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AGENDA

Extraction of private, sensitive data using cross-site 

vulnerabilities via XS-Search attacks

➢ Who, what, how?

➢ Demo

➢ Conclusions

* All experiments were performed ethically
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VULNERABLE SITES AND DATA

And a lot more...

Mail content, contacts...

Structured information

Search history

Relationships
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EXAMPLE SCENARIO

GET / POST request to Gmail
Browser receives the response and displays it

5



Cross-Site Attacks
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XS-SEARCH: HIGH LEVEL VIEW

Response

GET/POST request 

…<script>...
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XS-SEARCH: HIGH LEVEL VIEW

Response

GET/POST request 

…<script>...

Allowed
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XS-SEARCH: HIGH LEVEL VIEW

Response

GET/POST request 

…<script>...

SOP

9



Timing Side Channel
We can’t read the response, BUT - we can 
measure how long it took 
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XS-SEARCH: HIGH LEVEL VIEW

Response

GET/POST request 

…<script>...

{Time 
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PROBLEMS

1. Noise - 

a. Timing a response is inaccurate and influenced by 

many factors (Internet connection, Browser etc.)

b. Very (very) short time differences between 

responses (even long ones) - especially when heavily 

compressed.

2. Small window of opportunity - 

a. User visits the page for a short term only

b. Avoid detection mechanisms (anti-DoS)
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“
These XS-Search attacks 

are impractical 
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XS-SEARCH: BASIC FLOW

Dummy - request that yields a short (fast) response

q=in:sent&from:fdjakdhasd 

Challenge - request that yields either long or short response

q=in:sent&from:Alice 
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BASIC FLOW: ANSWER BOOLEAN QUESTIONS

T(Dummy) ≈ T(Challenge) ⇒   False

T(Dummy) ≪ T(Challenge) ⇒   True
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XS-SEARCH: BASIC FLOW
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XS-SEARCH: BASIC FLOW

Unknown response

GET q=in:sent&from:fdjakdhasd 
…<script>...

{T(Dummy) Empty response

GET q=in:sent&from:Alice 

{T(Challenge) ?
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DEALING WITH THE PROBLEMS

➢ Dummy / Challenge pairs

➢ Statistical tests

➢ Inflation techniques

➢ Divide and Conquer algorithms
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STATISTICAL TESTS

Classical statistical hypothesis tests assume large samples.

In order to achieve good results using small samples:

➢ Ran each Dummy / Challenge pair a few times

➢ Tested and compared various statistical tests between 

the distributions

Main observation: lower values give better indication
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INFLATION TECHNIQUES

Increase the difference of the response time 

between empty and full response

➢ Response-length inflation

○ Query fields are copied to the response

➢ Compute-time inflation
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RESPONSE-LENGTH INFLATION
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COMPUTE-TIME INFLATION

➢ Abuses hard-to-compute ‘has not’ search terms

➢ Short circuit ‘empty’ queries

➢ Allows detection of information that appears only once!
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COMPUTE-TIME INFLATION

➢ Abuses hard-to-compute ‘has not’ search terms

➢ Short circuit ‘empty’ queries

➢ Allows detection of information that appears only once!

Dummy:

q=in:sent&from:fdjakdhasd&hasnot:{rjew+...+iqejh}

Challenge:

q=in:sent&from:Alice&hasnot:{rjew+...+iqejh}
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EFFICIENT TERM IDENTIFICATION

Which of {T1, T2,…} appears in <data>? 

Naïve solution: check one by one…

Three efficient divide and conquer algorithms: 

➢ Multiple Terms Identification (MTI)

➢ Optimized Multiple Terms Identification (OMTI)

➢ Any Term Identification (ATI)

Each of them sends queries for conjunction of terms

from:michael+OR+dan+OR+.... Up to the URL limit
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DEMO
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WHAT CAN WE EXPOSE WITH XS-SEARCH?

➢ Specific terms or from list of candidate terms

➢ By date, subject, folder, or other properties

➢ Structured information

○ Credit card numbers (xxxx-xxxx-xxxx-xxxx)

○ Phone numbers (xxx-xxxx-xxx)
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WHAT CAN WE EXPOSE WITH XS-SEARCH?

➢ Does the name of the user is Alice?

○ in:sent&from:alice

➢ Closely related to bob@gmail.com?

○ bob@gmail.com&st=100

➢ Is a client of SomeBank?

○ noreply@somebank.com

➢ Do have Bob as a friend in Google+?

○ from:bob&circle:friends

➢ Did Bob bcc Charlie about an amazing lecture?!

○ from:bob&bcc:charlie&after:2015/10/12+before:

2015/10/14&subject:amazing-xssearch-lecture
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WHAT CAN WE EXPOSE WITH XS-SEARCH?

Credit card numbers (xxxx-xxxx-xxxx-xxxx)

➢ x ∈ {0,1...9} ⇒ 1016 = 

10,000,000,000,000,000

But, using XS-Search we only need to reveal xxxx

➢ Only 104 (= 10,000) possibilities!
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PREVENTING XS-SEARCH?
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PREVENTING XS-SEARCH?

Easy - prevent any cross-site request.

BUT…

Many services wish to allow cross-site requests.

These services can try to:

➢ Restrict: limit requests rate, inflation …

➢ Detect: anomalies, heuristics...
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Thanks!
Any questions?

You can find me at:

leibo.hemi@gmail.com
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