Cloudy With a Chance of WAF

Or Katz - Principal Security Researcher
Akamai Cloud Security
What is a WAF?

It depends who you ask...but most vendors will agree with the following statements:

“A (WAF) is an appliance, server plugin, or filter”

“Applies a set of rules to an HTTP conversation”

“Generally, these rules cover common attacks such as XSS and SQLi” (OWASP)

“WAFs sit (in-line) and monitor traffic to and from web applications.”

“WAFs interrogate the behavior and logic of what is requested and returned”

“WAFs also detect (and can prevent) new unknown types of attacks. By watching for unusual or unexpected patterns in the traffic”
WAF History

1998: Sanctum's "AppShield"
1998: Gillian’s “Exit Control”
2002: ModSecurity
2002: Imperva SecureSphere (2G Positive Security)
 • Teros->Citrix, Kavado->Protegrity, Magnifire->F5, NetContinuum>Baraccuda,
2006: Breach Security acquires ThinkingStone (ModSecurity)
2006: OWASP ModSecurity CRS v1.0
2008: Akamai introduces world’s first cloud-based distributed WAF
Today: Several cloud based WAFs such as: Incapsula, Qualys, CloudFlare...
WAF in the Cloud: benefits

- Elastic / Scalable
- Distributed (computing)
- Easy to set-up (when offered as a service)
- Offered as pay-as-you-grow service
- Stops attacks in the cloud
- Always up-to-date
- All events are stored in centralized location
WAF in Cloud Security Benefits

- Orchestrated attack campaigns
- Slow & low
- Zero day detection
Orchestrated Attack Campaigns
WordPress Remote File Inclusion Vulnerability

Host: www.test.com
User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10_8_4) AppleWebKit/537.36 (KHTML, like Gecko)

Trying to inject to this HTTP parameter wpPATH

The content of this URL http://www.google.com/humans.txt?
Google is built by a large team of engineers, designers, researchers, robots, and others in many different sites across the globe. It is updated continuously, and built with more tools and technologies than we can shake a stick at. If you’d like to help us out, see google.com/jobs.
Some Question that Crossed Our Minds:

- Why RFI exploit from 2007?
- Why trying to exploit PHP inclusion on .NET application?
- Why including a legitimate page?
What Else Did This Hacker Do On This Site?

Sending 2212 different RFI exploits
Any Other Akamai Customers Hit by This Hacker?

What Else Did This Hacker Do On This Site?
Any Other Akamai Customers Hit by This Hacker?

What Else Did This Hacker Do On This Site?

Sending 2212 different RFI exploits

Attacking 34 different Web sites, sending 24301 attacks
Let's find similar activity across the internet...

Bot Network that include 272 machines
Targeting 1696 Web applications
Sending 1358980 attacks
Lets find similar activity across the internet...

Bot Network that include 272 machines
Targeting 1696 Web applications
Sending 1358980 attacks
Still Some Questions that Need to be Answered...
Why RFI Exploit from 2007?

Hacker trying to be lucky using old exploits
Why Including a Legitimate Page?

Hacker checking exploit feasibility
Why trying to Exploit PHP Inclusion on .NET Application?

Hacker is just shooting all over the place
Attack Summary

- Distributed attack campaign.
- 200 compromised web servers
- Lasting over more than a month.
Slow & Low - Brute Force Attacks
Analyzing 8 Hours of Traffic

4301
- Reputation was targeted

2848
- Malicious clients participated in the attacks

Most of the attacks originated from: US, China and France

289
- Highest number of applications being scanned by the DP

531
- Bash and WordPress applications brute forced with 250,000 attempts

14%
- Of the traffic originated from anonymized sources
4301

Application were targeted
2848

Malicious clients participated in the attacks
Most of the attacks originated from: US, China and France
289

Highest number of applications being scanned by one IP
531

Joomla and WordPress applications brute forced with 230K attempts
14%

Of the traffic originated from anonymized sources

Source Distribution by Type

- Anonymous Proxies - 2%
- Source Ips - 86%
- Transparent Proxies - 3%
- Vpn service providers - 9%
Bypassing Detection Mechanism

One to One
Attacker is sending up to 15 brute force attempts in 1 hour to application.

One to Many
Attacker is sending up to 15 brute force attempts in 1 hour to 207 different applications.

Many to Many
- 13 Attackers, each is targeting between 100 to 231 different applications.
- All together targeting 478 applications.
- Over their frame of 3 months.
One to One

Attacker is sending up to 15 brute force attempts in 1 hour to application
One to Many

Attacker is sending up to 15 brute force attempts in 1 hour to 207 different applications
Many to Many

- **11** Attackers
- each is targeting between **100** to **231** different applications
- All together targeting **478** applications
- Over time frame of **3** months
Why This Attack is Successful?

- Attacker has time
- Attacker has resources
- Attacker know how to bypass security filters
Zero Day Detection - PHP vulnerabilities

Objective
- Find attackers that send PHP attacks

3 Steps Technique
- [Step 1]
- [Step 2]
- [Step 3]
Objective

Find attackers that send PHP attacks
3 Steps Technique

Step 1 - Analyze Applications' Behavior
Fingerprint platform behind each app (e.g. PHP)

Step 2 - Analyze Client Behavior
Look for clients that try to access PHP URLs on ASP.NET apps

Step 3 - Big Data Analysis
Calculate clients maliciousness based on the number of apps scanned
Step 1 - Analyze Applications' Behavior

Fingerprint platform behind each app (e.g. PHP)
Step 2 - Analyze Client Behavior

Look for clients that try to access PHP URLs on ASP.NET apps
Step 3 - Big Data Analysis

Calculate clients maliciousness based on the number of apps scanned
Let's Test Drive This Approach...

950
Malicious clients were detected over one week

~9
The average amount of applications scanned by client

236
Highest number of scanned applications by one client in one hour

We analyzed 10% of Akamai traffic over a 1-week time period

43%
Of the detected clients are web servers

4 days
The average amount of time a client was maliciously active
950

Malicious clients were detected over one week
The average amount of applications scanned by client
236

Highest number of scanned applications by one client in one hour
43%

Of the detected clients are web servers
4 days

The average amount of time client was maliciously active
Further Analysis of Clients Traffic

- PHP known vulnerabilities - RFI, XSS, SQLi, Path traversal...
- Brute force attacks - looking for WordPress and Joomla login pages
- Comment spamming
- And in the future: Zero day exploits...