Dynamic malware analysis - or:
The ∼five deadly (anti-)venoms - or:
Is this software talking to Asia?

Team CIRCL

December 2, 2011
Agenda

• CIRCL Introduction
• Dynamic Malware analysis
 ○ Introduction
 ○ Different methods
 ○ Examples
• Conclusion
CIRCL Mission Statement

- CIRCL is the national Computer Security Incident Response Team (CSIRT) for the Grand-Duchy of Luxembourg.
- CIRCL is a team composed of 5 FTEs doing security incident coordination, response and research.
- CIRCL is operated by SMILE (“security made in Lëtzebuerg”), a State funded “groupement d’intérêt économique” (GIE), designed to improve information security and create new opportunities for Luxembourg started in September 2010.
CIRCL - in plain english

• We help you in the (not so unlikely) case of an incident:
 ○ We do forensic analysis
 ○ We analyse malware
 ○ We help you to recover from an incident
 ○ We give advise for the future

• We do research

• We share our knowledge
Dynamic malware analysis

Introduction
Dynamic malware analysis - Introduction

Driving questions

• Who’s behind the attacks?
• What’s the motivation?
• What does the malware do?
Dynamic malware analysis - Introduction

Driving questions

• Who’s behind the attacks?
 → The usual cyber criminal
 → Motivation: money
Dynamic malware analysis - Introduction

Driving questions

- Who’s behind the attacks?
 ➔ Governments or governmental organizations
 ➔ Motivation: intelligence, sabotage
Driving questions

• Who’s behind the attacks?
 → Hacktivists: Anonymous, Lulzsec, ...
 → Motivations: political, 'for the lulz'
Dynamic malware analysis - Introduction

Driving questions

• What does the malware do?
 ◦ Understanding changes on a system:
 • New / changed files, registry
 • Launch / autostart
 • Malicious activity
 ◦ Understanding network activity
 • Communication methods
 • Exfiltration techniques

→ Necessary for detection and removal
Dynamic malware analysis - Introduction

Why should you be concerned?

• It might be your compromised server / datacenter that is
 → hosting malware to be downloaded / installed by others
 → acting as a C&C server
 → abused as proxy servers

• It might be your customer’s computer that is
 → infected and sending information to the attacker

 You, your company or your users might be directly or indirectly a victim
Dynamic malware analysis

Different methods:
Static vs. dynamic analysis
Dynamic malware analysis - Methods

Static analysis

- Looking at a file and concluding about runtime behavior without actually running it
 - File characteristics (GNU strings, meta information, embedded scripts)
 - Result of (multiple) Virus scanners
 - Disassembler
 - Memory forensics

- Problems/Limitations
 - Packers
 - Obfuscated code
 - Encryption
 - Unused code

→ Necessary step because you cannot trust what you see
Dynamic malware analysis

Static malware analysis examples
1. A current malware variant
2. A 'Screensaver' file
Dynamic malware analysis - Methods

Dynamic analysis

• Running malware in a controlled environment to understand the behavior during runtime
 ◦ Basic training: Mastering the network
 ◦ Drunken boxing: Emulation and shellcode detection
 ◦ Crane technique: Logging API calls, live process information
 ◦ The 36th chamber of Shaolin: Debugger
 ◦ Grand master fight: Virtual machines / sandboxes

• Problems/Limitations
 ◦ Anti-VM
 ◦ Anti-Debugging
 ◦ Turing’s Halting problem
 ◦ Need to duplicate the target environment else exploits will not work
 (OS, patch level, targeted software, mitigation software)
Dynamic malware analysis

Basic training: Mastering the network

- Listening on the network
 - Packet capture

- Faking network services
 - Fake DNS service
 - Accepting and recording traffic on all ports/protocols

→ Control what kind of data you want to reveal
→ Don’t inform the attacker about your tests
Dynamic malware analysis - Example

Basic training: Mastering the network
Fake-DNS
Socat
Forwarding with IPFW
Dynamic malware analysis

Drunken boxing: Emulation and shellcode detection

- **libemu / sctest**
 - Detect shellcode by executing code on an emulated x86 processor

- **OfficeMalScanner (Frank Boldewin)**
 - Dissect MS Office files (Word, Excel, Powerpoint)
 - Find shellcode
 - Build executable containing shell code and payload (works even in cases where an exploit matching environment is not available)
 - Run executable and watch behavior
Dynamic malware analysis - Example

Drunken boxing: Emulation and shellcode detection
Libemu sctest on a Word document
OfficeMalScanner on the same Word document
Dynamic malware analysis

Crane technique: Logging API calls, live process information with MS Sysinternals tools

• Process Explorer
 ○ Shows detailed information about a running process
 • e.g. icon, command-line, full image path, memory statistics, user account, security attributes, loaded DLLs, operating system resource handles

• Process Monitor
 ○ API (user-land) monitoring tool
 • Shows real-time file system, registry and process/thread activity, combined with filters
Dynamic malware analysis - Example

Crane technique: Logging API calls, live process information with MS Sysinternals tools
MS Office file from previous example
Dynamic malware analysis

The 36th chamber of Shaolin: Debugger

- OllyDbg, WinDbg, Softice (now Syser), Immunity Debugger
 - Stepping, tracing during execution of a binary
 - Showing all processor registers
Dynamic malware analysis - Example

The 36th chamber of Shaolin: Debugger
Dynamic malware analysis

Grand master fight: Virtual machines / sandboxes

- Putting it all together
 - Virtual machine
 - Host-only networking
 - IP forwarding
 - Fake DNS

- Extend it with
 - Transparent proxy
 - OWASP ZAP

- Capture and control HTTP(S) requests/responses
- Identify Non-HTTP traffic
- Capture all remaining traffic
Dynamic malware analysis - Example

Grand master fight: Virtual machines / sandboxes
Worm.Win32.VBNA.b
Dynamic malware analysis

Conclusion

• Malware analysis is fun
• Try it out
• Protect yourself
 ○ Don’t be careless during analysis
 ○ You control what you send out and what you accept back
 ○ Feed your blacklists with your results!
 ○ Take care of your servers and applications
Q and A - discussion

- Thank you
- info@circl.lu
- http://www.circl.lu/
- CA57 2205 C002 4E06 BA70 BE89 EAAD CFFC 22BD 4CD5