org/h323.htm
Q & A, Feedback
Thank you