
Securing Development
with PMD

Teaching an Old Dog New Tricks

4/13/2012 1

HUDSON

Integrating Security with Developer Tooling

4/13/2012 2

Key Objectives

 Learn about PMD

 Understand how to extend PMD

 Think about enhancements to similar tools

4/13/2012 3

What Is PMD?

 Open source static analysis tool

 Scans Java source code for potential problems

—Possible bugs

—Dead code

—Suboptimal code

—Overcomplicated expressions

—Duplicate code

Very little related to security!!

4/13/2012 4

Bug Finders vs Security Static Analysis

 Bug Finders (i.e. PMD)

 Target buggy patterns

 Minimize false positives even if high false negatives

 Security Static Analysis

 Target insecure patterns

 Minimize false negatives even if some false positives

 Context of violation must be investigated

4/13/2012 5

Why Extend Security to PMD?

 Used extensively by Java developers already

 Highly extensible with Rule and Report API

 Strong documentation and support network

 Integrates with many IDEs and build tools

 PMD internals operate similar to commercial tools

4/13/2012 6

How does PMD work?

 Run against source file, directory, or archive

 Builds tree-like structure of source code (AST)

 Performs semantic, basic control & data analysis

 Traverses AST looking for patterns (Rules)

 Generates a report of Rule Violations

4/13/2012 7

What Does AST Look Like?

Source Code

AST

4/13/2012 8

Extending PMD with Custom Rules

 Implement as Xpath expression or Java class

 Wire up rules for use by PMD in ruleset file

 Modify behavior by configuring rule properties

 Group rules into rulesets for enforcement

4/13/2012 9

DEMO

4/13/2012 10

Resources to Help Writing Rules

 PMD Website
 http://pmd.sourceforge.net/xpathruletutorial.html

 http://pmd.sourceforge.net/howtowritearule.html (Java)

 PMD source code
 net.sourceforge.pmd.rules.*

 net.sourceforge.pmd.dfa.DaaRule

 PMD Applied (Centennial Books Nov 2005)

 PMD test cases & framework (wraps JUnit)
 test.net.sourceforge.pmd.testframework

 test.net.sourceforge.pmd.*

4/13/2012 11

v1.0 Goals For Custom PMD Security Rules

 Add security without modifying PMD itself

 Write rules that identify “low hanging fruit”

 Perform analysis beyond lexing and pattern match

4/13/2012 12

Selecting Rules for Implementation
OWASP Top 10

A1: Injection

A2: Cross-Site

Scripting (XSS)

A4: Insecure Direct

Object References

A7: Insecure

Cryptographic

Storage

A10: Un-validated

Redirects and

Forwards

Rule Type

Data Flow,

Structural

Data Flow

Data Flow

Structural

Data Flow

GDS Assessment

Vulnerability

SQL Injection

Cross-Site

Scripting (XSS)

Arbitrary File

Retrieval

Use of

Cryptographically

Insecure

Algorithms

Arbitrary URL

Redirection

Customer’s Secure Coding Guideline(s)

2.1 – Commands should not be Constructed

through String Concatenation

1.1 – All Input Crossing a Trust Boundary

Must be Validated

1.2 – Data from External Sources must be

Properly Encoded or Escaped

1.1 – All Input Crossing a Trust Boundary

Must be Validated

3.2 – Callable Code Must Enforce

Authorization Requirements

4.1 – Use of Sound Encryption Algorithms

4.2 – Use of Sound Hashing Algorithms

1.1 – All Input Crossing a Trust Boundary

Must be Validated

4/13/2012 13

Challenges to Writing PMD Security Rules

PMD Analysis Limitations Impact on Detecting Security Bugs

 Analysis limited to single file at a time

 Data Flow Analyzer (DFA) limited to

single method (intraprocedural)

 DFA tracks local variable declarations and

references, but does not evaluate

expressions

 Data often passes through multiple

files/classes and tiers

 Security bugs often result of mixing data

and code in wrong context

 Symbols limited to source file, resulting in

names and types not fully resolved

 Custom code often wraps well-known

APIs (Java or Framework)

 Only analyzes JSP files that are XHTML-

compliant (i.e. JSP Documents / XML

syntax)

 Standard JSP syntax more common

 Often severe web application security

bugs in presentation layer

4/13/2012 14

Rule Writing Challenges – JSP Files

#1 – Overcome XHTML limitation

 Solution: Leverage JSP compiler

 Result: Java implementation of JSP logic in
_jspService method

 Benefit:

 Identify security bugs in any JSP

 Scope of PMD’s analysis increased

4/13/2012 15

Example of JSP to Java Translation

<%

String a1 = request.getParameter("y1");

String b1 = a1;

%>

<%=b1 %>

public void _jspService(HttpServletRequest request,

HttpServletResponse response)

 throws java.io.IOException, ServletException {

..snip..

 PageContext pageContext = null;

..snip..

 out = pageContext.getOut();

..snip..

 String a1 = request.getParameter("y1");

 String b1 = a1;

 out.print(b1);

4/13/2012 16

JSP Scriptlet Code

Translated Java code equivalent

Rule Writing Challenges – Reporting

#2 – Report JSP security violations meaningful to developer

 Solution:

 Wrote custom Source Map Format (SMAP) translator (JSR-045)

 Implemented net.sourceforge.pmd.IRuleViolation

 Result: Report findings in terms of JSP line numbers

 Benefit:

 JSP developers remediate bugs in JSP

 Security violations understood by PMD built-in renders

4/13/2012 17

SMAP Example

SMAP

index7_jsp.java

JSP

*S JSP

*F

+ 0 index7.jsp

index7.jsp

*L

2,10:53,0

12,3:55

14:58,0

15:60

16,3:61,0

*E

Header (SMAP, generated

filename, default stratum)

Stratum Section

File Section (contains translated

filenames and path)

Line Section (associates line numbers

in input source with output source)

End Section

4/13/2012 18

Rule Writing Challenges – DFA w/PMD

#3 – Despite PMD limitations, perform data flow analysis

 Solution: Use PMD DFA and Symbol Table

 Result:

 Determine if variable assignments assigned source

 Track those tainted variables down each data flow

 Report security violations if tainted variable passed to sink

 Benefit: Automated, accurate tracing from source to sink

4/13/2012 19

public void _jspService(HttpServletRequest request,

HttpServletResponse response)

 throws java.io.IOException, ServletException

{

..snip..

 String a1 = request.getParameter("y1");

 String b1 = a1;

 out.print(b1);

PMD Data Flow Analysis

variable definition

Name=a1, Type=String

DataFlowNodes

variable references

Name=request.getParameter

Arguments=y1 (Literal)

4/13/2012 20

PMD Data Flow Analysis Extended (XSS)

public void _jspService(HttpServletRequest request,

HttpServletResponse response)

 throws java.io.IOException, ServletException

{

..snip..

 String a1 = request.getParameter("y1");

 String b1 = a1;

 out.print(b1);

variable definition

Name=a1, Type=String

(tainted variable)

variable reference

Name=request.getParameter

(method, tainted source)

Arguments=y1 (Literal)

Type= javax.servlet.http.HttpServletRequest

4/13/2012 23

public void _jspService(HttpServletRequest request,

HttpServletResponse response)

 throws java.io.IOException, ServletException

{

..snip..

 String a1 = request.getParameter("y1");

 String b1 = a1;

 out.print(b1);

variable definition

Name=b1, Type=String

(tainted variable)

variable reference

Name=a1 (tainted variable)

4/13/2012 24

PMD Data Flow Analysis Extended (XSS)

public void _jspService(HttpServletRequest request,

HttpServletResponse response)

 throws java.io.IOException, ServletException

{

..snip..

 String a1 = request.getParameter("y1");

 String b1 = a1;

 out.print(b1);

variable references

Name=out.print

Arguments=b1 (Name)

(tainted variable)

4/13/2012 25

PMD Data Flow Analysis Extended (XSS)

public void _jspService(HttpServletRequest request,

HttpServletResponse response)

 throws java.io.IOException, ServletException

{

..snip..

 String a1 = request.getParameter("y1");

 String b1 = a1;

 out.print(b1);

XSS Vulnerability

variable references

Name=out.print

(method, XSS sink)

Type=javax.servlet.jsp.JspWriter

Arguments=b1 (Name)

(tainted variable)

4/13/2012 26

PMD Data Flow Analysis Extended (XSS)

DFA Security Rule Usage Notes

 Violations need to be manually investigated for proper

escaping/validation

 Configurable sources and sinks via properties

 URL Redirection

○ javax.servlet.http.HttpServletResponse.sendRedirect

 SQL Injection

○ java.sql.execute

 Effective source/sink same method / “reflected” variants

 4/13/2012 27

PMD Structural Rule Example – SQLi

 DFA susceptible to false negatives

 Data traverse multiple files between source and sink

 Supplement with structural rule

 Investigates AST AdditiveExpression nodes

 Performs following analysis

○ Is string a SQL command?

○ Is concatenated data of type String?

○ Is concatenated data a method argument?

4/13/2012 28

DEMO

4/13/2012 29

Basic Usage Steps

 Configure CLASSPATH

 Add pmd-gds-1.0.jar

 Add jars/classes used when building (for type resolution)

 Configure PMD to use

/rulesets/GDS/SecureCodingRuleset.xml

 Run PMD and audit results

4/13/2012 30

PMD ANT Task Example - CLASSPATH

<path id="pmd.classpath">

 <fileset dir="${pmd.dir.home}\lib">

 <include name="pmd-${pmd.version}.jar" />

 ..snip..

 </fileset>

 <pathelement location="lib\${gds.jar}" />

 <pathelement location="${app1.src}\build\classes\"/>

 <fileset dir="C:\tomcat\apache-tomcat-6.0.29\lib">

 <include name="servlet-api.jar" />

 </fileset>

</path>

<target name="pmd" description="Runs PMD">

 <taskdef name="pmd" classname="net.sourceforge.pmd.ant.PMDTask"

classpathref="pmd.classpath" />

 <pmd rulesetfiles="rulesets/GDS/SecureCodingRuleset.xml" shortFilenames="false"

 <formatter type="text" toConsole="true" />

 <fileset dir="${app1.src}"><include name="**/*.java" /></fileset>

 </pmd>

</target>

4/13/2012 31

PMD ANT Task Example – Rules Config

<path id="pmd.classpath">

 <fileset dir="${pmd.dir.home}\lib">

 <include name="pmd-${pmd.version}.jar" />

 ..snip..

 </fileset>

 <pathelement location="lib\${gds.jar}" />

 <pathelement location="${app1.src}\build\classes\"/>

 <fileset dir="C:\tomcat\apache-tomcat-6.0.29\lib">

 <include name="servlet-api.jar" />

 </fileset>

</path>

<target name="pmd" description="Runs PMD">

 <taskdef name="pmd" classname="net.sourceforge.pmd.ant.PMDTask"

classpathref="pmd.classpath" />

 <pmd rulesetfiles="rulesets/GDS/SecureCodingRuleset.xml" shortFilenames="false"

 <formatter type="text" toConsole="true" />

 <fileset dir="${app1.src}"><include name="**/*.java" /></fileset>

 </pmd>

</target>

4/13/2012 32

Configuring JSP to Java Translation

 Add JSP compiler task to build tool (build.xml)

 Configure smapSuppressed to false and

smapDump to true

<jasper2 validateXml="false" uriroot="C:\Code\web.war"

webXmlFragment="${jspBuildDir}/WEB-

INF/generated_web.xml" outputDir="${jspBuildDir}/WEB-

INF/src" smapSuppressed="false" smapDumped="true"/>

 Add extra clean task to remove .smap files before

production deployment

4/13/2012 33

Custom Rules with PMD Eclipse Plug-in

 Plug-in only supports xpath rules out of box

 Put custom rules on plug-in CLASSPATH

 Requires modification of PMD Eclipse plugin jars

 Add rules to PMD Eclipse plugin source and compile

 Wrap PMD Eclipse plugin with custom plugin

4/13/2012 34

Current and Future Development

 Publish version 1.0 of Secure Coding Ruleset @

https://github.com/GDSSecurity

 Integrate NIST Juliet Test cases

 Contribute to PMD project (need to pass tests first!)

 Extend rules beyond Java with PMD 5

 Write PMD 5.0 Rules

 Enhance PMD feature set

4/13/2012 35

Conclusion

 Learned about PMD and extensibility

 Discussed approach for rule writing & deployment

 Use, add and improve SecureCodingRuleset on

GitHub

 Look for other developer tools where it would be

practical to add security

4/13/2012 36

References

 http://www.nysforum.org/committees/security/0514
09_pdfs/A%20CISO%27S%20Guide%20to%20Ap
plication%20Security.pdf

 http://samate.nist.gov/index.php/Source_Code_Se
curity_Analyzers.html

 https://www.owasp.org/

 pmd.sourceforge.net

 http://tomcopeland.blogs.com/

 PMD Applied (Centennial Books Nov 2005)

 Secure Programming with Static Analysis
(Addison-Wesley Professional July 2007)

4/13/2012 37

