
Fachbereich Informatik
SVS – Sicherheit in Verteilten Systemen

Universität Hamburg

Scanstud
Evaluating Static Analysis Tools

OWASP Europe 2008 / Gent
22.05.2008

Martin Johns, Moritz Jodeit
University of Hamburg, Germany

Wolfgang Koeppl, Martin Wimmer
Siemens CERT, Germany

© Martin Johns, Moritz Jodeit, UHH, FB Inf, SVS, 2008 2

ScanStud: Project overview

Mission statement
 Investigating the state of the art in static analysis

Project overview
 Practical evaluation of commercial static analysis tools for

security
 Focus on C and Java
 09/07 – 02/08
 Joint work of University of Hamburg and Siemens CERT

© Martin Johns, Moritz Jodeit, UHH, FB Inf, SVS, 2008 3

Agenda

1. Introduction

2. Test methodology

3. Test code

4. Experiences and lessons learned

© Martin Johns, Moritz Jodeit, UHH, FB Inf, SVS, 2008 4

Agenda

1. Introduction

2. Test methodology

3. Test code

4. Experiences and lessons learned

© Martin Johns, Moritz Jodeit, UHH, FB Inf, SVS, 2008 5

The disappointing slide

What we WON’T tell you:
 The actual outcome of the evaluation
 Even if we wanted, we were not allowed (NDAs and such)

But:
 We do not consider the precise results to be too interesting

 An evaluation as ours only documents a snapshot
 and is outdated almost immediately

However:
 We hopefully will give you a general feel in respect to the

current capabilities of static analysis

© Martin Johns, Moritz Jodeit, UHH, FB Inf, SVS, 2008 6

So, what will we tell you

This talk is mainly about our evaluation methodology
 How we did it
 Why we did it this specific way
 General infos on the outcome
 Things we stumbled over

© Martin Johns, Moritz Jodeit, UHH, FB Inf, SVS, 2008 7

What makes a static analysis tool good?

It should find security problems
 Knowledge of different types of code based security

problems
 E.g., XSS, SQLi, Buffer Overflow, Format String problems...

 Language/Framework coverage
 E.g., J2EE servlet semantics, <string.h>,...

 Understanding of flows
 Control flow analysis (Loops invariants, integer ranges)
 Data flow analysis (pathes from source to sink)

Control flow graph Call graph

© Martin Johns, Moritz Jodeit, UHH, FB Inf, SVS, 2008 8

Agenda

1. Introduction

2. Test methodology

3. Test code

4. Experiences and lessons learned

© Martin Johns, Moritz Jodeit, UHH, FB Inf, SVS, 2008 9

General approaches towards benchmarking

Approaches
1. Use real world vulnerable software
2. Use existing or selfmade vulnerable application

 Hacme, Web Goat, etc...
3. Create specific benchmarking suite

Our goal and how to reach it
 We want to learn a tool’s specific capabilities

 E.g., does it understand Arrays? Does it calculate loop
invariants? Does it understand inheritance, scoping,...?

 Approaches 1. + 2. are not suitable
 Potential side effects
 more than one non-trivial operation in every execution path

 Writing custom testcode gives us the control that we need

However the other approaches are valuable too (SAMTE)

© Martin Johns, Moritz Jodeit, UHH, FB Inf, SVS, 2008 10

Mission Statement

Objectives
 Easy, reliable, correct, and iterative testcase creation

 The actual test code should be
short
manual tested
as human readable as possible

 Defined scope of testcases
 A single testcase should test only for one specific characteristic

 Automatic test-execution and -evaluation
 Allows repeated testing and iterative testcase development
 “neutral” evaluation

[Let’s start at the bottom]

© Martin Johns, Moritz Jodeit, UHH, FB Inf, SVS, 2008 11

Automatic test-execution

Approach
 Test-execution via batch-processing

Problem
 All tools behave differently

Solution
 Wrapper applications

 Unified call interface
 Unified XML-result format

© Martin Johns, Moritz Jodeit, UHH, FB Inf, SVS, 2008 12

Automatic test-evaluation

Required
 Reliable mapping between alert and testcode

Approach
 One single vulnerability (or FP) per testcase
 Every testcase is hosted in an application of its own
 The rest of the application should otherwise be clean

Benefits
 Clear relation between alerts and testcases

 Alert => the case was found / the FP triggerd
 No alert => the case was missed

© Martin Johns, Moritz Jodeit, UHH, FB Inf, SVS, 2008 13

Real world problem

Noise
 Even completely clean code can trigger warnings

 The host-program may cause additional alerts
 How do we deterministically correlate scan-results to test-

cases?
 Line numbers are not always applicable.

Solution
 Result-Diff

 Given two scan results it extracts the additional alerts
 Scan the host-program only (== the noise)
 Scan the host-program with injected testcase (== signal +

noise)
 Diff the results (== signal)

© Martin Johns, Moritz Jodeit, UHH, FB Inf, SVS, 2008 14

Testcase creation

Approach
 Separation between

 general support code and
 test-specific code (the actual vulnerabilities)

Benefit
 Support code is static for all testcases
 The actual testcase-code is reduced to the core of the tested

property
 Minimizes the code, reduces error-rate, increases confidentiality
 Allows rapid testcase creation
 Enables clear readability

Implementation
 Code generation

 Host-program with defined insertion points
 Testcode is inserted in the host-program

© Martin Johns, Moritz Jodeit, UHH, FB Inf, SVS, 2008 15

Testcode assembly

Insertion points in the host program
 Library includes, Global structures/data, function-call to the test

function

The test-case is divided in several portions
 Each portion corresponds to one of the insertion points

A script merges the two files into one testcase

© Martin Johns, Moritz Jodeit, UHH, FB Inf, SVS, 2008 16

Example testcase(s): Buffer overflow

DESCRIPTION: Simple strcpy() overflow
ANNOTATION: Buffer Overflow [controlflow] []

EXTERNAL_HEADER:
#include <string.h>

VULNERABLE_CALL: %NAME(v)%(p);

VULNERABLE_EXTERNAL_CODE:
/* %DESCRIPTION(v)% */
void %NAME(v)%(char *p) {

char buf[1024];
strcpy(buf, p); /* %ANNOTATION(v)% */

}

SAFE_CALL: %NAME(s)%(p);

SAFE_EXTERNAL_CODE:
/* %DESCRIPTION(s)% */
void %NAME(s)%(char *p) {

char buf[1024];
if (strlen(p) >= sizeof(buf))

return;
strcpy(buf, p); /* %ANNOTATION(s)% */

}

© Martin Johns, Moritz Jodeit, UHH, FB Inf, SVS, 2008 17

Final testing infrastructure

Components
 Tool wrappers
 Host-program
 Test-cases
 Assembly script
 Result differ
 Evaluator

Putting it all together
 Creates test-code with

the assembly-script
 Causes the wrapped tool

to access the test-case
 Passes the test-result to

result differ
 Diffed-result and meta-data

are finally provided to
the Evaluator

© Martin Johns, Moritz Jodeit, UHH, FB Inf, SVS, 2008 18

Conclusion: Test-code generation

Summary
 Applicable for all potential languages
 Applicable for all tools that provide a command-line interface
 Flexible
 Allows deterministic mapping code <--> findings

Fallback: Combined suite
 For cases where the tool cannot be wrapped
 All testcases are joined in one big application

© Martin Johns, Moritz Jodeit, UHH, FB Inf, SVS, 2008 19

Agenda

1. Introduction

2. Test methodology

3. Test code

4. Experiences and lessons learned

© Martin Johns, Moritz Jodeit, UHH, FB Inf, SVS, 2008 20

Testcases versus Tests

A testcase is the smallest unit in our approach
 Contains code which should probe for exactly one result
 Either “true vulnerability” or “false positive”

A test usually consists of two testcases
 a true vulnerability and
 a false positive
 Both testing the same characteristic

A test passed only if BOTH associated testcases have been
identified correctly

© Martin Johns, Moritz Jodeit, UHH, FB Inf, SVS, 2008 21

Testcase design

Language features and control/data flow
 Two variables (“good”, “bad”) ⇒ The sources

 Both are filled with user provided data
 The “good” variable is properly sanitized

 One sink variable (“result”)
 This variable is used to execute a security sensitive action

 Both variables are piped through a crafted control flow
 One of them is assigned to the result variable

Memory corruption
 Similar approach
 Instead of variables different sized memory regions are used

© Martin Johns, Moritz Jodeit, UHH, FB Inf, SVS, 2008 22

C test cases

Host program
 All C test cases are hosted in a simple TCP server
 Listens on a port and waits for new clients
 Reads data from socket and passes pointer to test case
 Less than 100 LOC

The suite
 Emphasis on vulnerability types
 Around 116 single C test cases in total

Tests for, e.g.,
 Buffer overflows, unlimited/Off-by-one pointer loop overflows,

integer overflows/underflows, signedness bugs, NULL pointer
dereferences

© Martin Johns, Moritz Jodeit, UHH, FB Inf, SVS, 2008 23

The Java suite

Host program
 J2EE application with only one servlet

 Provides: DB connection, framing HTML content, sanitizing,...

Vulnerability classes
 XSS, SQLi, Code Injection, Path Traversal, Response Splitting

⇒ Emphasis on testing dataflow capabilities
 ~ 85 Java testcases in total

 Ben Livshit’s Stanford SecuriBench Micro was very helpful

Language features
 Library, inheritance, scoping, reflection, session storage

Tests
 Global buffers, array semantics, boolean logic, second order

code injection, ...

© Martin Johns, Moritz Jodeit, UHH, FB Inf, SVS, 2008 24

Agenda

1. Introduction

2. Test methodology

3. Test code

4. Experiences and lessons learned

© Martin Johns, Moritz Jodeit, UHH, FB Inf, SVS, 2008 25

Tool selection

Market research: 12 potential candidates
 Selection criteria:

 Maturity
 Is security a core-competence of the tool?
 Language support

⇒ Selection of 10 tools

⇒ After pre-tests 6 tools were chosen for further
investigation
 (no, we can’t tell you which)

© Martin Johns, Moritz Jodeit, UHH, FB Inf, SVS, 2008 26

Scoring

We have ~ 200 unique testcases
 How should the results be counted?

Observation
 If it aids the detection reliability, false positives are tolerable

Resulting quantification of the results
 Test passed: 3 Points
 False positive: 1 Point
 False negative: 0 Points

© Martin Johns, Moritz Jodeit, UHH, FB Inf, SVS, 2008 27

Result overview

C Suite

Java Suite

Rank Tool Points

1. Tool a. 72 / 168

2. Tool b. 58 / 168

3. Tool c. 56 / 168

4. Tool d. 53 / 168

5. Tool e. 50 / 168

Rank Tool Points

1. Tool x. 89 / 147

2. Tool y. 66 / 147

3. Tool z. 58 / 147

4. Tool v. 53 / 147

© Martin Johns, Moritz Jodeit, UHH, FB Inf, SVS, 2008 28

Static analysis: C capabilities

Categories covered by almost all tools:
 NULL pointer dereferences
 Double free’s

Problem areas of most tools:
 Integer related bugs

 Integer underflows / overflows leading to buffer overflows
 Sign extension bugs

 Race conditions
 Signals
 setjmp() / longjmp()

 Non-implementation bugs
 Authentication, Crypto, Privilege management, Truncation, …

© Martin Johns, Moritz Jodeit, UHH, FB Inf, SVS, 2008 29

Static analysis: Java Capabilities

Strengths
 Within a function all tools possess good capabilities to track

dataflows
 Besides that, the behaviour/capabilities are rather

heterogeneous

Problem areas of most tools
 Global buffers

 Especially if they are contained within a custom class
 Dataflow in and out of custom objects

 E.g., our own linked list was too difficult for all tools

 Second order code injection

class Node {
 public String value;
 public Node next;
}

© Martin Johns, Moritz Jodeit, UHH, FB Inf, SVS, 2008 30

Static analysis: Anecdotes

Buffer overflows 101:
 Most basic buffer overflow case?

 To our surprise, 3 out of 5 tools didn’t report this!
 Too obvious to report?

 One vendor was provided with this sample:

 Vendor response:
“argc/argv are not modeled to contain anything sensible.
 We will eventually change that in the future.”

int main(int argc, char **argv) {
 char buf[16];
 strcpy(buf, argv[1])
}

strcpy()

© Martin Johns, Moritz Jodeit, UHH, FB Inf, SVS, 2008 31

Static analysis: Anecdotes

Buffer overflows 101:
 Another easy one:

 Every tool must be finding that one!
 Actually one tool didn’t

 Vendor response:

“Ooops, this is a bug in our tool.”

gets(buf);

© Martin Johns, Moritz Jodeit, UHH, FB Inf, SVS, 2008 32

Static analysis: Anecdotes

More bugs:
 One tool didn’t find anything in our “combined test case”:

 Vendor response:

“#include’ed files are not analyzed completely.
 Will be fixed in a future version.”

#include "testcase1.c"
#include "testcase2.c"
#include "testcase3.c"

int main(int argc, char **argv) {
call_testcase1();
call_testcase2();
call_testcase3();
return 0;

}

© Martin Johns, Moritz Jodeit, UHH, FB Inf, SVS, 2008 33

Fun stuff

Let’s sanitize some integers
 All tools allow the specification of sanitation functions
 So did Tool Y
 However the parameter for this function could only be

 Int, float, ...
 But not STRING!

Don’t trust the servlet engine
 The J2EE host program writes some static HTML to the

servlet response

 Tool X warned “Validation needed”
 (are you really sure you want your data there?)

PrintWriter writer = resp.getWriter();
writer.println("<h3>ScanStud</h3>");

© Martin Johns, Moritz Jodeit, UHH, FB Inf, SVS, 2008 34

More fun and bugs

One of the tools did not find a single XSS problem
 This surprised us, as the tool otherwise showed decent

results
 Reason: We used the following code

 But the tool did not know “getWriter()”
 After replacing it with “getOutputStream()” XSS was found

Somewhat overeager
 Our SQLi tests exclusively used SELECT statements
 While detecting the vulnerability, the tool Z also warned

 “stored XSS vulnerability”

PrintWriter writer = resp.getWriter();

© Martin Johns, Moritz Jodeit, UHH, FB Inf, SVS, 2008 35

A special price: The noisiest tool

We had a tool in round one that did not understood neither
C nor Java
 Therefore we started a C# benchmarking suite
 After three written testcases we did a first check

 2 XSS (vulnerable/safe), 1 SQLi (vulnerable)

484 Vulnerabilities!
 The tool was not included in the second evaluation round

© Martin Johns, Moritz Jodeit, UHH, FB Inf, SVS, 2008 36

The end

Questions?

The testing-framework and -code will be published on
the SANS website
 Drop me a line, if you want to be notified

(johns@informatik.uni-hamburg.de)

© Martin Johns, Moritz Jodeit, UHH, FB Inf, SVS, 2008 37

 Appendix

© Martin Johns, Moritz Jodeit, UHH, FB Inf, SVS, 2008 38

Potential pitfall

Pitfall
 Unbalanced creation/selection of testcases can introduce

unsound results

Example
 Tool X is great but does not understand language feature Y
 Therefore all tests involving Y fail
 If there is an unbalanced amount of tests involving Y tool X

has an unfair disadvantage

Solution: Categories and tags
 Categories: “controlflow”, “dataflow”, “language”,...
 Tags: All significant techniques within the testcase

 Example: [cookies,conditional,loops]
 The it would be possible to see, that X allways fails with Y

© Martin Johns, Moritz Jodeit, UHH, FB Inf, SVS, 2008 39

Interesting point

Vendor X:
 When there is a single path which includes an Array into a

vulnerable data-flow, then the whole Array is tainted (even the
safe values)

 Underlying assumption: All elements of a linear data structure
are on the same semantic level

 This approach obviously breaks our test, to examine wether a
tool understands Array semantics

© Martin Johns, Moritz Jodeit, UHH, FB Inf, SVS, 2008 40

C suite

Host program
 All C test cases are hosted in a simple TCP server
 Listens on a port and waits for new clients
 Accepts client connections
 Reads data from socket and passes pointer to test case
 Less than 100 LOC

Test cases
 Around 116 single C test cases in total
 10 tests to determine the general performance of each tool

 Arrays, loop constructs, structures, pointers, …
 Rest of the test cases represent real vulnerabilities, which

could be found in the wild

© Martin Johns, Moritz Jodeit, UHH, FB Inf, SVS, 2008 41

C suite (2)

 Buffer overflows using simple unbounded string functions
 strcpy, strcat, gets, fgets, sprintf, strvis, sscanf

 Buffer overflows using bounded string functions
 snprintf, strncpy, strncat, memcpy

 Unlimited/Off-by-one pointer loop overflows
 Integer related bugs

 Integer overflows / underflows
 Sign extension

 Race conditions
 Signals
 setjmp()
 TOCTTOU

© Martin Johns, Moritz Jodeit, UHH, FB Inf, SVS, 2008 42

C suite (3)

 C operator misuse
 sizeof(), assignment operator, octal numbers

 Format string issues
 NULL pointer derefs
 Memory management

 Memory leaks
 Double free’s

 Privilege management
 Command injection

 popen(), system()

© Martin Johns, Moritz Jodeit, UHH, FB Inf, SVS, 2008 43

SATEC – Test files

The SATEC file format
 Each test is kept in a separate file
 The test is described using the following keywords

 NAME (automatically generated from filename)
 DESCRIPTION
 ANNOTATION

 Two code blocks
 VULNERABLE_EXTERNAL_CODE
 SAFE_EXTERNAL_CODE

 Two calls, into the code blocks
 VULNERABLE_CALL
 SAFE_CALL

 Keyword expansion is possible

© Martin Johns, Moritz Jodeit, UHH, FB Inf, SVS, 2008 44

Example: T_001_C_XSS.java

DESCRIPTION: Very basic XSS
ANNOTATION: XSS [basic] []

VULNERABLE_CALL:
new %NAME(v)%().doTest(req, resp); // inserted by satec

SAFE_CALL:
new %NAME(s)%().doTest(req, resp); // inserted by satec

VULNERABLE_EXTERNAL_CODE:
class %NAME(v)% extends scanstudTestcase {

public void doTest(HttpServletRequest req, HttpServletResponse resp){

PrintWriter writer = resp.getWriter();
 String value = req.getParameter("testpar");
 writer.println("<h3>" + value + "</h3>"); // %ANNOTATION(v)%
}

}

SAFE_EXTERNAL_CODE:
class %NAME(s)% extends scanstudTestcase {

public void doTest(HttpServletRequest req, HttpServletResponse resp){

PrintWriter writer = resp.getWriter();
String value = HTMLEncode(req.getParameter("testpar"));

 writer.println("<h3>" + value + "</h3>"); // %ANNOTATION(s)%
}

}

