
Supercharged John the Ripper
Techniques

Austin OWASP

Spring, 2011

Rick Redman - KoreLogic

Who am I:

Rick Redman – Senior Security Consultant – Penetration Tester

Bio: During my 11 years as a security practitioner, I have delivered numerous

application and network penetration tests for a wide range of Fortune 500 and

government clients. I serve as KoreLogic's subject matter expert in advanced

password cracking systems. I present at a variety of security forums such as

ISSA Chapters and AHA (Austin Hackers Anonymous) and provides technical

security training on topics such as web application security. I has served as a

member of a penetration testing tiger team supporting Sandia National

Laboratories. I am a graduate of Purdue University with a degree in Computer

Science in the CERIAS/COAST program taught by Gene Spafford.

Introduction

2

Who is KoreLogic:

 An expert-based information security and IT risk management
firm.

 Serve Fortune 500 and Government clients.
 500+ security engagements delivered.
 Invited speakers: OWASP, Shmoocon, CEIC, SIM, ISSA, DoD,

Universities
 Winner: File Carving Challenge, Digital Forensic Research

Workshop.
 Creator: “Crack Me If You Can” password cracking contest at

DEFCON
 Privately held and founder-operated allow us to practice a quality-

and client-first approach.

Who is KoreLogic

3

Today’s goal:

Show default password cracking methods/tools. Pros/Cons of each.

Show patterns used by users in environments that enforce password
complexity (patterns observed from over 3.1 million hashes cracked by
KoreLogic).

Improve the methods/rules used to crack passwords, in order to crack
large amounts of complex passwords.

Give advice on how to create complex passwords that aren’t based on
known patterns.

– OWASP: Show previous errors done by web application
developers that exposed passwords.

Today’s Focus

4

10 Users choose bad passwords
20 SysAdmins put in place password complexity rules
30 GOTO 10

Corporate users are becoming more and more aware of the importance
of stronger passwords. They are forced to follow password
requirements.

– Tools used to crack passwords, need to be made more aware of
the patterns used by users who are forced into meeting password
complexity rules. (Currently, most tools do not do this.)

– Development of current password cracking tools does not revolve
around patterns and wordlists.

Instead seems to be concentrated on more formats, brute forcing, using
the ”cloud”, distributing work, GPU cards, etc

The Problem...(OS/Network)

5

10 Users choose bad passwords
20 Web sites on the Internet allow this to occur
30 Web sites get hacked – Users' passwords are cracked
40 Nothing changes – GOTO 10

Developers are not aware of proper methods of storing password
hashes

The Internet stays “unsafe” and no progress is made in the web
application world to educate or protect our users.

Applications continue to allow users to choose crappy passwords.

Applications continue to not allow security conscious users to protect
themselves (See: List of websites that don't allow special characters in
their passwords, or limit the length allowed)

The Problem...(Web Applications)

6

Type Hash

Plaintext badpass
MD2 9C5B091C305744F046E551DB45E7C036
MD4 640061BD33AA12D92FC40EA87EA408DE
MD5 F1BFC72887902986B95F3DFDF1B81A5B
SHA-1 AF73C586F66FDC99ABF1EADB2B71C5E46C80C24A
LM 4CF3B1913C3FF376
NT 986CA892BEAB33D1FC2E60C22EC133B7
MySQL323 0AFDA7C85EE805C2
MySQLSHA1 229749C080B28D3AEFAB78279C4668E6E12F20FA
Cisco PIX RtJk8qcKDPR.2D/E
VNC Hash DAD3B1EB680AD902

Example Hashes / Hash Types

7

●“RockYou” - passes stored in plain-text in database. SQL Injection.
Millions of plain-text Facebook/MySpace passwords obtained.

●“Gawker” - Database obtained – ~750,000 User password hashes
obtained (Salted DES)

●Rootkit.com – Database Backup Obtained - ~58000 User Password
Hashes (Raw MD5)

●“Xiaozhi” - DataBase Attacked – 1.06 Million Password Hashes (SHA
Variant)

●Unnamed Financial Site – ~5 Million User Password Hashes obtained
(raw MD5)

Large Web Applications Incidents

8

Large Web Applications Incidents

9

The Theory (OWASP)

10

Internet-based web-application passwords always suck. OWASP
should fix this.

Passwords on the web are worse because sites on the Internet do not:
1) Force password complexity
2) Require/Force passwords changes/rotation
3) Educate their users

Password cracking tools are mostly tested to work against these subpar
passwords – and not against passwords chosen against password
complexity (and rotation) policies

Password cracking tools/techniques must be improved in order to crack
the “stronger” passwords that are created against complexity rules.

Once web applications on the Internet start encrypting their hashes with
stronger formats, and start educating/forcing their users to choose
better passwords – the default tools will not work as well – and their
users will be “safer”..... for now.

Password Cracking Tools:

1) John the Ripper (Our preference - Today's Topic)
2) HashCat / OCLHashCat / OCLHashCat+ (Recommended Tools)

3) SAMInside - Dictionary section has extremely basic rules (Approx 10)
 Prepend 1-2 characters - Append 1-2 characters.
4) L0phtCrack 6 - "Strong Password Audit - "common modifications“

consists of Prepending and/or Appending 2 characters.
5) ophcrack - Rainbow Tables Based - Brute Force
6) PasswordsPro - Supports the MOST formats of all tools

Very slow to load input files with multiple passwords
Actually has a "Rules.txt" file very simular to John the Ripper -
these rules are also almost as good as John's default ruleset.
Costs Money. (Approx $54 USD).

7) Cain/Abel - Free - Has really basic rules (reverse, Double, Case
Subs, 2 numbers append, l33t rules)

Tools

11

HashCat / OCLHashCat /OCLHashCat+ (Recommended Tools)

• Hashcat is “closed source” (but free)
• Automatically takes advantage of all cores/cpus (great for multi-core

systems)
• Has “rules” that are semi-compatible with John the Ripper
• Under constant development
• Very active IRC/Message-board based user-base
• Supports large amounts of formats (NTLM, SHA, MD5)
• Not as “user friendly” as other tools – expect a learning curve

• OCLHashCat uses GPU cards (ATI / NVidia) and can be used to
build incredibly powerful systems for very little $$$

• The HashCat team won KoreLogic’s 2010 “Crack Me If You Can”
password cracking contest at DEFCON

Tools – HashCat / OCLHashCat

12

John the Ripper (JtR):

http://www.openwall.com/john/
http://www.openwall.com/john/doc/

Mailing List:
http://marc.info/?l=john-users&r=1&w=2

"John the Ripper is a fast password cracker, currently available for many
flavors of Unix (11 are officially supported, not counting different
architectures), Its primary purpose is to detect weak Unix passwords."

It is free, it is open source, it is constantly under development.

A team based around JtR came in 3rd and 4th place in “Crack Me If You
Can” password cracking contest at 2010 DEFCON.

Tools - John the Ripper

13

Examples of Usage:

john /etc/shadow
john --wordlist=password.lst --rules passwd
john --show passwd

Loaded 17461 password hashes with no different salts (NT)
test (username1)
password (username2)
password1 (username3)
123456 (username4)
qwerty (username5)
baseball (username6)

John Usage

14

Yes it cracks passwords, but how?

1) Uses a wordlist (supplied with the tool).

2) Uses a wordlist combined with "rules" that manipulate the
wordlist.

3) Brute forces password possibilities based on statistics
generated by the primary developer (and older tools).

These are roughly the same ideas that all password cracking
software packages use

How it works

15

Problems with these methods:

1) Default wordlist is small/outdated/mostly based on statistics of extremely
weak passwords.

Wordlists for all tools are not based on recent password statistics.
Also, not based on passwords used in “Corporate” environments.
OWASP: The default wordlists_do_ work pretty good on web users

Publicly available wordlists are also not based on recent password
statistics.

Klingon? Swahili? Esperanto ? No one uses these.

Even if you use real password statistics, from where? Do people on
Facebook choose better or worse passwords than internal corporate
networks? (Example: RockYou).

– OWASP: Find the 'RockYou' list – it will crack TONS of Internet
based hashes

Problems with these methods

16

Problems with these methods (cont):

2) Rules are based upon statistics gained from a limited data pool. This
data is old/outdated. Appear to be based on techniques used by users in
the 1990s. Users today are choosing much more complex patterns. Users
are forced to choose more complicated passwords because of password
policies.

3) The Brute Force file (all.chr) is based on outdated passwords lists.
All.chr contains statistics about letters/letter combinations used in previous
passwords. These statistics will not quickly match your password statistics
for your users in the 2010s.

So, lets crack some passwords…

Problems with these methods

17

About today's examples:

Password file used: pwdump.txt (Format NTLM – From an
Windows Active Directory)

This is a file containing 32883 valid hashes from a mythical single
company.

This company uses strict password policies that enforce complexity
rules.

Upper Case - Lower Case - and Numbers are required.

Special Characters are highly encouraged by security staff
(but not enforced).

OWASP: Does your web-site do this? Why not...?

Today's Examples

18

What can 'john' do by default:

john --format:nt -w:password.lst pwdump.txt
Loaded 32883 password hashes with no different salts (NT)

Example of cracked passwords:

august backup baseball blowfish bluesky austin
bridge change enterprisefootball front242 goldfish
health1 holiday london looney password patriots
research security services station stupid sunshine
watson winter yellow welcome

guesses: 29 unique passwords found (101 actual accounts
obtained, multiple accounts shared these passwords)

John's Default Wordlist

19

Now with John's rules (notice the --rules):

john --rules --format:nt -w:password.lst pwdump.txt

Abcd1234 Abigail7 Alexander5 Allison9 Anthony9
Aragorn3 Arsenal1 Arsenal4 Asdf1234 Asterix9
Autumn1 Baseball3Baseball6 Beaches1 Beautiful2
Belgium2 Belmont7 Benjamin3 Birthday6 Blessed1
Bonjour1 Bonjour2 Bonjour3 Dallas1 Dallas2
Dallas6 Passw0rdPassword1 Password2 Password3
Stingray2 Stingray? Zachary2 april9 austin1 dallas2

guesses: 272 unique new passwords found (846 actual total
accounts obtained)

John's Rules

20

Now with --single (a more advanced set of rules based around
the username).

john --single --format:nt pwdump.txt

(Notice no wordlist/dictionary)

guesses: 1361 unique new passwords found (1462 actual total
accounts obtained)

Munich09 Exchangeftp Computer55 Summer55
London999 Orange123 mcafee Project1
Dublin89 citrix2000 aug1999 Corporate1!!

John's Rules (single)

21

john --rules:single --format:nt -w:password.lst pwdump.txt
(This attempts passwords with rules based off of the wordlist
'password.lst' – This is a new “trick” not documented anywhere)

password Yankees9 Sydney12 London33 baseball Clippers9
London12 Michael22 football Asterix9 Syntel12 Report22
sunshine History9 Mercer12 Australia22august Holiday9
Cayman12Test0123 welcome Patriots9 Scudder23Account09
backup Redfish9 Munich23 security Surfing9 Munich13
winter Dolphins9 Market13 Dallas23 Tiffany9 Dallas13
London23 london Trinity9 London13 Paris123 ireland123
Ireland09 London444 France888 newyork1! hello123#
qwerty1! Munich23 abcd1234%

guesses: 1283 unique new passwords found (3645 actual new
accounts obtained. Multiple shared passwords)

John's Rules (single)

22

After all 4 steps are run, in this example we have:

3645 actual accounts with logins and passwords obtained.
'john' reports: 9980 password hashes cracked, 38921 left

This is because 6337 accounts had blank passwords (they
were disabled accounts).

This is 20% of the entire password file cracked in a few short
amount of time.

(approx: 120 seconds)

Completion of John's Rules

23

So, what’s the problem? You cracked 20% of the passwords and you
are brute forcing the rest of the range. Wont you eventually get 99%
done? Answer: Not even close!

You have barely scratched the surface of what users are really
doing to generate passwords.

You are also wasting CPU cycles by generating passwords that
don't meet the known patterns that your users are using.

You are also trusting the 'rules' inside of John the Ripper in order
to discover patterns chosen by users.

What patterns we found using default settings:
1) Adding numbers on the end of passwords.
2) Capitalizing the first letter of each word
3) Adding a ! to the end of a Capitalized word
4) Adding 123
5) Variations on the Usernames (adding specials/numbers/etc).

So what’s the problem?

24

If you look at the output of :
john -i:all -stdout | head -n 1000000 | egrep [A-Z] | wc

This returns: 21655 passwords with a capital letter.

You will see that of the first 1,000,000 passwords attempted via brute-force,
only 21,655 contain capital letters (2%) and 162 of them _start_ with a
capital letter. (.01%)

But, of the 2235 unique passwords cracked so far, 1976 contain a capital
letter (and 1975 of those 1976, _start_ with that capital letter). This
represents 88% of the passwords cracked.

Why not take advantage of this statistic, and dig deeper into wordlists, and
rules to crack more passwords?

OWASP: If your web site does not require a capital letter, even the
most beginner password cracker will destroy your hashes!

The problem with brute force

25

Up to this point:
9980 password hashes cracked, 38921 left

We can assume we will crack more and more passwords using
"all.chr":

But we do not know how fast they will crack? So, why risk it?

Instead, using our rules/tricks/tips, KoreLogic was able to
obtain the following stats:

43131 password hashes cracked, 5770 left

How did we do it?

What did KoreLogic use?

26

By looking for patterns! Examples:

ABla1109 Domi1236 July2006 Novb2009 Sept2010
AChw0708 Dons0117 July2007 Nove1234 Sept2012
AaKw2013 Doom2009 July2009 Nove2007 Sept7860
Aanu2009 Drue0802 July2021 Nove2008 Sepu2009
Abcd1234 Dune2001 July2498 Nove2009 Sepx2009
Abcz2009 Dyln0202 July6060 Novo2009 Sesp2010
Abhi1009 EHeh8888 June1984Novs2009 Sfax2014
Acac3434 Edin1485 June2007Novu2009 Shal1234
Adam1109 Edin2006 June2009Novv2009 Shaw0709
Addi0204 Ekim2005 June2012OCto2009 Shiu0209
Addi5678 Ekim2009 June2020OOdd2233

What patterns do you see?

Look for Patterns

27

Answer: [A-Za-z]{4}[0-9]{4} (Letters 4 times - then 4 Numbers)

The pwdump.txt example had 1575 accounts with a password
that met this pattern (647 unique examples)

The most common passwords of which were:
144 Fall2010
139 Sept2010
 80 Octo2010
 49 Nove2010
 16 Augu2010
 12 July2010
 12 Dece2010

See another pattern? (Look at the letters used).

Simple Pattern #1

28

So in the previous example, if we had a rule that appended 4
numbers to the end of a password - We could crack more of these.

The original john.conf does some of these:

-[:c] (?a \p1[lc] Az"[1-9]\0\0" <+
l Az"19[7-96-0]" <+ >-
l Az"20[01]" <+ >-
l Az"19[7-9][0-9]" <+

But, who can read these rules?

So, we have identified a password pattern, and we want to make a
rule that will search for all possible combination that fit that pattern.

How do we do it?

Simple Pattern #1

29

We write our own rules in john.conf !

[List.Rules:KoreLogicRulesAppend4Num]
c$[0123456789]$[0123456789]$[0123456789]$[0123456789]
$[0123456789]$[0123456789]$[0123456789]$[0123456789]

The 'c' means - begin each try with a capital letter (remember our
stats, 88% of the passwords started with a capital letter).

$[0123456789] Means add a 0 or 1 or 2 ... to the END of the string.
($ = END)

Simple Pattern #1

30

more foo.dic
test

john -w:foo.dic --rules:KoreLogicRulesAppend4Num -stdout
Test0000 Test0001 Test0002 … (etc etc etc)
Test9998 Test9999 test0000
test0001 test0002 test 0003 ... (etc etc etc)
test9997 test9998 test9999

Notice: capital 'T' in the first 10000 tries
Notice: lower case 't' in the last 10000 tries

Example Output

31

How else can I improve this? Use better wordlists!

With KoreLogicRulesAppend4Num use:
1) All 4 letter words (this is fast)
http://www.justpain.com/ut_maps/wordlists/length04.txt

john -w:length04.txt --rules:KoreLogicRulesAppend4Num -format:nt pwdump.txt

2) Create you own list of 4 letter words based upon words you've
already seen (Remember the months we saw previously? Create a
list of those)

3) All 4 letter combinations (aaaa aaab aaac zzzy zzzz) (slower)
9,139,520,000 possible combinations

4) All 4 character combinations (0000 000a 000b ... !!!a !!!b .. @%!% ...)
(This is really slow - but can be productive)

How to improve this more

32

Remember:

There are lots of other wordlists you can try with this one rule:
1) default wordlist 2) 3 letter words/combinations
3) 5 letter words 4) wordlists from 3rd parties
5) custom wordlists created by you (Months? Seasons? Sports
Teams? - See end of presentation).

With our example pwdump.txt the following command line:
john -w:4letters.dic --rules:KoreLogicRulesAppend4Num --format:nt pwdump.txt

We cracked an additional 597 unique passwords. (Totaling 1572
new accounts) This took roughly 27 minutes. Would be _much_
faster with the tool ‘hashcat’ or ‘oclhashcat’

Now up to: 11552 password hashes cracked, 37349 left

Types of Wordlists

33

Additional patterns used by users (and the rules to crack them):

New Pattern: Use of '1234'
The default john.conf adds '123' to the end of every word, but not
1234. And not at all positions.

1234!!@@12341234 1234pass !QAZ1234 Pass1234
1234!@# 1234HIya !Qwe1234 1234!@#$ 1234Hacc
1234paul ##1234## 1234!PA 1234SU$ car1234
Pqrs1234$1234Help. $oct1234 1234*555 1234Qwer !
1234mrs $Work1234 1234qwe 1234Harley !1234Sunny
Smab1234%% 1234+++ 1234Qwerty 1234password

Also, KoreLogic released rules that will also append it at the
beginning, middle, end, etc of each word in our wordlist.

More Patterns (1234)

34

Users love using '123' as their numbers:

!Austin123 (summer123 123bali 1234Wipro@
123Austin$ 123!Saints 123-Saints 123dani
123August$!Elaine123 1!Brawn123 123dini
123August/ 123Clipper! 123$$$ Photon1231!
Ferrari123 123roka123 August@123 Clippers#123
Jordan123 1samuel$123 August_123 $Dipesh123
Austin#123 whatuwant@123 whatwewant@123

In [List.Rules:Wordlist] - just add a line that says: $1$2$3

Pattern 123

35

Current Year: Lots of users will use the current year as their number:

!Jan2010 2010!! Work2010aha May2010mjk Sep2010mjk
020102mc Alps2010! ck2010ck cl2010qt Sept2010x
020104jo Augu2010$ slm2010md co2010je
2010! Winter2010a Jam2010sic Pal2010mine

Same idea as previous rule, place 2010 at the beginning, middle, end.

[List.Rules:KoreLogicRulesAdd2010Everywhere]
i0[2]i1[0]i2[1]i3[0]
i1[2]i2[0]i3[1]i4[0]
i2[2]i3[0]i4[1]i5[0]
i3[2]i4[0]i5[1]i6[0]
i4[2]i5[0]i6[1]i7[0]
i5[2]i6[0]i7[1]i8[0]
i6[2]i7[0]i8[1]i9[0]

Current Year

36

more foo.dic
abcd

john -w:foo.dic -stdout --rules:KoreLogicRulesAdd2010Everywhere
2010abcd
a2010bcd
ab2010cd
abc2010d
abcd2010

Use with wordlists not containing numbers. Just letters and specials.

Current Year

37

Lets extrapolate this further, look at these sample passwords:

!Mar2010 $Aug2010 aug2010 1dec2010 @nov2010 $Mar2010
.Aug2010 !Jun2010 5dec2010 #nov2010 Jmar2010 =Aug2010
$Jun2010 DEC2010 $Nov2010 MAR2010 AUG2010 .Jun2010
Dec2010 %Nov2010 Mar2010 Aug2010 JUN2010 3nov2010
amar2010 Kaug2010 Jun2010 =Nov2010 !Aug2010 P_aug2010

Ljun2010 @Nov2010

These are based on Month/Year combinations.

If it is October of 2010, what do you think most of these passwords are
going to be?

Month/Year

38

What about:
Jun2010! Lato2010! Monkey2010! Newyear2010! baby2010!
evg2010! Happy2010@ Nove2010 #password2010@

Hint: Use this with wordlists of letters only. 1-5 letters work best. (at
first)
Why? Because we are supplying the numbers and special characters
for you.

Prepending Years works as well:

2010!Sep 2010,Aug 2010octs* 2001Jeep 2010! 2010#
2010Jacob 2010ly!! 2001MARK2010!! 2010#dec 2001Papa
2010!.!. 2010$Hello2010time 2001abcd 2010!Nov 2010$Oct
2010tiny 2001JUL 2001andy 2010!Nove 2010+november
2010oct*T 2001JUN 2010September 2010Toyota

Current Year with a Special / Prepending
Years

39

What about all these months we keep seeing? They aren't always at the
beginning and end. They can be in the middle.

!Oct-2010 rnOct$ 4Sep06 1983jan 1may1982
!Oct1006 wwOct05 1jan1191 1may1969 $Oct06!
!Sep06 CopSep1$ 1jan1985 1may1976 $#Oct999 $$Sep123
1jan1993 05Oct$10 $1Sep05 augSep001 02may1977 27Oct2010
01jan 19835may AmyOct!1 409Sep89 01jan184 921may6
29Sep87% ACSep*123 Zq$$Sep9

What about passwords that end with Month and/or Dates?

04282may 2006%May BN@MAY2 .MAY77 Simon@may08 0606MAY
2006.May Dan&May1 1971May05 janemay01 13126may ily14May
capemay7 1MAY06 jkm@may2214082may 1985may7 $21may70
2$MAY20 vd@may29 1976@May 1989may9 *09May08 EJBmay17
2006!May 1990may2 .MAY07 Emilymay07

Months

40

What about passwords that have the _whole_ month in them:

January!12006 February2008= April$0410 August/2008 October&11
January!2006 March#16 April*26th August132008! October/2010$$
January#2006 March#2008 June%&2011SeptembeR2010 december97
January101994 March#3164 June!22004 Septem2010* december98
January2010! March031708 June/2007 September**123 december@01
February!2007 March142010 August*2010

Also: 4 letter months
OCTO!!2 Octo!200 Octo2010! Octob#10 Nove2005!
OCTO!01 Octo1957 Octo2010!! octoocto Nove2005*
OCTO!2 Octo1975 Octo2010$ NOVE!20 Nove2005-
OctO1008 Octo1998 Octo2010$$ NOVE&20 Nove2006
OctO2008$ Octo2**9 Octob!!05 Nove.2008 OctOct09
Octo200$ Octob!08 Nove.2010 Octo!!2005 Octo200%
Octob!23 Nove002.

Months

41

Also: Days of the week:

MONDAY. Monday# Monday0915$ Friday*15
Thursday2.0 MONDAY/ Monday#01 Tuesday%$888
Friday.56 Thursday99= MONDAY0 Monday#123
friday@2010 Thursday=01 Monday!23 TUESday180105

[List.Rules:KoreLogicRulesPrependDaysWeek]
i0[mM]i1[oO0]i2[nN]i3[dD]i4[aA4@]i5[yY]
i0[tT]i1[uU]i2[eE3]i3[sS]i4[dD]i5[aA4@]i6[yY]
i0[wW]i1[eE]i2[nN]i3[dD]i4[sS]i5[dD]i6[aA4@]i7[yY]
i0[tT]i1[hH]i2[uU]i3[rR]i4[sS]i5[dD]i6[aA4@]i7[yY]
....

Days of the Week

42

Users love numbers!

By default john.conf has multiple rules that add numbers to wordlists.
By default the following passwords can be cracked:

aaron698 windsor003 Aimhigh300 Austin934 Buster172
aaron699 welcome222 Alexis333 Austin958 Caitlin442
ababy420 welcome456 Alliecat789 Austin987 Accounting785

and

ABcd4567 Abby0077 Amanda5878 ABcd5678 Abby0206
Antigua4444 ABcd6789 Abby0217 Antionette0824

By adding 3 or 4 numbers to the end of a wordlist.
But john.conf does not do this for all 3 or 4 numbers. Just a subset

Users Love Numbers

43

So we need rules that do the complete list (as seen earlier in
presentation):

[List.Rules:KoreLogicRulesAppend4Num]
c$[0123456789]$[0123456789]$[0123456789]$[0123456789]
$[0123456789]$[0123456789]$[0123456789]$[0123456789]

and

[List.Rules:KoreLogicRulesAppend3Num]
c$[0123456789]$[0123456789]$[0123456789]
$[0123456789]$[0123456789]$[0123456789]

Sample output (for Append4Num):

Abcd0000 Abcd0001 Abcd0002 Abcd9998 Abcd9999
abcd0000 abcd0001 abcd0002 abcd9998 abcd9999

Users Love Numbers

44

Prepending with 2 Numbers (notice the first capital letter):

00Brandon 01Bahadur 01Jaguars 01Otavalo 99Gretzky 00Presque
01Bigturd 01Jarrett 12Chucker 99Matthew 00Shootme 01Bilusha
01Kokonut 12Cowboys 99Monster 00Tiffany 01Buttons 01Latrice
12Cowboyz 00Welcome 01Megenza 13croatia 00Zamboni 01Hannahg
1Michael 13mandala 01Arianna 01Inferno 01Olimpia 13samurai

Prepending with 3 Numbers:
000Welcome 003Kenneth 009Bhuvana 434Western 866Rathman
001Bhuvana 003welcome 010Bhuvana 444Chelsea 888Welcome
001sanyika 004Bhuvana 012Brownis 444Kriszta 888Zachary
002Bhuvana 005welcome 100Alissar 456Cowboys 888userpwd
003Aisling 006welcome 100IMedley 456Macbook 003Bhuvana
007welcome 429Wedding 456Markske

Users Love Numbers

45

Prepending with 4 Numbers:
1236weather 1921Wedding 3029Jessica 4119Fairway
8224Hunterz 1315Marvick 1928Lorenzo 3042Sfiling
4122Wolfsun 8231Incubus 1324Booglet 2007Chaunce
2049Kelibia 4144Carroll 9234Account 1513Brandon
2015Wedding 2060belmont 4166Buffalo 9234Cheengr
1522Salinas 2017Jasmine 2075Jasmine 5199Eturkey
1526Katelyn 2021WestGe 2101Wedding 5210Ansarah
1800troyboy 2023Jillian

Prepend with 2 Numbers - Append 2 Numbers:

10Nico58 12cool12 56Moto97 20july83 55LOVE15
20Nori02 42csva07 01Polo86 30july95 85NIKE15
30PINK03 72cute92 46Quag17 12july99 45PAME15
40ango10 84baby12 0gamm12 50owen17 18amen02
50anna08 94bkjf41 60gary12 90paco12 48apoi89
70asis83 34cali14 30gfrc05 60paul17

Users Love Numbers

46

Some password complexity rules requires users to use a special
character in their password. Users treat these characters differently
than letters, and use them sparingly.

Appending Special Characters:

thadeus! antonio! bubbles# Californi@ CapeCoral@!
Simplyred! FRANCE# BonJovi@ dolphin, Venice@!
Izabella! GRANNY# CITRIX@ cactus!@ change@!
NYGiants! Student# Computer@cheese!@ Cowboy@@
changeme!abcdefg# clover!@ cheese@@ Dancing!
badgirl# Austin!@ Dreamcatcher@ Lovemybabies@

Special Characters

47

Also, prepend a word with special character(s):

!!autumn @@EMILY @!pq10MZ !1Clipper !1q1q1q1q !!
deanna !!Terry08 @!qp10MZ !1Jamie5 !1qaz2wsx
##archie !!abc123 @!summer05 !1Jamie5 !4London
@!andrew !!alex85 !1London !8Monday @#Winter
!!die4me !0Passwo !1Monster !9London @@August
!@1234A !0babies !1Rebecca !Firefox24 @@DAVID
!@Cancer !1Bridge !1Sunny !Linux01 @#summer07

Special Characters

48

Additional "Specials" Patterns:
Append1_AddSpecialEverywhere:

Africa!1 AmyOct!1 Kar!dani1 XF!LES1 m!dnight1 Ahoney!1
 Andyyu!1 john!deere1 abi!abi1 Alaya!1 AB!gail1
T@Y!OR1 b@byg!r1 Amanda!1 A!lison1 We!come1
S!LVER1 Amelia7!1 Ra!stlin1 Welcome!n1 S0lar!s1

Append 2010Special:

oct2010! Aug2010$ oct2010$ 26Dec2010! Aug2010@
oct2010@ 2Cute2010! october2010! Aaron2010! Dublin2010!
pats2010! March2010! eagles2010! Asia2010# eagles2010$
Brooklyn2010@ odessa2010$ Alyssa2010!
Homegirl2010$ Januarybaby2010!

Special Characters

49

Append4NumSpecial:

Abby1958$Alex1005$ Andre7000! August2008$ Chris0707$
Abcd1234! Alex1109$ Athens2004$ August2008. Abcd1234$
Alex1209! April2007# August2010! Dece2010$ Abcd1234^
Alex2008! August2008! August2010$ Alex0908$ Alex2010!
August2008# Canada2010!

Append6NumbersSpecial:

sl553015! uu124578! iggy104215! Fab240899! Greg731133#
sl553016! oct192010! baby112108! Feb020905! ss201011!
ee124578! Feb102010! tt124578! eric200509!
Feb190207! ty092906! fall051684! Fab240895!
Grace291133! Sherry123456! Summer200810!

Special Characters

50

AppendNumberNumberSpecialSpecial:

AUTUMN08$$ Andrew49$$ Baby33!! Cadillac44$$ January08$$
AUTUMN09$$ Aquaman12$$ Bold08$$ Dolfan00$$ Abcd16$$
AteO00.. Saints01$$ Emma08!! Alex29$$ August09$$
Cadillac33@@ Football33@@ Alex33$$ Baby09!! Cadillac33##
Henry23$$

AppendSpecial4num:

Amy!2006 Aug#2010 Baby@0303 1nM@7352
Anala@2002 Aug@1826 Baby@1628 Anand@1980
Aug@2000 Dallas@2010 September@2005 11vaca@2006
Andrew@1 Aug@2004 mn@2008 11Fire@0601
alexandria!2010 September#2010

Special Characters

51

Users also love finger patterns:

NHY^%tgb qwe~123 !23qweasd !QWERTY NHY^5tgb
!1234qwe !@#$QWE ASDFqwer qwertyqw !123qwer
!@#123qwe (123qwe) ASDFqwer## 1qwe!QWE
%1QWertyuiop

1) john --external:keyboard (works, but is not perfect)
2) make your own (Or use KoreLogic’s)

Sometimes during corporate training classes, they will tell users to
use this method. Take advantage of this fact!

Finger Patterns

52

Internet related (These work REALLY well on Internet Apps):
0900.com 1723.com YaL@agf.com KOM.NET aafp.org
1395.com 17jm.com gabriel.com capi.net woop.org
1828.com 1995.COM @cox.net ARMY.ORG

Dev/Prod/Test/UAT Related:
Prod!111 prod@123 TEST-CO test!ng webtest
Prod!121 UAT$2109 TEST-DO test-1234 Prod!131
Uat$1234 Test@1109 test.123 silktest Prod=332
Uat$2010 Test@123 testftp preprod1 Prod=666
TEST-CA Test@cct CFPTEST preprod! prod4321

Internet Related / Dev.Prod.Test.UAT

53

So you've used all these rules to crack some passwords, what else
can you do?

Use your cracked password as a dictionary!
john -show --format:nt pwdump.txt | cut -d: -f 2 | sort -u > cracked.dic
or
cut -d: -f2 john.pot | sort -u > cracked.dic

This is especially useful if you have :
1) Hashes from multiple systems
2) Password history files - (or hashes from previous months/years).
3) Large amounts of users

OWASP: Use the 'rockyou' list against your hashes!

Reuse all the "rules" using the new cracked.dic as the wordlist.
Also..... (next slide)

Previous Passwords as Dictionary

54

Search/Replace Rules:
John's default john.conf has some of these. We have improved them.

Numbers -> Specials:
Austin1 -> Austin!
Testing222222 -> Testing222@@@
Dallas9 -> Dallas(

Replace Numbers -> Other Numbers:
$Austin01 $Austin05 $Austin09 Austin!01 Austin!06
$Austin02 $Austin06 @Austin73 Austin!02 Austin!07
$Austin03 $Austin07 @Austin74 Austin!04 Austin!09
$Austin04 $Austin08 @Austin76 Austin!05

Replace Numbers to Specials

55

Replace Letters -> Other Letters

austin12 -> bustin12 austin21 -> dustin21
Austin37 -> Austin37 AUSTIN3 -> AUSTIN3
BOSTON1 -> DOSTON1 BOSTON1 -> FOSTON1
Austin11 -> Bustin11 Austin1$ -> Rustin1$
Austin08. -> Tustin08. Austin16. -> Vustin16.
Password1-> Cassword1 Password#1 -> Wassword#1
password -> bassword password -> cassword

Users will choose a password such as “Vegas2010” but when they
are forced to change it – they will just change a single letter.

Example: Wegas2010 Vegaz2010

Replace Letters

56

Longest Passwords Cracked by KoreLogic:

Abcdefghijklmnopqrstuvwxyz 12345678901234567890
my chemical romance representative2118
Robbiewilliams1234 happybirthday2005!
Prideandprejudice communication2000
Astralprojection cheesecake041004
Sleadministrator Januarybaby2010!
Cheesecake041004 specialized7777
Rasheedwallace7 rememberthename
Waterville2008$ smartyjones2008

Do you see any pattern here that is super strong?

Do you see any pattern here that we haven’t talked about?

Longest Passwords Cracked

57

Wordlists:
- Having a variety of wordlists is required.
- KoreLogic has the most luck with the following lists:

Seasons - Months - Years - First Names - Last Names - Cities - States -
Regions - Countries - "RockYou" List - Regions of India/China/USA -
Religious references (books of the Bible, lists of Gods, etc) - keyboard
combinations - 4 letter words - 5 letter words - 6 letter words - 7 letter
words - Sports Teams - Colleges - Client specific words - Dates -
Numbers - Common wordlists – Facebook Names List (‘fbnames’)
etc. etc.

Even without any new rules - these types of dictionaries are more likely
to crack more passwords than the defaults.

KoreLogic has released a large set of wordlists that can be used with
any password cracker you wish. http://contest.korelogic.com/

WordLists

58

For a small amount of money (< $4000) you can build an amazing
password cracking system using “off the shelf” video cards usually
reserved for high-end gaming.

KoreLogic’s system has 4 GTX 480 cards (Approx $500 each).
Capable of cracking 6220 Million hashes a second

This is the “future” of high-end password cracking. (Note: New
version of IE will use GPU processing power to render pages)

Formats Supported:
NTLM (Windows / Active Directory)
SHA/SSHA (LDAP Directory Format)
MD5 (various variations)
DES (Used by UNIX Systems).

GPU Password Crackers

59

Brute force is _much_ easier with GPU systems (and much much
faster).

OclHashCat (“best” GPU password cracking software) includes
many tools for better/smarter/faster password cracking.

KoreLogic can identify 100% of all 8 character (or less) from an
Active Directory (NTLM) in days using GPU cards. It used to takes
weeks.

(What does your security policy have for its minimum length required
of passwords? 8 is no longer enough, make it 9 or 10)

The winning team at our DEFCON contest, had 11 high-end GPU
cards. This number is up to at least 16 now. Including one system
with 6 high-end (liquid cooled) GPU cards in it.

GPU Password Crackers

60

Running the default rules/wordlists/methods of what ever password
cracking tool you use is OK. It’s not going to hurt.

Using better rules/wordlists (based on actual password data) is
better and more likely to crack additional passwords.

Why not improve the rules/wordlists/methods to crack better
passwords?

Password complexity rules do _not_ make users choose
"stronger" passwords.

Complexity rules encourages users to use patterns/tricks to
remember the stronger passes. Abuse these patterns/tricks.

Password rotation _introduces_ new password patterns.

Conclusion

61

Web applications do not even enforce password complexity! Why
not ?

All this “logic” is overkill when cracking “Internet” passwords
because users choose horrible passwords.

Web Applications should start enforcing password complexity now
and catch up with Operating Systems

2 Factor in being pushed now – Google/PayPal/WoW. Get on it!

If the password hash format your application uses is not support by
John/HashCat/OclHashCat – how are people going to crack them?

Please use 'bcrypt' to hash your passwords!!

OWASP Conclusion

62

1) User Awareness. Make you users aware that you know what they
are doing. It is better to train them. Tell them to stop using
Month/Years/Seasons in the passwords.

•Tell them what makes a better password. (Length, Randomness,
Special characters in the middle of the password).

2) Technology: Make your password complexity requirements
aware of these patterns. Users should not be allowed (by both
Policy and Technology) from using these patterns/wordlists.

3) Routinely Audit passwords.
 This used to be a "no no" in corporate environments.
 Now, its a 'yes yes'. Ask for help.

 Learn what patterns your users are using.

Mitigation

63

1) User Awareness. Make you users aware that you know what they
are doing. Train them to choose better passwords:

– Google Technique – JavaScript

2) 2-Factor (PayPal / Google / WoW)

3) Do not allow users to use CERTAIN passwords (Twitter Method)

OWASP/Web Application Mitigation

64

Ideas for improvement:
Make a "free lunch" contest for all users whose password do not
crack with 24 hours.

In the announcement of the contest, teach/train users about
methods for creating complex “uncrackable” password patterns.

Example: "Chunk Norris is gonna beat! you up" → cnIGB!Yup
Example: “Oh, I see you ate one too” → oh,IcU812
Example: “who?WHAT?when?” → who?WHAT?when?
Example: “Something under the bed is drooling!" → "5u+B!drl"
Example: “NeverGonnaGiveYouUp” → nvrGONNA!!givu.
Example: “Wow, I was impressed with KoreLogic” ->
“\/\/0w,KoreRules” ;)

This combination of incentive, testing, prevention, auditing, and
training will help your organization create stronger passwords.

Ideas for Improvement

65

Previous Events:

Defcon 2010 - KoreLogic sponsored a password cracking
contest. 54,000 hashes were released, and teams had 48 hours to
crack as many as possible. $1,000 in prizes.

Details/Stats/Results here: http://contest.korelogic.com/

Upcoming Events:

DEFCON 2011 – ‘Crack Me If You Can’ Contest:

DerbyCon 2011 – New Security Conference in Louisville, KY.
KoreLogic will be present. Possibly running a mini-contest for all
password crackers.

Events

66

Read:
http://contest.korelogic.com/

for all wordlists/tips/tricks/rules/examples/etc

http://www.sans.org/reading_room/whitepapers/
authentication/simple-formula-strong-passwords-sfsp-

tutorial_1636

Q &A :
Rick Redman – KoreLogic

rredman@korelogic.com
http://www.korelogic.com/

Questions?

67

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67

