
Software Assurance
Maturity Model

A guide to building security into software development
VERSION 1.5

OWASP
The Open Web Application Security Project

• Fabio Arciniegas
• Matt Bartoldus
• Jonathan Carter
• Darren Challey
• Brian Chess
• Justin Clarke
• Dan Cornell
• Michael Craigue
• Dinis Cruz

• Sebastien Deleersnyder
• Justin Derry
• Bart De Win
• John Dickson
• Alexios Fakos
• David Fern
• Brian Glas
• Kuai Hinojosa
• Jerry Hoff

• Carsten Huth
• Bruce Jenkins
• Daniel Kefer
• Yan Kravchenko
• James McGovern
• Matteo Meucci
• Jeff Payne
• Gunnar Peterson
• Jeff Piper

• Andy Steingruebl
• John Steven
• Chad Thunberg
• Colin Watson
• Jeff Williams
• Steven Wierckx

OWASP is an international organization and the OWASP Foundation supports OWASP efforts around
the world. OWASP is an open community dedicated to enabling organizations to conceive, develop,
acquire, operate, and maintain applications that can be trusted. All of the OWASP tools, documents,
forums, and chapters are free and open to anyone interested in improving application security. We
advocate approaching application security as a people, process, and technology problem because the
most effective approaches to application security include improvements in all of these areas. We can be
found at https://www.owasp.org.

This is an OWASP Project

license

This work is licensed under the Creative Commons Attribution-Share Alike 4.0
License. To view a copy of this license, visit https://creativecommons.org/licenses/
bysa/4.0/ or send an email to info@creativecommons.org. or send a letter to
Creative Commons, PO Box 1866, Mountain View, CA 94042.

For the latest version and additional inFo, please see the project web site at

https://www.owasp.org/index.php/OWASP_SAMM_Project

Acknowledgements

This document was originally created through the OpenSAMM Project led by Pravir Chandra
(chandra@owasp.org), an independent software security consultant. Creation of the first draft was
made possible through funding from Fortify Software, Inc. Since the initial release of SAMM, this
project has become part of the Open Web Application Security Project (OWASP). This document is
currently maintained and updated through the OWASP SAMM Project led by
Sebastien Deleersnyder, Bart De Win & Brian Glas. Thanks also go to many supporting
organizations that are listed on back cover.

contributors & reviewers

This work would not be possible without the support of many individual reviewers and experts that
offered contributions and critical feedback.

3

Business Functions

Security Practices

SAMM Overview

Strategy &
Metrics

Education &
Guidance

Threat
Assessment

Secure
Architecture

Security
Requirements

Environment
Hardening

Operational
Enablement

Issue
Management

Design
Review

Implementation
Review

Policy &
Compliance

Security
Testing

Governance Construction Operations

Software
Development

The Software Assurance Maturity Model (SAMM) is an open framework to help organizations formulate and implement a strategy
for software security that is tailored to the specific risks facing the organization. The resources provided by SAMM will aid in:

✦ Evaluating an organization’s existing software security practices.
✦ Building a balanced software security assurance program in well-defined iterations.
✦ Demonstrating concrete improvements to a security assurance program.
✦ Defining and measuring security-related activities throughout an organization.

Version 1.1 of SAMM expanded and restructured its predecessor into four complementary resources: this document
that describes the core SAMM model, the How-To Guide that explains how to apply the model, the Quick Start Guide to
help accelerate learning and adoption, and the toolbox that provides simple automation for data collection, metrics, and
graphs. Furthermore, a number of elements have been renamed to better represent their purpose.

Version 1.5 of SAMM incorporates a refinement of the scoring model to provide more granularity to the scoring in an assessment.
Now an organization will get credit for all the related work done in a practice rather than having the base number held at the highest
completed maturity level. The updated scoring model has been designed to help SAMM assessors and organizations avoid the
awkward discussion on whether to mark an answer yes or no when it is honestly something in between, and to show incremental
improvements.

SAMM was defined with flexibility in mind such that it can be utilized by small, medium, and large organizations using any style of
development. Additionally, this model can be applied organization-wide, for a single line-of-business, or even for an
individual project. Beyond these traits, SAMM was built on the following principles:

✦ An organization’s behavior changes slowly over time - A successful software security program should be specified in small iterations
that deliver tangible assurance gains while incrementally working toward long-term goals.

✦ There is no single recipe that works for all organizations - A software security framework must be flexible and allow organizations to
tailor their choices based on their risk tolerance and the way in which they build and use software.

✦ Guidance related to security activities must be prescriptive - All the steps in building and assessing an assurance program should be
simple, well-defined, and measurable. This model also provides roadmap templates for common types of organizations.

The foundation of the model is built upon the core business functions of software development with security practices tied to each
(see diagram below). The building blocks of the model are the three maturity levels defined for each of the twelve security practices.
These define a wide variety of activities in which an organization could engage to reduce security risks and increase software
assurance. Additional details are included to measure successful activity performance, understand the associated assurance benefits,
estimate personnel and other costs.

As an open project, SAMM content shall always remain vendor-neutral and freely available for all to use.

SA
M

M
 /
SO

FT
W

AR
E

AS
SU

RA
N

CE
 M
aT

U
RI

TY
 M

O
D

EL
-V

1.5

Executive Summary

4

Contents

Executive Summary . 3

understAnding the model 6
Business Functions . 8
Governance . 10

Construction . 12

Verification . 14

Operations . 16

Assessment worksheets . 18

the security PrActices 22
Strategy & Metrics . 24

Policy & Compliance . 28

Education & Guidance . 32

Threat Assessment . 36

Security Requirements . 40

Secure Architecture . 44

Design Review . 48

Implementation Review . 52

Security Testing . 56

Issue Management . 60

Environment Hardening . 64

Operational Enablement . 68

SA
M

M
 /

SO
FT

W
AR

E
AS

SU
RA

N
CE

 M
AT

U
RI

TY
 M

O
D

EL
-V

1.5

5

SA
M

M
 /

SO
FT

W
AR

E
AS

SU
RA

N
CE

 M
AT

U
RI

TY
 M

O
D

EL
-V

1.5

Understanding
the Model

A view of the big picture

SAMM is built upon a collection of security practices that are tied back into the core business
functions involved in software development. This section introduces those business functions
and the corresponding security practices for each. After covering the high-level framework,
the maturity levels for each security practice are also discussed briefly in order to paint a
picture of how each can be iteratively improved over time.

8

SA
M

M
 /

U
N

D
ER

ST
AN

D
IN

G
 TH

E M
O

D
EL

 -
V1

.5

Business Functions

At the highest level, SAMM defines four critical business functions. Each business function is a category of
activities related to the nuts-and-bolts of software development, or stated another way, any organization
involved with software development must fulfill each of these business functions to some degree.

For each business function, SAMM defines three security practices. Each security practice is an area of security-related
activities that build assurance for the related business function. There are twelve security practices that are the
independent silos for improvement that map to the four business functions of software development.

For each security practice, SAMM defines three maturity levels as objectives. Each level within a security practice is
characterized by a successively more sophisticated objective defined by specific activities, and more stringent success metrics than
the previous level. Additionally, each security practice can be improved independently, though related activities
can lead to optimizations.

Governance is centered on the processes and activities related to how an organization manages overall software development
activities. More specifically, this includes concerns that impact cross-functional groups involved in development, as well as
business processes that are established at the organization level.

...more on page 10

Strategy & Metrics involves the overall
strategic direction of the software assurance
program and instrumentation of processes
and activities to collect metrics about an or-
ganization’s security posture.

Policy & Compliance involves setting
up a security, compliance, and audit control
framework throughout an organization to
achieve increased assurance in software un-
der contruction and in operation.

Education & Guidance involves increas-
ing security knowledge amongst personnel in
software development through training and
guidance on security topics relevant to indi-
vidual job functions.

Construction concerns the processes and activities related to how an organization defines goals and creates software within
development projects. In general, this will include product management, requirements gathering, high-level architecture
specification, detailed design, and implementation.

...more on page 12

Threat Assessment involves accurately
identifying and characterizing potential attacks
upon an organization’s software in order to
better understand the risks and facilitate risk
management.

Security Requirements involves
promoting the inclusion of security-related
requirements during the software
development process in order to specify
correct functional-ity from inception.

Secure Architecture involves bolstering
the design process with activities to promote
secure-by-default designs and control over
technologies and frameworks upon which
software is built.

Verification is focused on the processes and activities related to how an organization checks, and tests artifacts produced
throughout software development. This typically includes quality assurance work such as testing, but it can also include other
review and evaluation activities.

...more on page 14

Design Review involves inspection of the
artifacts created from the design process to
ensure provision of adequate security mecha-
nisms, and adherence to an organization’s
expectations for security.

Implementation Review involves
assessment of an organization’s source code
to aid vulnerability discovery and related
mitigation activities as well as establish a
baseline for secure coding expectations.

Security Testing involves testing the
organization’s software in its runtime
environment, in order to both discover
vulnerabilities, and establish a minimum
standard for software releases.

Verification

Governance

Construction

9

SA
M

M
 /

U
N

D
ER

ST
AN

D
IN

G
 TH

E M
O

D
EL

 -
V1

.5

Assurance programs might not always consist of activities that neatly fall on a boundary between maturity levels, e.g. an
organization that assesses to a Level 1 for a given practice might also have additional activities in place but not such that Level 2 is
completed. Prior to v1.5, the organization’s score should be annotated with a “+” symbol to indicate there’s additional
assurances in place beyond those indicated by the Level obtained. For example, an organization that
is performing all Level 1 activities for operational enablement as well as one Level 2 or 3 activity would be assigned
a “1+” score. Likewise, an organization performing all activities for a security practice, including some beyond the scope
of SAMM, would be given a "3+" score.

The scoring model has changed in v1.5 to provide more granularity to the scoring in an assessment. Now an organization will get
credit for different levels of work they have done within a practice rather than having the base number held at the highest
completed maturity level. The scoring is now fractional to two decimal places for each practice and a single decimal for
an answer. Questions have also been changed from Yes/No to four options that represent different levels of coverage or
maturity. This change will assist practitioners completing SAMM assessments with the inevitable debate whether to mark
an answer yes or no when it is honestly something in between.

The primary reason for the scoring change was to ensure organizations would receive full credit for their work in software
security and to make it easier to show improvements in scoring when activities and programs grow and mature. The hope is this
change will bring us closer to understanding what works in different scenarios for different organizations to benefit all.

The toolbox spreadsheet has been updated to reflect more context aware answers for each of the questions in the assessment.
The formulas in the toolbox will also average the answers to calculate the score for each practice, a roll up average for each
business function, and an overall score. The toolbox also has updated scorecard graphics that help represent the current score
and can help show improvements to the program as the answers to the questions change. The worksheets later in this document
are also updated to align with the new scoring model.

Operations entails the processes and activities related to how an organization manages software releases that has been
created. This can involve shipping products to end users, deploying products to internal or external hosts, and normal
operations of software in the runtime environment.

...more on page 16

Issue Management involves establishing
consistent processes for managing internal
and external vulnerability reports to limit ex-
posure and gather data to enhance the secu-
rity assurance program.

Environment Hardening involves
implementing controls for the operating
environment surrounding an organiza-
tion’s software to bolster the security
posture of applications that have been
deployed.

Operational Enablement involves
identifying and capturing security-relevant
information needed by an operator
to properly configure, deploy, and run an
organization’s software.

Operations

Maturity Levels
Each of the twelve security practices has three defined maturity levels and an implicit
starting point at zero. The details for each level differs between the practices, but they
generally represent:

0 Implicit starting point representing the activities in the practice being unfulfilled

1 Initial understanding and adhoc provision of security practice

2 Increase efficiency and/or effectiveness of the security practice

3 Comprehensive mastery of the security practice at scale

Notation
Throughout this document, the follow-
ing terms will be reserved words
that refer to the SAMM com-
ponents defined in this section:

✦

✦

✦

 Business Function
Security Practice
Maturity Level or Objective

0
1
2
3

.2 .5 10No = Few/Some = At Least Half = Many/Most =

10

Governance
Description of Security Practices

SA
M

M
 /

U
N

D
ER

ST
AN

D
IN

G
 TH

E M
O

D
EL

 -
V1

.5

Strategy & Metrics

The Strategy & Metrics (SM) practice is focused on establishing the framework within an organization
for a software security assurance program. This is the most fundamental step in defining security goals
in a way that’s both measurable and aligned with the organization’s real business risk.

By starting with lightweight risk profiles, an organization grows into more advanced risk classification
schemes for application and data assets over time. With additional insight on relative risk measures,
an organization can tune its project-level security goals and develop granular roadmaps to make the
security program more efficient. At the more advanced levels within this practice, an organization
draws upon many data sources, both internal and external, to collect metrics and qualitative feedback
on the security program. This allows fine tuning of cost outlay versus the realized benefit at the
program level.

Education & Guidance

The Education & Guidance (EG) practice is focused on arming personnel involved in the software
lifecycle with knowledge and resources to design, develop, and deploy secure software. With
improved access to information, project teams will be better able to proactively identify and mitigate
specific security risks that apply to their organization.

One major theme for improvement across the objectives is providing training for employees,
either through instructor-led sessions or computer-based modules. As an organization progresses, a
broad base of training is built by starting with developers and moving to other roles throughout the
organization, culminating with the addition of role-based certification to ensure comprehension of the
material.

In addition to training, this practice also requires pulling security-relevant information into guidelines
that serve as reference information to staff. This builds a foundation for establishing a baseline
expectation for security practices in your organization, and later allows for incremental improvement
once usage of the guidelines has been adopted.

Policy & Compliance

The Policy & Compliance (PC) practice is focused on understanding and meeting external legal
and regulatory requirements while also driving internal security standards to ensure compliance in a
way that’s aligned with the business purpose of the organization.

A driving theme for improvement within this practice is focus on project-level audits that gather
information about the organization’s behavior in order to check that expectations are being met.
By introducing routine audits that start out lightweight and grow in depth over time, organizational
change is achieved iteratively.

In a sophisticated form, provision of this practice entails organization-wide understanding of both
internal standards and external compliance drivers while also maintaining low-latency checkpoints
with project teams to ensure no project is operating outside expectations without visibility.

11

Governance
Activities overview

1EG 3EG2EG

objective Offer development staff access
to resources around the topics
of secure programming and
deployment.

Educate all personnel in
the software lifecycle with
role-specific guidance on
secure development.

Mandate comprehensive
security training and
certify personnel for
baseline knowledge.

Activities A. Conduct technical security
awareness training

B. Build and maintain
technical guidelines

A. Conduct role-specific
application security training

B. Utilize security coaches to
enhance project teams

A. Create formal application
security support portal

B. Establish role-based
examination/certification

Education & Guidance

1PC 3PC2PC

objective Understand relevant
governance and compliance
drivers to the organization.

Establish security and
compliance baseline and
understand per-project risks.

Require compliance and
measure projects against
organization-wide policies
and standards.

Activities A. Identify and monitor external
compliance drivers

B. Build and maintain
compliance guidelines

A. Build policies and standards
for security and compliance

B. Establish project audit practice

A. Create compliance gates
for projects

B. Adopt solution for audit
data collection

Policy & Compliance

1SM 3SM2SM

objective Establish a unified strategic
roadmap for software security
within the organization.

Measure relative value of
data and software assets
and choose risk tolerance.

Align security expenditure
with relevant business
indicators and asset value.

Activities A. Estimate overall business
risk profile

B. Build and maintain assurance
program roadmap

A. Classify data and applications
based on business risk

B. Establish and measure per-
classification security goals

A. Conduct periodic industry-
wide cost comparisons

B. Collect metrics for
historic security spend

Strategy & Metrics ...more on page 24

...more on page 28

...more on page 32
SA

M
M

 /
U

N
D

ER
ST

AN
D

IN
G
 TH

E M
O

D
EL

 -
V1

.5

12

Construction
Description of Security Practices

SA
M

M
 /

U
N

D
ER

ST
AN

D
IN

G
 TH

E M
O

D
EL

 -
V1

.5

Threat Assessment

The Threat Assessment (TA) practice is centered on identification and understanding the project-level
risks based on the functionality of the software being developed and characteristics of the runtime
environment. From details about threats and likely attacks against each project, the organization as a
whole operates more effectively through better decisions about prioritization of initiatives for security.
Additionally, decisions for risk acceptance are more informed, therefore better aligned to the business.

By starting with simple threat models and building to more detailed methods of threat analysis and
weighting, an organization improves over time. Ultimately, a sophisticated organization would maintain
this information in a way that is tightly coupled to the compensating factors and pass-through risks from
external entities. This provides greater breadth of understanding for potential downstream impacts
from security issues while keeping a close watch on the organization’s current performance against
known threats.

Secure Architecture

The Secure Architecture (SA) practice is focused on proactive steps for an organization to design and
build secure software by default. By enhancing the software design process with reusable services and
components, the overall security risk from software development can be dramatically reduced.

Beginning from simple recommendations about software frameworks and explicit consideration of
secure design principles, an organization evolves toward consistently using design patterns for security
functionality. Also, activities encourage project teams to increased utilization of centralized security
services and infrastructure.

As an organization evolves over time, sophisticated provision of this practice entails organizations
building reference platforms to cover the generic types of software they build. These serve as
frameworks upon which developers can build custom software with lower risk of vulnerabilities.

Security Requirements

The Security Requirements (SR) practice is focused on proactively specifying the expected
behavior of software with respect to security. Through addition of analysis activities at the project
level, security requirements are initially gathered based on the high-level business purpose of the
software. As an orga-nization advances, more advanced techniques are used such as access control
specifications to discover new security requirements that may not have been initially obvious to
development.

In a sophisticated form, provision of this practice also entails pushing the security requirements of the
organization into its relationships with suppliers and then auditing projects to ensure all are adhering
to expectations with regard to specification of security requirements.

13

Construction
Activities overview

1TA 2TA 3TA

objective Identify and understand
high-level threats to
the organization and
individual projects.

Increase accuracy of
threat assessment and
improve granularity of
per-project understanding.

Concretely align
compensating controls to
each threat against internal
and third-party software.

Activities A. Build and maintain application-
specific threat models

B. Develop attacker profile
from software architecture

A. Build and maintain abuse-
case models per project

B. Adopt a weighting system for
measurement of threats

A. Explicitly evaluate risk from
third-party components

B. Elaborate threat models
with compensating controls

Threat Assessment

1SR 2SR 3SR

objective Consider security explicitly
during the software
requirements process.

Increase granularity of security
requirements derived from
business logic and known risks.

Mandate security
requirements process for
all software projects and
third-party dependencies.

Activities A. Derive security requirements
from business functionality

B. Evaluate security and compliance
guidance for requirements

A. Build an access control matrix
for resources and capabilities

B. Specify security requirements
based on known risks

A. Build security requirements
into supplier agreements

B. Expand audit program for
security requirements

Security Requirements

1SA 2SA 3SA

objective Insert consideration
of proactive security
guidance into the
software design process.

Direct the software design
process toward known-
secure services and
secure-by-default designs.

Formally control the
software design process
and validate utilization of
secure components.

Activities A. Maintain list of recommended
software frameworks

B. Explicitly apply security
principles to design

A. Identify and promote security
services and infrastructure

B. Identify security design
patterns from architecture

A. Establish formal reference
architectures and platforms

B. Validate usage of frameworks,
patterns, and platforms

Secure Architecture

...more on page 36

...more on page 40

...more on page 44
SA

M
M

 /
U

N
D

ER
ST

AN
D

IN
G
 TH

E M
O

D
EL

 -
V1

.5

14

Verification
Description of Security Practices

SA
M

M
 /

U
N

D
ER

ST
AN

D
IN

G
 TH

E M
O

D
EL

 -
V1

.5

Design Review

The Design Review (DR) practice is focused on assessment of software design and architecture for
security-related problems. This allows an organization to detect architecture-level issues early in
software development and thereby avoid potentially large costs from refactoring later due to security
concerns.

Beginning with lightweight activities to build understanding of the security-relevant details about an
architecture, an organization evolves toward more formal inspection methods that verify
completeness in provision of security mechanisms. At the organization level, design review services
are built and offered to stakeholders.

In a sophisticated form, provision of this practice involves detailed, data-level inspection of designs,
and enforcement of baseline expectations for conducting design assessments and reviewing findings
before releases are accepted.

Implementation Review

The Implementation Review (IR) practice is focused on inspection of software at the source
code and configuration level in order to find security vulnerabilities. Code-level vulnerabilities are
generally simple to understand conceptually, but even informed developers can easily make mistakes
that leave software open to potential compromise.

To begin, an organization uses lightweight checklists and for efficiency, only inspects the most critical
software modules. However, as an organization evolves it uses automation technology to dramatically
improve coverage and efficacy of implementation review activities.

Sophisticated provision of this practice involves deeper integration of implementation review into the
development process to enable project teams to find problems earlier. This also enables organizations
to better audit and set expectations for implementation review findings before releases can be made.

Security Testing

The Security Testing (ST) practice is focused on inspection of software in the runtime
environment in order to find security problems. These testing activities bolster the assurance case for
software by checking it in the same context in which it is expected to run, thus making visible
operational misconfigurations or errors in business logic that are difficult to otherwise find.

Starting with penetration testing and high-level test cases based on the functionality of software, an
organization evolves toward usage of security testing automation to cover the wide variety of test cases
that might demonstrate a vulnerability in the system.

In an advanced form, provision of this practice involves customization of testing automation to build a
battery of security tests covering application-specific concerns in detail. With additional visibility at
the organization level, security testing enables organizations to set minimum expectations for security
testing results before a project release is accepted.

15

Verification
Activities overview

1DR 2DR 3DR

objective Support ad-hoc reviews of
software design to ensure
baseline mitigations for
known risks.

Offer assessment services
to review software design
against comprehensive
best practices for security.

Require assessments and
validate artifacts to develop
detailed understanding of
protection mechanisms.

Activities A. Identify software attack surface
B. Analyze design against known

security requirements

A. Inspect for complete provision
of security mechanisms

B. Deploy design review
service for project teams

A. Develop data-flow diagrams
for sensitive resources

B. Establish release gates
for design review

Design Review

1IR 2IR 3IR

objective Opportunistically find basic
code-level vulnerabilities and
other high-risk security issues.

Make implementation
review during development
more accurate and efficient
through automation.

Mandate comprehensive
implementation review
process to discover
language-level and
application-specific risks.

Activities A. Create review checklists from
known security requirements

B. Perform point-review
of high-risk code

A. Utilize automated code
analysis tools

B. Integrate code analysis into
development process

A. Customize code analysis for
application-specific concerns

B. Establish release gates
for code review

Implementation Review

1ST 2ST 3ST

objective Establish process to perform
basic security tests based
on implementation and
software requirements.

Make security testing
during development more
complete and efficient
through automation.

Require application-
specific security testing to
ensure baseline security
before deployment.

Activities A. Derive test cases from known
security requirements

B. Conduct penetration testing
on software releases

A. Utilize automated
security testing tools

B. Integrate security testing
into development process

A. Employ application-specific
security testing automation

B. Establish release gates
for security testing

Security Testing

...more on page 48

...more on page 52

...more on page 56
SA

M
M

 /
U

N
D

ER
ST

AN
D

IN
G
 TH

E M
O

D
EL

 -
V1

.5

16

Operations
Description of Security Practices

SA
M

M
 /

U
N

D
ER

ST
AN

D
IN

G
 TH

E M
O

D
EL

 -
V1

.5

Issue Management

The Issue Management (IM) practice is focused on the processes within an organization with respect
to handling issue reports and operational incidents. By having these processes in place, an organization’s
projects will have consistent expectations and increased efficiency for handling these events, rather than
chaotic and uninformed responses.

Starting from lightweight assignment of roles in the event of an incident, an organization grows into a
more formal incident response process that ensures visibility and tracking on issues that occur.
Communications are also improved to improve overall understanding of the processes.

In an advanced form, issue management involves thorough dissecting of incidents and issue reports to
collect detailed metrics and other root-cause information to feedback into the organization’s
downstream behavior.

Environment Hardening

The Environment Hardening (EH) practice is focused on building assurance for the runtime
environment that hosts the organization’s software. Since secure operation of an application can be
deteriorated by problems in external components, hardening this underlying infrastructure directly
improves the overall security posture of the software.

By starting with simple tracking and distributing of information about the operating environment to
keep development teams better informed, an organization evolves to scalable methods for managing
deployment of security patches and instrumenting the operating environment with early-warning de-
tectors for potential security issues before damage is done.

As an organization advances, the operating environment is further reviewed and hardened by
deployment of protection tools to add layers of defenses and safety nets to limit damage in case any
vulnerabilities are exploited.

Operational Enablement

The Operational Enablement (OE) practice is focused on gathering security critical information from
the project teams building software and communicating it to the users and operators of the software.
Without this information, even the most securely designed software carries undue risks since
important security characteristics and choices will not be known at a deployment site.

Starting from lightweight documentation to capture the most important details for users and
operators, an organization evolves toward building complete operational security guides that are
delivered with each release.

In an advanced form, operational enablement also entails organization-level checks against individual
project teams to ensure that information is being captured and shared according to expectations.

17

Operations
Activities overview

1IM 2IM 3IM

objective Understand high-level plan
for responding to issue
reports or incidents.

Elaborate expectations for
response process to
improve consistency and
communications.

Improve analysis and data
gathering within response
process for feedback into
proactive planning.

Activities A. Identify point of contact
for security issues

B. Create informal security
response team(s)

A. Establish consistent issue
reponse process

B. Adopt a security issue
disclosure process

A. Conduct root cause
analysis for for issues

B. Collect per-issue metrics

Issue Management

1EH 2EH 3EH

objective Understand baseline
operational environment
for applications and
software components.

Improve confidence in
application operations by
hardening the operating
environment.

Validate application health
and status of operational
environment against
known best practices.

Activities A. Maintain operational
environment specification

B. Identify and install critical
security upgrades and patches

A. Establish routine patch
management process

B. Monitor baseline environment
configuration status

A. Identify and deploy relevant
operations protection tools

B. Expand audit program for
environment configuration

Environment Hardening

1OE 2OE 3OE

objective Enable communications
between development teams
and operators for critical
security-relevant data.

Improve expectations
for continuous secure
operations through provision
of detailed procedures.

Mandate communication
of security information
and validate artifacts for
completeness.

Activities A. Capture critical security
information for deployment

B. Document procedures for
typical application alerts

A. Create per-release change
management procedures

B. Maintain formal operational
security guides

A. Expand audit program for
operational information

B. Perform code signing for
application components

Operational Enablement

...more on page 60

...more on page 64

...more on page 68
SA

M
M

 /
U

N
D

ER
ST

AN
D

IN
G
 TH

E M
O

D
EL

 -
V1

.5

18

SA
M

M
 /

U
N

D
ER

ST
AN

D
IN

G
 TH

E M
O

D
EL

 -
V1

.5

✦ Have developers been given high-level security awareness training?

✦ Does each project team understand where to find
secure development best-practices and guidance?

✦ Are those involved in the development process given
role-specific security training and guidance?

✦ Are stakeholders able to pull in security
coaches for use on projects?

✦ Is security-related guidance centrally controlled and
consistently distributed throughout the organization?

✦ Are developers tested to ensure a baseline skill-
set for secure development practices?

✦ Do project stakeholders know their project’s compliance status?

✦ Are compliance requirements specifically
considered by project teams?

✦ Does the organization utilize a set of policies and
standards to control software development?

✦ Are project teams able to request an audit for
compliance with policies and standards?

✦ Are projects periodically audited to ensure a baseline
of compliance with policies and standards?

✦ Does the organization systematically use audits to
collect and control compliance evidence?

0.0

✦ Is there a software security assurance program in place?

✦ Are development staff aware of future
plans for the assurance program?

✦ Do the business stakeholders understand
your organization’s risk profile?

✦ Are many of your applications and resources categorized by risk?

✦ Are risk ratings used to tailor the required assurance activities?

✦ Does the organization know about what’s
required based on risk ratings?

✦ Is per-project data for the cost of assurance activities collected?

✦ Does your organization regularly compare your
security spend with that of other organizations?

Strategy & Metrics

Education & Guidance

Policy & Compliance

Governance
Assessment worksheet

0.2 0.5 1.0

NO

NO <1 YR >1 YR MATURE

NO

NO SOME HALF MOST

NO SOME HALF MOST

NO SOME HALF MOST

NO ONCE EVERY 2-3 YRS ANNUALLY

NO

0.0 0.2 0.5 1.0

NO

NO NOT APPLY AD-HOC YES

NO SOME HALF MOST

NO PER TEAM ORG WIDE
INTEGRATED

PROCESS

0.0 0.2 0.5 1.0

NO ONCE ANNUALLY

NO SOME HALF MOST

NO SOME HALF MOST

NO PER TEAM ORG WIDE INTEGRATED

PROCESS

NO ONCE EVERY 2-3 YRS ANNUALLY

SCORE

SCORE

SCORE

NO

NO

NO SOME HALF MOST

SOME HALF MOST

BUS AREA ORG WIDE
ORG WIDE

& REQUIRED

SOME HALF MOST

SOME HALF MOST

SOME HALF MOST

SOME HALF MOST

EVERY 2-3 YRS

19

Construction
Assessment worksheet

 ✦Are project teams provided with a list of
recommended third-party components?

 ✦Are project teams aware of secure design principles
and do they apply them consistently?

 ✦Do you advertise shared security services
with guidance for project teams?

 ✦Are project teams provided with prescriptive design
patterns based on their application architecture?

 ✦Do project teams build software from centrally-
controlled platforms and frameworks?

 ✦Are project teams audited for the use of
secure architecture components?

 ✦Do project teams specify security
requirements during development?

 ✦Do project teams pull requirements from best
practices and compliance guidance?

 ✦Do stakeholders review access control
matrices for relevant projects?

 ✦Do project teams specify requirements based on
feedback from other security activities?

 ✦Do stakeholders review vendor agreements
for security requirements?

 ✦Are audits performed against the security
requirements specified by project teams?

0.0

 ✦Do projects in your organization consider
and document likely threats?

 ✦Does your organization understand and
document the types of attackers it faces?

 ✦Do project teams regularly analyze functional
requirements for likely abuses?

 ✦Do project teams use a method of rating
threats for relative comparison?

 ✦Are stakeholders aware of relevant threats and ratings?

 ✦Do project teams specifically consider risk from external software?

 ✦Are the majority of the protection mechanisms and
controls captured and mapped back to threats?

SA
M

M
 /

U
N

D
ER

ST
AN

D
IN

G
 TH

E M
O

D
EL

 -
V1

.5

Threat Assessment

Security Requirements

Secure Architecture

SCORE 0.2 0.5 1.0

0.0SCORE 0.2 0.5 1.0

0.0SCORE 0.2 0.5 1.0

NO

NO

NO

NO

SOME HALF MOST

SOME HALF MOST

SOME HALF MOST

NO SOME HALF MOST

NO SOME HALF MOST

NO SOME HALF MOST

NO SOME HALF MOST

NO ONCE EVERY 2-3 YRS ANNUALLY

NO PER TEAM ORG WIDE
INTEGRATED

PROCESS

NO PER TEAM ORG WIDE
INTEGRATED

PROCESS

NO PER TEAM ORG WIDE
INTEGRATED

PROCESS

NO SOME HALF MOST

NO BUS AREA ORG WIDE
ORG WIDE

& REQUIRED

NO SOME HALF MOST

NO SOME HALF MOST

NO SOME HALF MOST

NO ONCE ANNUALLY

NO SOME HALF MOST

EVERY 2-3 YRS

SOME HALF MOST

20

SA
M

M
 /

U
N

D
ER

ST
AN

D
IN

G
 TH

E M
O

D
EL

 -
V1

.5

✦ Do projects specify security testing based
on defined security requirements?

✦ Is penetration testing performed on high
risk projects prior to release?

✦ Are stakeholders aware of the security test status prior to release?

✦ Do projects use automation to evaluate security test cases?

✦ Do projects follow a consistent process to evaluate
and report on security tests to stakeholders?

✦ Are security test cases comprehensively
generated for application-specific logic?

✦ Does a minimum security baseline exist for security testing?

✦ Do project teams have review checklists based
on common security related problems?

✦ Do project teams review selected high-risk code?

✦ Can project teams access automated code
analysis tools to find security problems?

✦ Do stakeholders consistently review results from code reviews?

✦ Do project teams utilize automation to check code
against application-specific coding standards?

✦ Does a minimum security baseline exist for code review results?

0.0

✦ Do project teams document the attack
perimeter of software designs?

✦ Do project teams check software designs
against known security risks?

✦ Do project teams specifically analyze design
elements for security mechanisms?

✦ Are project stakeholders aware of how to
obtain a formal secure design review?

✦ Does the secure design review process
incorporate detailed data-level analysis?

✦ Does a minimum security baseline exist
for secure design review results?

Verification
Assessment worksheet

Design Review

Implementation Review

Security Testing

SCORE 0.5 1.0

NO SOME HALF MOST

0.2

0.0SCORE 0.5 1.00.2

0.0SCORE 0.5 1.00.2

NO SOME HALF MOST

NO SOME HALF MOST

NO SOME HALF MOST

NO

NO SOME HALF MOST

NO SOME HALF MOST

NO BUS AREA ORG WIDE & REQUIRED

ORG WIDE

NO BUS AREA ORG WIDE
& REQUIRED

ORG WIDE

NO

NO SOME HALF MOST

NO SOME HALF MOST

NO SOME HALF MOST

NO SOME HALF MOST

NO

NO SOME HALF MOST

NO PER TEAM ORG WIDE
INTEGRATED

PROCESS

NO PER TEAM ORG WIDE
INTEGRATED

PROCESS

NO PER TEAM ORG WIDE
INTEGRATED

PROCESS

PER TEAM ORG WIDE
INTEGRATED

PROCESS

SOME HALF MOST

SOME HALF MOST

21

SA
M

M
 /

U
N

D
ER

ST
AN

D
IN

G
 TH

E M
O

D
EL

 -
V1

.5

✦ Do projects document operational
environment security requirements?

✦ Do projects check for security updates to
third-party software components?

✦ Is a consistent process used to apply upgrades
and patches to critical dependencies?

✦ Do projects leverage automation to check
application and environment health?

✦ Are stakeholders aware of options for additional tools
to protect software while running in operations?

✦ Does a minimum security baseline exist for
environment health (versioning, patching, etc)?

0.0

✦ Do projects have a point of contact for security issues or incidents?

✦ Does your organization have an assigned security response team?

✦ Are project teams aware of their security point(s)
of contact and response team(s)?

✦ Does the organization utilize a consistent process
for incident reporting and handling?

✦ Are project stakeholders aware of relevant security
disclosures related to their software projects?

✦ Are incidents inspected for root causes to
generate further recommendations?

✦ Do projects consistently collect and report
data and metrics related to incidents?

Operations
Assessment worksheet

Issue Management

Environment Hardening

✦ Are security notes delivered with each software release?

✦ Are security-related alerts and error conditions
documented on a per-project basis?

✦ Do projects utilize a change management
process that’s well understood?

✦ Do project teams deliver an operational security
guide with each product release?

✦ Are project releases audited for appropriate
operational security information?

✦ Is code signing routinely performed on software
components using a consistent process?

Operational Enablement

0.2 0.5 1.0

NO

SCORE

0.0 0.2 0.5 1.0SCORE

0.0 0.2 0.5 1.0SCORE

NO SOME HALF MOST

NO SOME HALF MOST

NO

NO

NO BUS AREA ORG WIDE
& REQUIRED

ORG WIDE

NO <1 YR >1 YR MATURE

NO SOME HALF MOST

NO SOME HALF MOST

NO BUS AREA ORG WIDE
& REQUIRED

ORG WIDE

NO BUS AREA ORG WIDE
& REQUIRED

ORG WIDE

NO SOME HALF MOST

NO SOME HALF MOST

NO SOME HALF MOST

NO SOME HALF MOST

NO NOT APPLY AD-HOC YES

NO ONCE EVERY 2-3 YRS ANNUALLY

NO PER TEAM ORG WIDE
INTEGRATED

PROCESS

NO SOME HALF MOST

SOME HALF MOST

SOME HALF MOST

SOME HALF MOST

The Security
Practices

An explanation of the details

This section defines the building blocks of SAMM, the maturity levels under each security
practice. For each practice, the three levels are covered in a summary table. Following that, the
description for each level includes detailed explanations of the required activities, results an
organization can expect from attaining the level, success metrics to gauge performance,
required ongoing personnel investment, and additional associated costs.

24

3SM2SM1SM

Strategy & Metrics

objective Establish unified strategic
roadmap for software security
within the organization.

Measure relative value of
data and software assets
and choose risk tolerance.

Align security expenditure
with relevant business
indicators and asset value.

Activities A. Estimate overall business
risk profile

B. Build and maintain assurance
program roadmap

A. Classify data and applications
based on business risk

B. Establish and measure per-
classification security goals

A. Conduct periodic industry-
wide cost comparisons

B. Collect metrics for
historic security spend

Assessment ✦ Is there a software security
assurance program in place?
 ✦ Are development staff
aware of future plans for
the assurance program?
 ✦ Do the business stakeholders
understand your
organization’s risk profile?

 ✦ Are many of your applications and
resources categorized by risk?
 ✦ Are risk ratings used to tailor the
required assurance activities?
 ✦ Does the organization
know about what’s required
based on risk ratings?

 ✦ Is per-project data for the cost
of assurance activities collected?
 ✦ Does your organization
regularly compare your
security spend with that
of other organizations?

results ✦ Concrete list of the most
critical business-level risks
caused by software
 ✦ Tailored roadmap that
addresses the security
needs for your organization
with minimal overhead
 ✦ Organization-wide understanding
of how the assurance program
will grow over time

 ✦ Customized assurance plans
per project based on core
value to the business
 ✦ Organization-wide understanding
of security-relevance of data
and application assets
 ✦ Better informed stakeholders
with respect to understanding
and accepting risks

 ✦ Information to make informed
case-by-case decisions on
security expenditures
 ✦ Estimates of past loss
due to security issues
 ✦ Per-project consideration
of security expense
versus loss potential
 ✦ Industry-wide due diligence
with regard to security

SA
M

M
 /

TH
E S

EC
U

RI
TY

 P
RA

CT
IC

ES
 -

V1
.5

25

Activities

A . Estimate overall business risk profile
Interview business owners and stakeholders and create a list of worst-case scenarios across
the organization’s various application and data assets. Based on the way in which your
organization builds, uses, or sells software, the list of worst-case scenarios can vary widely,
but common issues include data theft or corruption, service outages, monetary loss, reverse
engineering, account compromise, etc.

After broadly capturing worst-case scenario ideas, collate and select the most important
based on collected information and knowledge about the core business. Any number can
be selected, but aim for at least three and no more than seven to make efficient use of time
and keep the exercise focused.

Elaborate a description of each of the selected items and document details of contributing
worst-case scenarios, potential contributing factors, and potential mitigating factors for the
organization.

The final business risk profile should be reviewed with business owners and other
stakeholders for understanding.

B . Build and maintain assurance program roadmap
Understanding the main business risks to the organization, evaluate the current
performance of the organization against each the twelve practices. Calculate a score for
each practice based on the answers to the multiple choice questions using the toolbox
spreadsheet or SAMM survey application.

Once a good understanding of current status is obtained, the next goal is to identify the
practices that will be improved in the next iteration. Select them based on business risk
profile, other business drivers, compliance requirements, budget tolerance, etc. Once
practices are selected, the goals of the iteration are to achieve the next objective under
each.

Iterations of improvement on the assurance program should be approximately 3-6 months,
but an assurance strategy session should take place at least every three months to
review progress on activities, performance against success metrics and other business
drivers that may require program changes.

Establish unified strategic roadmap for software security within the organization

assessment

 ✦ Is there a software security
assurance program in place?
 ✦ Are development staff aware of future
plans for the assurance program?
 ✦ Do the business stakeholders understand
your organization’s risk profile?

results

 ✦ Concrete list of the most critical
business-level risks caused by software
 ✦ Tailored roadmap that addresses the
security needs for your organization
with minimal overhead
 ✦ Organization-wide understanding
of how the assurance program
will grow over time

success metrics

✦ >80% of stakeholders briefed on business
risk profile in the past six months

✦ >80% of staff briefed on assurance
program roadmap in the past three months

✦ >1 assurance program strategy session in
the past three months

costs

✦ Buildout and maintenance of
business risk profile

✦ Quarterly evaluation of assurance
program

personnel

 ✦ Developers
 ✦ Architects
 ✦ Managers
 ✦ Business Owners
 ✦ QA Testers
 ✦ Security Auditor

related levels

 ✦ Policy & Compliance - 1
 ✦ Threat Assessment - 1
 ✦ Security Requirements - 2

1SMStrategy & Metrics

SA
M

M
 /

TH
E S

EC
U

RI
TY

 P
RA

CT
IC

ES
 -

V1
.5

26

Activities

A . Classify data and applications based on business risk
Establish a simple classification system to represent risk-tiers for applications. In its simplest
form, this can be a High/Medium/Low categorization. More sophisticated classifications
can be used, but there should be no more than seven categories and they should roughly
represent a gradient from high to low impact against business risks.

Working from the organization’s business risk profile, create project evaluation criteria that
maps each project to one of the risk categories. A similar but separate classification scheme
should be created for data assets and each item should be weighted and categorized based
on potential impact to business risks.

Evaluate collected information about each application and assign each a risk category based
upon overall evaluation criteria and the risk categories of data assets in use. This can be
done centrally by a security group or by individual project teams through a customized
questionnaire to gather the requisite information.

An ongoing process for application and data asset risk categorization should be established
to assign categories to new assets and keep the existing information updated at least bian-
nually.

B . Establish and measure per-classification security goals
With a classification scheme for the organization’s application portfolio in place, direct
security goals and assurance program roadmap choices can be made more granular.

The assurance program’s roadmap should be modified to account for each application risk
category by specifying emphasis on particular practices for each category. For each
iteration of the assurance program, this would typically take the form of prioritizing more
higher-level objectives on the highest risk application tier and progressively less stringent
objectives for lower/other categories.

This process establishes the organization’s risk tolerance since active decisions must
be made as to what specific objectives are expected of applications in each risk category.
By choosing to keep lower risk applications at lower levels of performance with respect to
the security practices, resources are saved in exchange for acceptance of a weighted risk.
However, it is not necessary to arbitrarily build a separate roadmap for each risk category
since that can leads to inefficiency in management of the assurance program itself.

Measure relative value of data and software assets and choose risk tolerance

assessment

 ✦ Are many of your applications and
resources categorized by risk?
 ✦ Are risk ratings used to tailor the
required assurance activities?
 ✦ Does the organization know about
what’s required based on risk ratings?

results

 ✦ Customized assurance plans per project
based on core value to the business
 ✦ Organization-wide understanding
of security-relevance of data
and application assets
 ✦ Better informed stakeholders
with respect to understanding
and accepting risks

success metrics

✦ >90% applications and data assets
evaluated for risk classification in the
past 12 months

✦ >80% of staff briefed on relevant
application and data risk
ratings in the past six months

✦ >80% of staff briefed on relevant
assurance program roadmap in the
past three months

costs

 ✦ Buildout or license of application and
data risk categorization scheme
 ✦ Program overhead from more
granular roadmap planning

personnel

 ✦ Architects
 ✦ Managers
 ✦ Business Owners
 ✦ Security Auditor

related levels

 ✦ Policy & Compliance - 2
 ✦ Threat Assessment - 2
 ✦ Design Review - 2

2SM Strategy & Metrics

SA
M

M
 /

TH
E S

EC
U

RI
TY

 P
RA

CT
IC

ES
 -

V1
.5

27

Activities

A . Conduct periodic industry-wide cost comparisons
Research and gather information about security costs from intra-industry communication
forums, business analyst and consulting firms, or other external sources. In particular, there
are a few key factors that need to be identified.

First, use collected information to identify the average amount of security effort being
applied by similar types of organizations in your industry. This can be done either top-
down from estimates of total percentage of budget, revenue, etc. or it can be done
bottom-up by identifying security-related activities that are considered normal for your
type of organization. Overall, this can be hard to gauge for certain industries, so collect
information from as many relevant sources as are accessible.

The next goal of researching security costs is to determine if there are potential cost savings
on third-party security products and services that your organization currently uses. When
weighing the decision of switching vendors, account for hidden costs such as retraining staff
or other program overhead.

Overall, these cost-comparison exercises should be conducted at least annually prior to the
subsequent assurance program strategy session. Comparison information should be pre-
sented to stakeholders in order to better align the assurance program with the business.

B . Collect metrics for historic security spend
Collect project-specific information on the cost of past security incidents. For instance, time
and money spent in cleaning up a breach, monetary loss from system outages, fines and fees
to regulatory agencies, project-specific one-off security expenditures for tools or services,
etc.

Using the application risk categories and the respective prescribed assurance program
roadmaps for each, a baseline security cost for each application can be initially estimated
from the costs associated with the corresponding risk category.

Combine the application-specific cost information with the general cost model based on risk
category, and then evaluate projects for outliers, i.e. sums disproportionate to the risk rating.
These indicate either an error in risk evaluation/classification or the necessity to tune the
organization’s assurance program to address root causes for security cost more effectively.

The tracking of security spend per project should be done quarterly at the assurance
program strategy session, and the information should be reviewed and evaluated by
stakeholders at least annually. Outliers and other unforeseen costs should be discussed for
potential affect on assurance program roadmap.

Align security expenditure with relevant business indicators and asset value

assessment

 ✦ Is per-project data for the cost of
assurance activities collected?
 ✦ Does your organization regularly
compare your security spend with
that of other organizations?

results

 ✦ Information to make informed case-by-
case decisions on security expenditures
 ✦ Estimates of past loss due
to security issues
 ✦ Per-project consideration of security
expense versus loss potential
 ✦ Industry-wide due diligence
with regard to security

success metrics

✦ >80% of projects reporting security
costs in the past three months

✦ >1 industry-wide cost comparison in
the past year

✦ >1 historic security spend evaluation
in the past year

costs

 ✦ Buildout or license industry
intelligence on security programs
 ✦ Program overhead from cost
estimation, tracking, and evaluation

personnel

 ✦ Architects
 ✦ Managers
 ✦ Business Owners
 ✦ Security Auditor

related levels

 ✦ Issue Management - 1

3SMStrategy & Metrics

SA
M

M
 /

TH
E S

EC
U

RI
TY

 P
RA

CT
IC

ES
 -

V1
.5

28

3PC2PC1PC

Policy & Compliance

objective Understand relevant
governance and compliance
drivers to the organization.

Establish security and
compliance baseline and
understand per-project risks.

Require compliance
and measure projects
against organization-wide
policies and standards.

Activities A. Identify and monitor external
compliance drivers

B. Build and maintain
compliance guidelines

A. Build policies and standards
for security and compliance

B. Establish project audit practice

A. Create compliance
gates for projects

B. Adopt solution for
audit data collection

Assessment ✦ Do project stakeholders know
their project’s compliance status?
 ✦ Are compliance requirements
specifically considered
by project teams?

 ✦ Does the organization utilize a
set of policies and standards to
control software development?
 ✦ Are project teams able to
request an audit for compliance
with policies and standards?

 ✦ Are projects periodically
audited to ensure a
baseline of compliance with
policies and standards?
 ✦ Does the organization
systematically use audits
to collect and control
compliance evidence?

results ✦ Increased assurance for
handling third-party audit
with positive outcome
 ✦ Alignment of internal
resources based on priority
of compliance requirements
 ✦ Timely discovery of evolving
regulatory requirements that
affect your organization

 ✦ Awareness for project teams
regarding expectations for
both security and compliance
 ✦ Business owners that better
understand specific compliance
risks in their product lines
 ✦ Optimized approach
for efficiently meeting
compliance with opportunistic
security improvement

 ✦ Organization-level visibility
of accepted risks due
to non-compliance
 ✦ Concrete assurance
for compliance at
the project level
 ✦ Accurate tracking of past
project compliance history
 ✦ Efficient audit process
leveraging tools to
cut manual effort

SA
M

M
 /

TH
E S

EC
U

RI
TY

 P
RA

CT
IC

ES
 -

V1
.5

29

Activities

A . Identify and monitor external compliance drivers
While an organization might have a wide variety of compliance requirements, this activity is
specifically oriented around those that either directly or indirectly affect the way in which
the organization builds or uses software and/or data. Leverage internal staff focused on
compliance if available.

Based on the organization’s core business, conduct research and identify third-party
regulatory standards with which compliance is required or considered an industry norm.
Possibilities include the Sarbanes-Oxley Act (SOX), the Payment Card Industry Data
Security Standards (PCI-DSS), the Health Insurance Portability and Accountability Act
(HIPAA), etc. After reading and understanding each third-party standard, collect specific
requirements related to software and data and build a consolidated list that maps each
driver (third-party standard) to each of its specific requirements for security. At this stage,
try to limit the amount of requirements by dropping anything considered optional or only
recommended.

At a minimum, conduct research at least biannually to ensure the organization is keeping
up-dated on changes to third-party standards. Depending upon the industry and the
importance of compliance, this activity can vary in effort and personnel involvement, but
should always be done explicitly.

B . Build and maintain compliance guidelines
Based upon the consolidated list of software and data-related requirements from
compliance drivers, elaborate the list by creating a corresponding response statement to
each requirement. Sometimes called control statements, each response should capture
the concept of what the organization does to ensure the requirement is met (or to note
why it does not apply).

Since typical audit practice often involves checking a control statement for sufficiency and
then measuring the organization against the control statement itself, it is critical that they
accurately represent actual organizational practices. Also, many requirements can be met
by instituting simple, lightweight process elements to cover base-line compliance prior to
evolving the organization for better assurance down the road.

Working from the consolidated list, identify major gaps to feed the future planning efforts
with regard to building the assurance program. Communicate information about
compliance gaps with stakeholders to ensure awareness of the risk from non-compliance.

At a minimum, update and review control statements with stakeholders at least biannually.
Depending on the number of compliance drivers, it may make sense to perform
updates more often.

Understand relevant governance and compliance drivers to the organization

assessment

 ✦ Do project stakeholders know their
project’s compliance status?
 ✦ Are compliance requirements specifically
considered by project teams?

results

 ✦ Increased assurance for handling third-
party audit with positive outcome
 ✦ Alignment of internal resources based
on priority of compliance requirements
 ✦ Timely discovery of evolving
regulatory requirements that
affect your organization

success metrics

✦ >1 compliance discovery
meeting in the past six months

✦ Compliance checklist completed and
updated within the past six months

✦ >1 compliance review meeting with
stakeholders in the past six months

costs

 ✦ Initial creation and ongoing
maintenance of compliance checklist

personnel

 ✦ Architects
 ✦ Managers
 ✦ Business Owners

related levels

 ✦ Strategy & Metrics - 1

1PCPolicy & Compliance

SA
M

M
 /

TH
E S

EC
U

RI
TY

 P
RA

CT
IC

ES
 -

V1
.5

30

Activities

A . Build policies and standards for security and compliance
Beginning with a current compliance guidelines, review regulatory standards and note any
optional or recommended security requirements. Also, the organization should conduct a
small amount of research to discover any potential future changes in compliance
requirements that are relevant.

Augment the list with any additional requirements based on known business drivers for
security. Often it is simplest to consult existing guidance being provided to development
staff and gather a set of best practices.

Group common/similar requirements and rewrite each group as more generalized/simplified
statements that meet all the compliance drivers as well as provide some additional security
value. Work through this process for each grouping with the goal of building a set of
internal policies and standards that can be directly mapped back to compliance drivers and
best practices.

It is important for the set of policies and standards to not contain requirements that
are too difficult or excessively costly for project teams to comply. A useful heuristic is that
approximately 80% of projects should be able to comply with minimal disruption. This
requires a good communications program being set up to advertise the new policies/
standards and assist teams with compliance if needed.

B . Establish project audit practice
Create a simple audit process for project teams to request and receive an audit against
internal standards. Audits are typically performed by security auditors but can also be
conducted by security-savvy staff as long as they are knowledgeable about the internal
standards.

Based upon any known business risk indicators, projects can be prioritized concurrently
with audit queue triage such that high-risk software is assessed sooner or more frequently.
Additionally, low-risk projects can have internal audit requirements loosened to make the
audit practice more cost-effective.

Overall, each active project should undergo an audit at least biannually. Generally,
subse-quent audits after the initial will be simpler to perform if sufficient audit information
about the application is retained.

Advertise this service to business owners and other stakeholders so that they may request
an audit for their projects. Detailed pass/fail results per requirement from the
internal standards should be delivered to project stakeholders for evaluation. Where
practical, audit results should also contain explanations of impact and remediation
recommendations.

Establish security and compliance baseline and understand per-project risks

assessment

 ✦ Does the organization utilize a
set of policies and standards to
control software development?
 ✦ Are project teams able to request
an audit for compliance with
policies and standards?

results

 ✦ Awareness for project teams
regarding expectations for both
security and compliance
 ✦ Business owners that better
understand specific compliance
risks in their product lines
 ✦ Optimized approach for efficiently
meeting compliance with opportunistic
security improvement

 success metrics

✦ >75% of staff briefed on policies
and standards in the past six months

✦ >80% stakeholders aware of compliance
status against policies and standards

costs

 ✦ Internal standards buildout or license
 ✦ Per-project overhead from compliance
with internal standards and audit

personnel

 ✦ Architects
 ✦ Managers
 ✦ Security Auditors

related levels

 ✦ Education & Guidance - 1 & 3
 ✦ Strategy & Metrics - 2
 ✦ Security Requirements - 1 & 3
 ✦ Secure Architecture - 3
 ✦ Implementation Review - 3
 ✦ Design Review - 3
 ✦ Environment Hardening - 3

2PC Policy & Compliance

SA
M

M
 /

TH
E S

EC
U

RI
TY

 P
RA

CT
IC

ES
 -

V1
.5

31

Activities

A . Create compliance gates for projects
Once an organization has established internal standards for security, the next level of
en-forcement is to set particular points in the project lifecycle where a project cannot
pass until it is audited against the internal standards and found to be in compliance.

Usually, the compliance gate is placed at the point of software release such that they are not
allowed to publish a release until the compliance check is passed. It is important to provide
enough time for the audit to take place and remediation to occur, so generally the
audit should begin earlier, for instance when a release is given to quality assurance.

Despite being a firm compliance gate, legacy or other specialized projects may not be able to
comply, so an exception approval process must also be created. No more than about 20%
of all projects should have exception approval.

B . Adopt solution for audit data collection
Organizations conducting regular audits of project teams generate a large amount of audit
data over time. Automation should be utilized to assist in automated collection, manage
collation for storage and retrieval, and to limit individual access to sensitive audit data.

For many concrete requirements from the internal standards, existing tools such as code
analyzers, application penetration testing tools, monitoring software, etc. can be customized
and leveraged to automate compliance checks against internal standards. The purpose of
automating compliance checks is to both improve efficiency of audit as well as enable more
staff to self-check for compliance before a formal audit takes place. Additionally, automated
checks are less error-prone and allow for lower latency on discovery of problems.

Information storage features should allow centralized access to current and historic audit
data per project. Automation solutions must also provide detailed access control features to
limit access to approved individuals with valid business purpose for accessing the audit data.

All instructions and procedures related to accessing compliance data as well as requesting
access privileges should be advertised to project teams. Additional time may be initially
required from security auditors to bootstrap project teams.

Require compliance and measure projects against organization-wide policies and standards

assessment

 ✦ Are projects periodically audited
to ensure a baseline of compliance
with policies and standards?
 ✦ Does the organization systematically
use audits to collect and control
compliance evidence?

results

 ✦ Organization-level visibility of accepted
risks due to non-compliance
 ✦ Concrete assurance for
compliance at the project level
 ✦ Accurate tracking of past
project compliance history
 ✦ Efficient audit process leveraging
tools to cut manual effort

success metrics

 ✦ >80% projects in compliance with
policies and standards as seen by audit
 ✦ <50% time per audit as
compared to manual

costs

 ✦ Buildout or license tools to automate
audit against internal standards
 ✦ Ongoing maintenance of audit
gates and exception process

personnel

 ✦ Developers
 ✦ Architects
 ✦ Managers

related levels

 ✦ Education & Guidance - 3
 ✦ Implementation Review - 2
 ✦ Security Testing - 2

3PCPolicy & Compliance

SA
M

M
 /

TH
E S

EC
U

RI
TY

 P
RA

CT
IC

ES
 -

V1
.5

32

3EG2EG1EG

Education & Guidance

objective Offer development staff
access to resources around the
topics of secure programming
and deployment.

Educate all personnel in
the software life-cycle
with role-specific guidance
on secure development.

Mandate comprehensive
security training and
certify personnel for
baseline knowledge.

Activities A. Conduct technical security
awareness training

B. Build and maintain
technical guidelines

A. Conduct role-specific
application security training

B. Utilize security coaches to
enhance project teams

A. Create formal application
security support portal

B. Establish role-based
examination/certification

Assessment ✦ Have developers been given high-
level security awareness training?
 ✦ Does each project team
understand where to find
secure development best-
practices and guidance?

 ✦ Are those involved in
the development process
given role-specific security
training and guidance?
 ✦ Are stakeholders able to
pull in security coaches
for use on projects?

 ✦ Is security-related guidance
centrally controlled and
consistently distributed
throughout the organization?
 ✦ Are developers tested
to ensure a baseline
skill-set for secure
development practices?

results ✦ Increased developer awareness
on the most common
problems at the code level
 ✦ Maintain software with
rudimentary security best-
practices in place
 ✦ Set baseline for security know-
how among technical staff
 ✦ Enable qualitative security checks
for baseline security knowledge

 ✦ End-to-end awareness of the
issues that leads to security
vulnerabilities at the product,
design, and code levels
 ✦ Build plans to remediate
vulnerabilities and design
flaws in ongoing projects
 ✦ Enable qualitative security
checkpoints at requirements,
design, and development stages
 ✦ Deeper understanding of
security issues encourages more
proactive security planning

✦ Efficient remediation of
vulnerabilities in both ongoing
and legacy code bases

✦ Quickly understand and
mitigate against new
attacks and threats

✦ Measure the amount of
security knowledge of the
staff and measure against
a common standard

✦ Establish fair incentives
toward security awareness

SA
M

M
 /

TH
E S

EC
U

RI
TY

 P
RA

CT
IC

ES
 -

V1
.5

33

Activities

A . Conduct technical security awareness training
Either internally or externally sourced, conduct security training for technical staff that
covers the basic tenets of application security. Generally, this can be accomplished via
instructor-led training in 1-2 days or via computer-based training with modules taking
about the same amount of time per developer.

Course content should cover both conceptual and technical information. Appropriate
topics include high-level best practices surrounding input validation, output encoding,
error handling, logging, authentication, authorization, and data protection. Additional
coverage of commonplace software vulnerabilities is also desirable such as a Top 10 list
appropriate to the software being devel-oped (web applications, embedded devices, client-
server applications, back-end transaction systems, etc.). Wherever possible, use code
samples and lab exercises in the specific pro-gramming language(s) that applies.

To rollout such training, it is recommended to mandate annual security training and
then hold courses (either instructor-led or computer-based) as often as required based on
development head-count.

B . Build and maintain technical guidelines
For development staff, assemble a list of approved documents, web pages, and technical notes
that provide technology-specific security advice. These references can be assembled from
many publicly available resources on the Internet. In cases where very specialized or pro-
prietary technologies permeate the development environment, utilize senior, security-savvy
staff to build security notes over time to create such a knowledge base in an ad hoc fashion.

Ensure management is aware of the resources and briefs oncoming staff about their ex-
pected usage. Try to keep the guidelines lightweight and up-to-date to avoid clutter and irrel-
evance. Once a comfort-level has been established, they can be used as a qualitative checklist
to ensure that the guidelines have been read, understood, and followed in the development
process.

Offer development staff access to resources around the topics of secure programming and deployment

assessment

 ✦ Have developers been given high-
level security awareness training?
 ✦ Does each project team understand
where to find secure development
best-practices and guidance?

results

 ✦ Increased developer awareness on the
most common problems at the code level
 ✦ Maintain software with rudimentary
security best-practices in place
 ✦ Set baseline for security know-
how among technical staff
 ✦ Enable qualitative security checks
for baseline security knowledge

success metrics

 ✦ >50% development staff briefed on
security issues within the past year

✦ >75% senior development/
architect staff briefed on security
issues within the past year

✦ Launch technical guidance within
three months of first training

costs

 ✦ Training course buildout or license
 ✦ Ongoing maintenance of
technical guidance

personnel

 ✦ Developers
 ✦ Architects

related levels

 ✦ Policy & Compliance - 2
 ✦ Security Requirements - 1
 ✦ Secure Architecture - 1

1EGEducation & Guidance

SA
M

M
 /

TH
E S

EC
U

RI
TY

 P
RA

CT
IC

ES
 -

V1
.5

34

Activities

A . Conduct role-specific application security training
Conduct security training for staff that highlights application security in the context of each
role’s job function. Generally, this can be accomplished via instructor-led training in 1-2 days
or via computer-based training with modules taking about the same amount of time per
person.

For managers and requirements specifiers, course content should feature security
requirements planning, vulnerability and incident management, threat modeling, and
misuse/abuse case design.

Tester and auditor training should focus on training staff to understand and more effectively
analyze software for security-relevant issues. As such, it should feature techniques for code
review, architecture and design analysis, runtime analysis, and effective security test planning.

Expand technical training targeting developers and architects to include other relevant
topics such as security design patterns, tool-specific training, threat modeling and software
assessment techniques.

To rollout such training, it is recommended to mandate annual security awareness training
and periodic specialized topics training. Course should be available (either instructor-led or
computer-based) as often as required based on head-count per role.

B . Utilize security coaches to enhance project teams
Using either internal or external experts, make security-savvy staff available to project teams
for consultation. Further, this coaching resource should be advertised internally to ensure
that staff are aware of its availability.

The coaching staff can be created by recruiting experienced individuals within the
organization to spend some percentage of their time, around 10% maximum, performing
coaching activities. The coaches should communicate between one another to ensure they
are aware of each other’s area of expertise and route questions accordingly for efficiency.

While coaches can be used at any point in the software lifecycle, appropriate times to use
the coaches include during initial product conception, before completion of functional or
detailed design specification(s), when issues arise during development, test planning, and
when operational security incidents occur.

Over time, the internal network of coaching resources can be used as points-of-contact for
communicating security-relevant information throughout the organization as well as being
local resources that have greater familiarity with the ongoing project teams than a purely
centralized security team might.

Educate all personnel in the software lifecycle with role-specific guidance on secure development

assessment

 ✦ Are those involved in the development
process given role-specific
security training and guidance?
 ✦ Are stakeholders able to pull in
security coaches for use on projects?

results

 ✦ End-to-end awareness of the issues
that leads to security vulnerabilities at
the product, design, and code levels
 ✦ Build plans to remediate vulnerabilities
and design flaws in ongoing projects
 ✦ Enable qualitative security
checkpoints at requirements,
design, and development stages
 ✦ Deeper understanding of
security issues encourages more
proactive security planning

success metrics

✦ >60% development staff
trained within the past year

✦ >50% management/analyst staff
trained within the past year

✦ >80% senior development/architect
staff trained within the past year

✦ >3.0 Likert Scale on usefulness
of training courses

costs

 ✦ Training library build-out or license
 ✦ Security-savvy staff for hands-on coaching

personnel

 ✦ Developers
 ✦ Architects
 ✦ Managers
 ✦ Business Owners
 ✦ QA Testers
 ✦ Security Auditors

related levels

 ✦ Issue Management - 1
 ✦ Design Review - 2
 ✦ Secure Architecture - 2

2EG Education & Guidance

SA
M

M
 /

TH
E S

EC
U

RI
TY

 P
RA

CT
IC

ES
 -

V1
.5

35

Activities

A . Create formal application security support portal
Building upon written resources on topics relevant to application security, create and
advertise a centralized repository (usually an internal web site). The guidelines
themselves can be created in any way that makes sense for the organization, but an
approval board and straightforward change control processes must be established.

Beyond static content in the form of best-practices lists, tool-specific guides, FAQs, and other
articles, the support portal should feature interactive components such as mailing lists, web-
based forums, or wikis to allow internal resources to cross-communicate security relevant
topics and have the information cataloged for future reference.

The content should be cataloged and easily searchable based upon several common
factors such as platform, programming language, pertinence to specific third party libraries
or frameworks, lifecycle stage, etc. Project teams creating software should align
themselves early in product development to the specific guidelines that they will follow. In
product as-sessments, the list of applicable guidelines and product-related discussions
should be used as audit criteria.

B . Establish role-based examination/certification
Either per role or per training class/module, create and administer aptitude exams that test
people for comprehension and utilization of security knowledge. Typically, exams should be
created based on the role-based curricula and target a minimum passing score around 75%
correct. While staff should be required to take applicable training or refresher courses an-
nually, certification exams should be required biannually at a minimum.

Based upon pass/fail criteria or exceptional performance, staff should be ranked into tiers
such that other security-related activities could require individuals of a particular
certification level to sign-off before the activity is complete, e.g. an uncertified developer
cannot pass a design into implementation without explicit approval from a certified
architect. This provides granular visibility on an per-project basis for tracking security
decisions with individual accountability. Overall, this provides a foundation for rewarding
or penalizing staff for making good business decisions regarding application security.

Mandate comprehensive security training and certify personnel for baseline knowledge

assessment

 ✦ Is security-related guidance centrally
controlled and consistently distributed
throughout the organization?
 ✦ Are developers tested to ensure
a baseline skill-set for secure
development practices?

results

 ✦ Efficient remediation of vulnerabilities
in both ongoing and legacy code bases
 ✦ Quickly understand and mitigate
against new attacks and threats
 ✦ Judge security-savvy of staff and
measure against a common standard
 ✦ Establish fair incentives toward
security awareness

success metrics

✦ >80% staff certified within the past year

costs

 ✦ Certification examination
build-out or license
 ✦ Ongoing maintenance and change control
for application security support portal
 ✦ Human-resources and overhead cost for
implementing employee certification

personnel

 ✦ Developers
 ✦ Architects
 ✦ Managers
 ✦ Business Owners
 ✦ QA Testers
 ✦ Security Auditors

related levels

 ✦ Policy & Compliance - 2 & 3

3EGEducation & Guidance

SA
M

M
 /

TH
E S

EC
U

RI
TY

 P
RA

CT
IC

ES
 -

V1
.5

36

1TA 2TA 3TA

Threat Assessment

objective Identify and understand
high-level threats to
the organization and
individual projects.

Increase accuracy of
threat assessment and
improve granularity of
per-project understanding.

Concretely align
compensating controls to
each threat against internal
and third-party software.

Activities A. Build and maintain application-
specific threat models

B. Develop attacker profile
from software architecture

A. Build and maintain abuse-
case models per project

B. Adopt a weighting system for
measurement of threats

A. Explicitly evaluate risk from
third-party components

B. Elaborate threat models
with compensating controls

Assessment ✦ Do projects in your
organization consider and
document likely threats?
 ✦ Does your organization
understand and document the
types of attackers it faces?

 ✦ Do project teams regularly
analyze functional requirements
for likely abuses?
 ✦ Do project teams use a
method of rating threats
for relative comparison?
 ✦ Are stakeholders aware of
relevant threats and ratings?

 ✦ Do project teams
specifically consider risk
from external software?
 ✦ Are the majority of the
protection mechanisms
and controls captured and
mapped back to threats?

results ✦ High-level understanding
of factors that may lead
to negative outcomes
 ✦ Increased awareness of threats
amongst project teams
 ✦ Inventory of threats for
your organization

 ✦ Granular understanding of likely
threats to individual projects
 ✦ Framework for better tradeoff
decisions within project teams
 ✦ Ability to prioritize development
efforts within a project team
based on risk weighting

 ✦ Deeper consideration
of full threat profile for
each software project
 ✦ Detailed mapping of
assurance features to
established threats against
each software project
 ✦ Artifacts to document
due diligence based on
business function of
each software project

SA
M

M
 /

TH
E S

EC
U

RI
TY

 P
RA

CT
IC

ES
 -

V1
.5

37

Activities

A . Build and maintain application-specific threat models
Based purely on the business purpose of each software project and the business risk profile
(if available) identify likely worst-case scenarios for the software under development in each
project team. This can be conducted using simple attack trees or through a more formal
threat modeling process such as Microsoft’s STRIDE, Trike, etc.

To build attack trees, identify each worst-case scenario in one sentence and label these as
the high-level goals of an attacker. From each attacker goal identified, identify preconditions
that must hold in order for each goal to be realized. This information should be captured in
branches underneath each goal where each branch is either a logical AND or a logical OR of
the statements contained underneath. An AND branch indicates that each directly attached
child nodes must be true in order to realize the parent node. An OR branch indicates that
any one of the directly attached child nodes must be true in order to achieve the parent
node.

Regardless of the threat modeling approach, review each current and historic functional
requirement to augment the attack tree to indicate security failures relevant to each. Brain-
storm by iteratively dissecting each failure scenario into all the possible ways in which an
attacker might be able to reach one of the goals. After initial creation, the threat model for
an application should be updated when significant changes to the software are made. This
assessment should be conducted with senior developers and architects as well as one or
more security auditors.

B . Develop attacker profile rom sotware architecture
Initially, conduct an assessment to identify all likely threats to the organization based on
software projects. For this assessment, consider threats to be limited to agents of malicious
intent and omit other risks such as known vulnerabilities, potential weaknesses, etc.

Begin by generally considering external agents and their corresponding motivations for
attack. To this list, add internal roles that could cause damage and their motivations for
insider attack. Based on the architecture of the software project(s) under consideration, it
can be more efficient to conduct this analysis once per architecture type instead of for
each project individually since applications of architecture and business purpose will
generally be suscep-tible to similar threats.

This assessment should be conducted with business owners and other stakeholders but also
include one or more security auditors for additional perspective on threats. In the end, the
goal is to have a concise list of threat agents and their corresponding motivations for attack.

Identify and understand high-level threats to the organization and individual projects

assessment

 ✦ Do projects in your organization
consider and document likely threats?
 ✦ Does your organization understand and
document the types of attackers it faces?

results

 ✦ High-level understanding of factors
that may lead to negative outcomes
 ✦ Increased awareness of threats
amongst project teams
 ✦ Inventory of threats for your organization

success metrics

✦ >50% of project stakeholders briefed
on the threat models of relevant
projects within the past 12 months

✦ >75% of project stakeholders briefed
on attacker profiles for relevant
architectures

costs

 ✦ Buildout and maintenance of project
artifacts for threat models

personnel

 ✦ Business Owners
 ✦ Developers
 ✦ Architects
 ✦ Security Auditors
 ✦ Managers

related levels

 ✦ Strategy & Metrics - 1
 ✦ Security Requirements - 2

Threat Assessment 1TA

SA
M

M
 /

TH
E S

EC
U

RI
TY

 P
RA

CT
IC

ES
 -

V1
.5

38

Activities

A . Build and maintain abuse-case models per project
Further considering the threats to the organization, conduct a more formal analysis to
determine potential misuse or abuse of functionality. Typically, this process begins with
identification of normal usage scenarios, e.g. use-case diagrams if available.

If a formal abuse-case technique isn’t used, generate a set of abuse-cases for each scenario
by starting with a statement of normal usage and brainstorming ways in which the statement
might be negated, in whole or in part. The simplest way to get started is to insert the word
“no” or “not” into the usage statement in as many ways as possible, typically around nouns
and verbs. Each usage scenario should generate several possible abuse-case statements.

Further elaborate the abuse-case statements to include any application-specific concerns
based on the business function of the software. The ultimate goal is for the completed set
of abuse statements to form a model for usage patterns that should be disallowed by the
software. If desired, these abuse cases can be combined with existing threat models.

After initial creation, abuse-case models should be updated for active projects during the
design phase. For existing projects, new requirements should be analyzed for potential abuse,
and existing projects should opportunistically build abuse-cases for established functionality
where practical.

B . Adopt a weighting system for measurement of threats
Based on the established attacker profiles, identify a rating system to allow relative compari-
son between the threats. Initially, this can be a simple high-medium-low rating based upon
business risk, but any scale can be used provided that there are no more than five
categories.

After identification of a rating system, build evaluation criteria that allow each threat to be
assigned a rating. In order to do this properly, additional factors about each threat
must be considered beyond motivation. Important factors include capital and human
resources, inherent access privilege, technical ability, relevant goals on the threat model(s),
likelihood of successful attack, etc.

After assigning each threat to a rating, use this information to prioritize risk mitigation
activities within the development lifecycle. Once built for a project team, it should be
updated during design of new features or refactoring efforts.

Increase accuracy of threat assessment and improve granularity of per-project understanding

assessment

 ✦ Do project teams regularly analyze
functional requirements for likely abuses?
 ✦ Do project teams use a method of
rating threats for relative comparison?
 ✦ Are stakeholders aware of
relevant threats and ratings?

results

 ✦ Granular understanding of likely
threats to individual projects
 ✦ Framework for better tradeoff
decisions within project teams
 ✦ Ability to prioritize development
efforts within a project team
based on risk weighting

success metrics

✦ >75% of project teams with identified
and rated threats

✦ >75% of project stakeholders briefed
on threat and abuse models of relevant
projects within the past six months

costs

 ✦ Project overhead from maintenance of
threat models and attacker profiles

personnel

 ✦ Security Auditor
 ✦ Business Owner
 ✦ Managers

related levels

 ✦ Strategy & Metrics - 2
 ✦ Secure Architecture - 2

Threat Assessment2TA

SA
M

M
 /

TH
E S

EC
U

RI
TY

 P
RA

CT
IC

ES
 -

V1
.5

39

Activities

A . Explicitly evaluate risk from third-party components
Conduct an assessment of your software code-base and identify any components that are
of external origin. Typically, these will include open-source projects, purchased consumer
of the shelf (COTS) software, and online services which your software uses.

For each identified component, elaborate attacker profiles for the software project based
upon potential compromise of third-party components. Based upon the newly identified
attacker profiles, update software threat models to incorporate any likely risks based upon
new attacker goals or capabilities.

In addition to threat scenarios, also consider ways in which vulnerabilities or design flaws in
the third-party software might affect your code and design. Elaborate your threat
models accordingly with the potential risks from vulnerabilities and knowledge of the
updated attacker profile.

After initially conducted for a project, this must be updated and reviewed during the design
phase or every development cycle. This activity should be conducted by a security auditor
with relevant technical and business stakeholders.

B . Elaborate threat models with compensating controls
Conduct an assessment to formally identify factors that directly prevent preconditions for
compromise represented by the threat models. These mitigating factors are the compensat-
ing controls that formally address the direct risks from software. Factors can be technical
features in the software itself, but can also be process elements in the development
lifecycle, infrastructure features, etc.

If using attack trees, the logical relationship represented by each branch will be either an
AND or an OR. Therefore, by mitigating against just one precondition on an AND branch,
the parent and all connected leaf nodes can be marked as mitigated. However, all child nodes
on an OR node must be prevented before the parent can be marked as mitigated.

Regardless of threat modeling technique, identify compensating controls and annotate the
threat models directly. The goal is to maximize coverage in terms of controls that mark
parts of the threat model as mitigated. For any viable paths remaining, identify potential
compensating controls for feedback into organizational strategy.

After initially conducted for a project, this must be updated and reviewed during the design
phase or every development cycle. This activity should be conducted by a security auditor
with relevant technical and business stakeholders.

Concretely tie compensating controls to each threat against internal and third-party software

assessment

 ✦ Do project teams specifically consider
risk from external software?
 ✦ Are the majority of the protection
mechanisms and controls captured
and mapped back to threats?

results

 ✦ Deeper consideration of full threat
profile for each software project
 ✦ Detailed mapping of assurance
features to established threats
against each software project
 ✦ Artifacts to document due diligence
based on business function of
each software project

success metrics

✦ >80% of project teams with updated threat
models prior to every implementation cycle

✦ >80% of project teams with updated
inventory of third-party components prior to
every release

✦ >50% of all security incidents identified a
priori by threat models in the past 12 months

costs

 ✦ Project overhead from maintenance
of detailed threat models and
expanded attacker profiles
 ✦ Discovery of all third-party dependencies

personnel

 ✦ Business Owners
 ✦ Developers
 ✦ Architects
 ✦ Security Auditors
 ✦ Managers

related levels

 ✦ Security Requirements - 2 & 3

Threat Assessment 3TA

SA
M

M
 /

TH
E S

EC
U

RI
TY

 P
RA

CT
IC

ES
 -

V1
.5

40

1SR 2SR 3SR

Security Requirements

objective Consider security explicitly
during the software
requirements process.

Increase granularity of security
requirements derived from
business logic and known risks.

Mandate security
requirements process for
all software projects and
third-party dependencies.

Activities A. Derive security requirements
from business functionality

B. Evaluate security and compliance
guidance for requirements

A. Build an access control matrix
for resources and capabilities

B. Specify security requirements
based on known risks

A. Build security requirements
into supplier agreements

B. Expand audit program for
security requirements

Assessment ✦ Do project teams specify
security requirements
during development?
 ✦ Do project teams pull
requirements from best practices
and compliance guidance?

 ✦ Do stakeholders review
access control matrices
for relevant projects?
 ✦ Do project teams specify
requirements based on feedback
from other security activities?

 ✦ Do stakeholders review
vendor agreements for
security requirements?
 ✦ Are audits performed against
the security requirements
specified by project teams?

results ✦ High-level alignment
of development effort
with business risks
 ✦ Ad hoc capturing of industry
best-practices for security
as explicit requirements
 ✦ Awareness amongst stakeholders
of measures being taken to
mitigate risk from software

 ✦ Detailed understanding of attack
scenarios against business logic
 ✦ Prioritized development
effort for security features
based on likely attacks
 ✦ More educated decision-
making for tradeoffs between
features and security efforts
 ✦ Stakeholders that can better
avoid functional requirements
that inherently have security flaws

 ✦ Formally set baseline for
security expectations
from external code
 ✦ Centralized information on
security effort undertaken
by each project team
 ✦ Ability to align resources
to projects based on
application risk and desired
security requirements

SA
M

M
 /

TH
E S

EC
U

RI
TY

 P
RA

CT
IC

ES
 -

V1
.5

41

Activities

A . Derive security requirements from business functionality
Conduct a review of functional requirements that specify the business logic and overall
behavior for each software project. After gathering requirements for a project, conduct an
assessment to derive relevant security requirements. Even if software is being built by
a third-party, these requirements, once identified, should be included with functional
requirements delivered to vendors.

For each functional requirement, a security auditor should lead stakeholders through the
process of explicitly noting any expectations with regard to security. Typically, questions to
clarify for each requirement include expectations for data security, access control,
transaction integrity, criticality of business function, separation of duties, uptime, etc.

It is important to ensure that all security requirements follow the same principles for
writing good requirements in general. Specifically, they should be specific, measurable, and
reasonable.

Conduct this process for all new requirements on active projects. For existing features, it is
recommended to conduct the same process as a gap analysis to fuel future refactoring for
security.

B . Evaluate security and compliance guidance for requirements
Determine industry best-practices that project teams should treat as requirements. These
can be chosen from publicly available guidelines, internal or external guidelines/standards/
policies, or established compliance requirements.

It is important to not attempt to bring in too many best-practice requirements into each
development iteration since there is a time trade-off with design and implementation. The
recommended approach is to slowly add best-practices over successive development cycles
to bolster the software’s overall assurance profile over time.

For existing systems, refactoring for security best practices can be a complex undertaking.
Where possible, add security requirements opportunistically when adding new features. At
a minimum, conducting the analysis to identify applicable best practices should be done to
help fuel future planning efforts.

This review should be performed by a security auditor with input from business
stakeholders. Senior developers, architects, and other technical stakeholders should also
be involved to bring design and implementation-specific knowledge into the decision
process.

Consider security explicitly during the software requirements process

assessment

 ✦ Do project teams specify security
requirements during development?
 ✦ Do project teams pull requirements from
best practices and compliance guidance?

results

 ✦ High-level alignment of development
effort with business risks
 ✦ Ad hoc capturing of industry
best-practices for security as
explicit requirements
 ✦ Awareness amongst stakeholders
of measures being taken to
mitigate risk from software

success metrics

 ✦ >50% of project teams with explicitly
defined security requirements

costs

 ✦ Project overhead from addition
of security requirements to
each development cycle

personnel

 ✦ Security Auditor
 ✦ Business Owners
 ✦ Managers
 ✦ Architects

related levels

 ✦ Education & Guidance - 1
 ✦ Policy & Compliance - 2
 ✦ Design Review - 1
 ✦ Implementation Review - 1
 ✦ Security Testing - 1

Security Requirements 1SR

SA
M

M
 /

TH
E S

EC
U

RI
TY

 P
RA

CT
IC

ES
 -

V1
.5

42

Activities

A . Build an access control matrix for resources and capabilities
Based upon the business purpose of the application, identify user and operator roles.
Additionally, build a list of resources and capabilities by gathering all relevant data assets
and application-specific features that are guarded by any form of access control.

In a simple matrix with roles on one axis and resources on the other, consider the
relationships between each role and each resource and note in each intersection the
correct behavior of the system in terms of access control according to stakeholders.

For data resources, it is important to note access rights in terms of creation, read access,
update, and deletion. For resources that are features, gradation of access rights will
likely be application-specific, but at a minimum, note if the role should be permitted access
to the feature.

This permission matrix will serve as an artifact to document the correct access control
rights for the business logic of the overall system. As such, it should be created by the project
teams with input from business stakeholders. After initial creation, it should be updated by
business stakeholders before every release, but usually toward the beginning of the design
phase.

B . Specify security requirements based on known risks
Explicitly review existing artifacts that indicate organization or project-specific security risk
in order to better understand the overall risk profile for the software. When available, draw
on resources such as the high-level business risk profile, individual application threat models,
findings from design review, code review, security testing, etc.

In addition to review of existing artifacts, use abuse-case models for an application to serve
as fuel for identification of concrete security requirements that directly or indirectly mitigate
the abuse scenarios.

This process should be conducted by business owners and security auditors as needed.
Ultimately, the notion of risks leading to new security requirements should become a built-
in step in the planning phase whereby newly discovered risks are specifically assessed by
project teams.

Increase granularity of security requirements derived from business logic and known risks

assessment

 ✦ Do stakeholders review access control
matrices for relevant projects?
 ✦ Do project teams specify
requirements based on feedback
from other security activities?

results

 ✦ Detailed understanding of attack
scenarios against business logic
 ✦ Prioritized development effort for
security features based on likely attacks
 ✦ More educated decision-
making for tradeoffs between
features and security efforts
 ✦ Stakeholders that can better
avoid functional requirements that
inherently have security flaws

success metrics

 ✦ >75% of all projects with updated abuse-
case models within past six months

costs

 ✦ Project overhead from buildout and
maintenance of abuse-case models

personnel

 ✦ Security Auditor
 ✦ Managers
 ✦ Architects
 ✦ Business Owners

related levels

 ✦ Threat Assessment - 1 & 3
 ✦ Strategy & Metrics - 1

Security Requirements2SR

SA
M

M
 /

TH
E S

EC
U

RI
TY

 P
RA

CT
IC

ES
 -

V1
.5

43

Activities

A . Build security requirements into supplier agreements
Beyond the kinds of security requirements already identified by previous analysis, additional
security benefits can be derived from third-party agreements. Typically, requirements and
perhaps high-level design will be developed internally while detailed design and
implementation is often left up to suppliers.

Based on the specific division of labor for each externally developed component, identify
specific security activities and technical assessment criteria to add to the vendor contracts.
Commonly, this is a set of activities from the design review, code review, and security
testing practices.

Modifications of agreement language should be handled on a case-by-case basis with each
supplier since adding additional requirements will generally mean an increase in cost. The
cost of each potential security activity should be balanced against the benefit of the activity
as per the usage of the component or system being considered.

B . Expand audit program for security requirements
Incorporate checks for completeness of security requirements into routine project audits.
Since this can be difficult to gauge without project-specific knowledge, the audit should focus
on checking project artifacts such as requirements or design documentation for evidence
that the proper types of analysis were conducted.

Particularly, each functional requirement should be annotated with security
requirements based on business drivers as well as expected abuse scenarios. The overall
project requirements should contain a list of requirements generated from best-practices
in guidelines and standards. Additionally, there should be a clear list of unfulfilled security
requirements and an estimated timeline for their provision in future releases.

This audit should be performed during every development iteration, ideally toward the end
of the requirements process, but it must be performed before a release can be made.

Mandate security requirements process for all software projects and third-party dependencies

assessment

 ✦ Do stakeholders review vendor
agreements for security requirements?
 ✦ Are audits performed against the security
requirements specified by project teams?

results

 ✦ Formally set baseline for security
expectations from external code
 ✦ Centralized information on security
effort undertaken by each project team
 ✦ Ability to align resources to projects
based on application risk and
desired security requirements

success metrics

 ✦ >80% of projects passing security
requirements audit in past six months

✦ >80% of vendor agreements
analyzed for contractual security
requirements in the past 12 months

costs

 ✦ Increased cost from outsourced
development from additional
security requirements
 ✦ Ongoing project overhead from release
gates for security requirements

personnel

 ✦ Security Auditor
 ✦ Managers
 ✦ Business Owners

related levels

 ✦ Threat Assessment - 3
 ✦ Policy & Compliance - 2

Security Requirements 3SR

SA
M

M
 /

TH
E S

EC
U

RI
TY

 P
RA

CT
IC

ES
 -

V1
.5

44

1SA 2SA 3SA

Secure Architecture

objective Insert consideration
of proactive security
guidance into the
software design process.

Direct the software design
process toward known-
secure services and
secure-by-default designs.

Formally control the
software design process
and validate utilization of
secure components.

Activities A. Maintain list of recommended
software frameworks

B. Explicitly apply security
principles to design

A. Identify and promote security
services and infrastructure

B. Identify security design
patterns from architecture

A. Establish formal reference
architectures and platforms

B. Validate usage of frameworks,
patterns, and platforms

Assessment ✦ Are project teams provided
with a list of recommended
third-party components?
 ✦ Are project teams aware of
secure design principles and do
they apply them consistently?

 ✦ Do you advertise shared
security services with
guidance for project teams?
 ✦ Are project teams provided with
prescriptive design patterns based
on their application architecture?

 ✦ Do project teams build
software from centrally-
controlled platforms
and frameworks?
 ✦ Are project teams audited
for the use of secure
architecture components?

results ✦ Ad hoc prevention of unexpected
dependencies and one-off
implementation choices
 ✦ Stakeholders aware of increased
project risk due to libraries
and frameworks chosen
 ✦ Established protocol
within development for
proactively applying security
mechanisms to a design

 ✦ Detailed mapping of assets to
user roles to encourage better
compartmentalization in design
 ✦ Reusable design building
blocks for provision of security
protections and functionality
 ✦ Increased confidence for software
projects from use of established
design techniques for security

 ✦ Customized application
development platforms
that provide built-in
security protections
 ✦ Organization-wide
expectations for proactive
security effort in development
 ✦ Stakeholders better able
to make tradeoff decisions
based on business need
for secure design

SA
M

M
 /

TH
E S

EC
U

RI
TY

 P
RA

CT
IC

ES
 -

V1
.5

45

Activities

A . Maintain list of recommended software frameworks
Across software projects within the organization identify commonly used third-party
software libraries and frameworks in use. Generally, this need not be an exhaustive search
for dependencies, but rather focus on capturing the high-level components that are most
often used.

From the list of components, group them into functional categories based on the core
features provided by the third-party component. Also, note the usage prevalence of each
component across project teams to weight the reliance upon the third-party code.
Using this weighted list as a guide, create a list of components to be advertised across the
development organization as recommended components.

Several factors should contribute to decisions for inclusion on the recommended list.
Although a list can be created without conducting research specifically, it is advisable to
inspect each for incident history, track record for responding to vulnerabilities,
appropriateness of functionality for the organization, excessive complexity in usage of the
third-party compo-nent, etc.

This list should be created by senior developers and architects, but also include input from
managers and security auditors. After creation, this list of recommended components
matched against functional categories should be advertised to the development organization.
Ultimately, the goal is to provide well-known defaults for project teams.

B . Explicitly apply security principles to design
During design, technical staff on the project team should use a short list of guiding security
principles as a checklist against detailed system designs. Typically, security principles include
defense in depth, securing the weakest link, use of secure defaults, simplicity in design of
security functionality, secure failure, balance of security and usability, running with least
privilege, avoidance of security by obscurity, etc.

In particular for perimeter interfaces, the design team should consider each principle in the
context of the overall system and identify features that can be added to bolster security
at each such interface. Generally, these should be limited such that they only take a small
amount of extra effort beyond the normal implementation cost of functional requirements
and anything larger should be noted and scheduled for future releases.

While this process should be conducted by each project team after being trained with
security awareness, it is helpful to incorporate more security-savvy staff to aide in making
design decisions.

Insert consideration of proactive security guidance into the software design process

assessment

 ✦ Are project teams provided with a list of
recommended third-party components?
 ✦ Are project teams aware of
secure design principles and do
they apply them consistently?

results

 ✦ Ad hoc prevention of unexpected
dependencies and one-off
implementation choices
 ✦ Stakeholders aware of increased
project risk due to libraries
and frameworks chosen
 ✦ Established protocol within
development for proactively applying
security mechanisms to a design

success metrics

✦ >80% of development staff briefed
on software framework
recommendations in the past year

✦ >50% of projects self-reporting
application of security principles to
design

costs

 ✦ Buildout, maintenance, and awareness of
software framework recommendations
 ✦ Ongoing project overhead from analysis
and application of security principles

personnel

 ✦ Architects
 ✦ Developers
 ✦ Security Auditors
 ✦ Managers

related levels

 ✦ Education & Guidance - 1

Secure Architecture 1SA

SA
M

M
 /

TH
E S

EC
U

RI
TY

 P
RA

CT
IC

ES
 -

V1
.5

46

Activities

A . Identify and promote security services and infrastructure
Organizations should identify shared infrastructure or services with security functionality.
These will typically include single-sign-on services, corporate directory systems, access
control or entitlements services, and authentication systems. By collecting and evaluating
reusable systems, assemble a list of such resources and categorize them by the security
mechanism they fulfill. It is also helpful to consider each resource in terms of why a
development team would want to integrate with it, i.e. the benefits of using the shared
resource.

If multiple resources exist in each category, an organization should select and standardize
on one or more shared service per category. Because future software development will
rely on these selected services, each should be thoroughly audited to ensure the baseline
security posture is understood. For each selected service, design guidance should be
created for development teams to understand how to integrate with the system. After
such guidance is assembled, it should be made available to development teams through
training, mentorship, guidelines, and standards.

The benefits of doing this include promotion of known-secure systems, simplified security
guidance for project design teams, and clearer paths to building assurance around the
ap-plications utilizing the shared security services.

B . Identify security design patterns from architecture
Across software projects at an organization, each should be categorized in terms of
the generic architecture type. Common categories include client-server applications,
embedded systems, desktop applications, web-facing applications, web services platforms,
transactional middleware systems, mainframe applications, etc. Depending on your
organizations specialty, more detailed categories may need to be developed based upon
language, or processor architecture, or even era of deployment.

For the generic software architecture type, a set of general design patterns
representing sound methods of implementing security functionality can be derived and
applied to the individual designs of an organization’s software projects. These security
design patterns represent general definitions of generic design elements they can be
researched or purchased, and it is often even more effective if these patterns are
customized to be made more specific to your organization. Example patterns include a
single-sign-on subsystem, a cross-tier delegation model, a hardened interface design,
separation-of-duties authorization model, a centralized logging pattern, etc.

The process of identification of applicable and appropriate patterns should be carried out
by architects, senior developers, and other technical stakeholders during the design phase.

Direct the software design process toward known-secure services and secure-by-default designs

assessment

 ✦ Do you advertise shared security
services with guidance for project teams?
 ✦ Are project teams provided with
prescriptive design patterns based
on their application architecture?

results

 ✦ Detailed mapping of assets to
user roles to encourage better
compartmentalization in design
 ✦ Reusable design building
blocks for provision of security
protections and functionality
 ✦ Increased confidence for software
projects from use of established
design techniques for security

success metrics

✦ >80% of projects with updated
permission matrix in the past six months

✦ >80% of project teams
briefed on applicable security patterns in
the past six months

costs

 ✦ Buildout or license of applicable
security patterns
 ✦ Ongoing project overhead from
maintenance of permission matrix

personnel

 ✦ Architects
 ✦ Developers
 ✦ Managers
 ✦ Business Owners
 ✦ Security Auditors

related levels

 ✦ Education & Guidance - 1

Secure Architecture2SA

SA
M

M
 /

TH
E S

EC
U

RI
TY

 P
RA

CT
IC

ES
 -

V1
.5

47

Activities

A . Establish formal reference architectures and platforms
After promoting integration with shared security services and working with security pat-
terns specific to each type of architecture, a collection of code implementing these pieces
of functionality should be selected from project teams and used as the basis for a shared
code-base. This shared code-base can initially start as a collection of commonly
recommended libraries that each project needs to use and it can grow over time into one
or more software frameworks representing reference platforms upon which project teams
build their software. Examples of reference platforms include frameworks for model-
view-controller web applications, libraries supporting transactional back-end systems,
frameworks for web services platforms, scaffolding for client-server applications,
frameworks for middle-ware with pluggable business logic, etc.

Another method of building initial reference platforms is to select a particular project early
in the life-cycle and have security-savvy staff work with them to build the security
functionality in a generic way so that it could be extracted from the project and utilized
elsewhere in the organization.

Regardless of approach to creation, reference platforms have advantages in terms of
shortening audit and security-related reviews, increasing efficiency in development, and
lowering maintenance overhead.

Architects, senior developers and other technical stakeholders should participate in design
and creation of reference platforms. After creation, a team must maintain ongoing support
and updates.

B . Validate usage of frameworks, patterns, and platforms
During routine audits of projects conduct additional analysis of project artifacts to measure
usage of recommended frameworks, design patterns, shared security services, and
reference platforms. Though conducted during routine audits, the goal of this activity is to
collect feedback from project teams as much as to measure their individual proactive
security effort.

Overall, it is important to verify several factors with project teams. Identify use of
non-recommended frameworks to determine if there may be a gap in recommendations
versus the organization’s functionality needs. Examine unused or incorrectly used design
patterns and reference platform modules to determine if updates are needed. Additionally,
there may be more or different functionality that project teams would like to see
implemented in the reference platforms as the organization evolves.

This analysis can be conducted by any security-savvy technical staff. Metrics collected from
each project should be collated for analysis by managers and stakeholders.

Formally control the software design process and validate utilization of secure components

assessment

 ✦ Do project teams build software
from centrally-controlled
platforms and frameworks?
 ✦ Are project teams audited for the use
of secure architecture components?

results

 ✦ Customized application development
platforms that provide built-
in security protections
 ✦ Organization-wide expectations for
proactive security effort in development
 ✦ Stakeholders better able to make
tradeoff decisions based on
business need for secure design

success metrics

✦ >50% of active projects using reference
platforms

✦ >80% of projects reporting framework,
pattern, and platform usage feedback in the
past six months

✦ >3.0 Likert Scale on usefulness of guidance/
platforms reported by project teams

costs

 ✦ Buildout or license of
reference platform(s)
 ✦ Ongoing maintenance and support
of reference platforms
 ✦ Ongoing project overhead from
usage validation during audit

personnel

 ✦ Managers
 ✦ Business Owners
 ✦ Architects
 ✦ Developers
 ✦ Security Auditors

related levels

 ✦ Policy & Compliance - 2
 ✦ Design Review - 3
 ✦ Implementation Review - 3
 ✦ Security Testing - 3

Secure Architecture 3SA

SA
M

M
 /

TH
E S

EC
U

RI
TY

 P
RA

CT
IC

ES
 -

V1
.5

48

1DR 2DR 3DR

Design Review

objective Support ad hoc reviews
of software design to
ensure baseline mitigations
for known risks.

Offer assessment services
to review software design
against comprehensive
best practices for security.

Require assessments and
validate artifacts to develop
detailed understanding of
protection mechanisms.

Activities A. Identify software attack surface
B. Analyze design against known

security requirements

A. Inspect for complete provision
of security mechanisms

B. Deploy design review
service for project teams

A. Develop data-flow diagrams
for sensitive resources

B. Establish release gates
for design review

Assessment ✦ Do project teams document
the attack perimeter of
software designs?
 ✦ Do project teams check
software designs against
known security risks?

 ✦ Do project teams specifically
analyze design elements for
security mechanisms?
 ✦ Are project stakeholders
aware of how to obtain a
formal secure design review?

 ✦ Does the secure design
review process incorporate
detailed data-level analysis?
 ✦ Does a minimum security
baseline exist for secure
design review results?

results ✦ High-level understanding of
security implications from
perimeter architecture
 ✦ Enable development teams
to self-check designs for
security best-practices
 ✦ Lightweight process
for conducting project-
level design reviews

 ✦ Formally offered assessment
service to consistently review
architecture for security
 ✦ Pinpoint security flaws
in maintenance-mode
and legacy systems
 ✦ Deeper understanding amongst
project stakeholders on
how the software provides
assurance protections

 ✦ Granular view of weak
points in a system design
to encourage better
compartmentalization
 ✦ Organization-level awareness
of project standing against
baseline security expectations
for architecture
 ✦ Comparisons between
projects for efficiency
and progress toward
mitigating known flaws

SA
M

M
 /

TH
E S

EC
U

RI
TY

 P
RA

CT
IC

ES
 -

V1
.5

49

Activities

A . Identify software attack surface
For each software project, create a simplified view of the overall architecture. Typically, this
should be created based on project artifacts such as high-level requirements and
design documents, interviews with technical staff, or module-level review of the code base.
It is important to capture the high-level modules in the system, but a good rule of thumb
for granularity is to ensure that the diagram of the whole system under review fits onto
one page.

From the single page architecture view, analyze each component in terms of accessibility of
the interfaces from authorized users, anonymous users, operators, application-specific
roles, etc. The components providing the interfaces should also be considered in the
context of the one-page view to find points of functional delegation or data pass-through
to other com-ponents on the diagram. Group interfaces and components with similar
accessibility profiles and capture this as the software attack surface.

For each interface, further elaborate the one-page diagram to note any security-
related functionality. Based on the identified interface groups comprising the attack surface,
check the model for design-level consistency for how interfaces with similar access are
secured. Any breaks in consistency can be noted as assessment findings

This analysis should be conducted by security-savvy technical staff, either within the project
team or external. Typically, after initial creation, the diagram and attack surface analysis only
needs to be updated during the design phase when additions or changes are made to the
edge system interfaces.

B . Analyze design against known security requirements
Security requirements, either formally identified or informally known, should be
identified and collected. Additionally, identify and include any security assumptions upon
which safe operation of the system relies.

Review each item on the list of known security requirements against the one-page diagram
of the system architecture. Elaborate the diagram to show the design-level features
that address each security requirement. Separate, granular diagrams can be created to
simplify capturing this information if the system is large and/or complex. The overall goal is
to verify that each known security requirement has been addressed by the system design.
Any security requirements that are not clearly provided at the design level should be noted
as assessment findings.

This analysis should be conducted by security-savvy technical staff with input from
architects, developers, managers, and business owners as needed. It should be updated
during the design phase when there are changes in security requirements or high-level
system design.

Support ad hoc reviews of software design to ensure baseline mitigations for known risks

assessment

 ✦ Do project teams document the attack
perimeter of software designs?
 ✦ Do project teams check software
designs against known security risks?

results

 ✦ High-level understanding of security
implications from perimeter architecture
 ✦ Enable development teams to self-check
designs for security best-practices
 ✦ Lightweight process for conducting
project-level design reviews

success metrics

 ✦ >50% of projects with updated attack
surface analysis in past 12 months
 ✦ >50% of projects with updated
security requirements design-level
analysis in past 12 months

costs

 ✦ Buildout and maintenance of
architecture diagrams for each project
 ✦ Ongoing project overhead from
attack surface and security
requirement design inspection

personnel

 ✦ Architects
 ✦ Developers
 ✦ Managers
 ✦ Security Auditor

related levels

 ✦ Security Requirements - 1

Design Review 1DR

SA
M

M
 /

TH
E S

EC
U

RI
TY

 P
RA

CT
IC

ES
 -

V1
.5

50

Activities

A . Inspect for complete provision of security mechanisms
For each interface on a module in the high-level architecture diagram, formally iterate
through the list of security mechanisms and analyze the system for their provision. This type
of analysis should be performed on both internal interfaces, e.g. between tiers, as well as
external ones, e.g. those comprising the attack surface.

The six main security mechanisms to consider are authentication, authorization, input
validation, output encoding, error handling, and logging. Where relevant, also consider the
mechanisms of cryptography and session management. For each interface, determine
where in the system design each mechanism is provided and note any missing or unclear
features as findings.

This analysis should be conducted by security-savvy staff with assistance from the project
team for application-specific knowledge. This analysis should be performed once per release,
usually toward the end of the design phase. After initial analysis, subsequent releases are
required to update the findings based on changes being made during the development cycle.

B . Deploy design review service for project teams
Institute a process whereby project stakeholders can request a design review. This service
may be provided centrally within the organization or distributed across existing staff, but all
reviewers must be trained on performing the reviews completely and consistently.

The review service should be centrally managed in that the review request queue should
be triaged by senior managers, architects, and stakeholders that are familiar with the
overall business risk profile for the organization. This allows prioritization of project
reviews in alignment with overall business risk.

During a design review, the review team should work with project teams to collect
information sufficient to formulate an understanding of the attack surface, match project-
specific security requirements to design elements, and verify security mechanisms at
module interfaces.

Offer assessment services to review software design against comprehensive best practices for security

assessment

 ✦ Do project teams specifically analyze
design elements for security mechanisms?
 ✦ Are project stakeholders aware of how
to obtain a formal secure design review?

results

 ✦ Formally offered assessment
service to consistently review
architecture for security
 ✦ Pinpoint security flaws in maintenance-
mode and legacy systems
 ✦ Deeper understanding amongst project
stakeholders on how the software
provides assurance protections

success metrics

✦ >80% of stakeholders briefed on status of
review requests in the past six months

✦ >75% of projects undergoing
design review in the past 12 months

costs

 ✦ Buildout, training, and maintenance
of design review team
 ✦ Ongoing project overhead
from review activities

personnel

 ✦ Architects
 ✦ Developers
 ✦ Managers
 ✦ Security Auditors

related levels

 ✦ Education & Guidance - 2
 ✦ Strategy & Metrics - 2

Design Review2DR

SA
M

M
 /

TH
E S

EC
U

RI
TY

 P
RA

CT
IC

ES
 -

V1
.5

51

Activities

A . Develop data-flow diagrams for sensitive resources
Based on the business function of the software project, conduct analysis to identify details on
system behavior around high-risk functionality. Typically, high-risk functionality will correlate
to features implementing creation, access, update, and deletion of sensitive data. Beyond data,
high-risk functionality also includes project-specific business logic that is critical in nature,
either from a denial-of-service or compromise perspective.

For each identified data source or business function, select and use a standardized notation
to capture relevant software modules, data sources, actors, and messages that flow amongst
them. It is often helpful to start with a high-level design diagram and iteratively flesh out
relevant detail while removing elements that do not correspond to the sensitive resource.

With data-flow diagrams created for a project, conduct analysis over them to determine
internal choke-points in the design. Generally, these will be individual software modules
that handle data with differing sensitivity levels or those that gate access to several
business functions of various levels of business criticality.

B . Establish release gates for design review
Having established a consistent design review program, the next step of enforcement
is to set a particular point in the software development lifecycle where a project
cannot pass until an design review is conducted and findings are reviewed and accepted. In
order to accomplish this, a baseline level of expectations should be set, e.g. no projects
with any high-severity findings will be allowed to pass and all other findings must be
accepted by the business owner.

Generally, design reviews should occur toward the end of the design phase to aide early
detection of security issues, but it must occur before releases can be made from the project
team.

For legacy systems or inactive projects, an exception process should be created to allow
those projects to continue operations, but with an explicitly assigned time-frame for each to
be reviewed to illuminate any hidden vulnerabilities in the existing systems. Exceptions for
should be limited to no more than 20% of all projects.

Require assessments and validate artifacts to develop detailed understanding of protection mechanisms

assessment

 ✦ Does the secure design review process
incorporate detailed data-level analysis?
 ✦ Does a minimum security baseline exist
for secure design review results?

results

 ✦ Granular view of weak points in
a system design to encourage
better compartmentalization
 ✦ Organization-level awareness of project
standing against baseline security
expectations for architecture
 ✦ Comparisons between projects
for efficiency and progress toward
mitigating known flaws

success metrics

✦ >80% of projects with updated data-
flow diagrams in the past six months

✦ >75% of projects passing design
review audit in the past six months

costs

 ✦ Ongoing project overhead from
maintenance of data-flow diagrams
 ✦ Organization overhead from
project delays caused by failed
design review audits

personnel

 ✦ Developers
 ✦ Architects
 ✦ Managers
 ✦ Business Owners
 ✦ Security Auditors

related levels

 ✦ Secure Architecture - 3
 ✦ Code Review - 3

Design Review 3DR

SA
M

M
 /

TH
E S

EC
U

RI
TY

 P
RA

CT
IC

ES
 -

V1
.5

52

1IR 2IR 3IR

Implementation Review

objective Opportunistically find basic
code-level vulnerabilities and
other high-risk security issues.

Make implementation
review during development
more accurate and efficient
through automation.

Mandate comprehensive
code review process to
discover language-level and
application-specific risks.

Activities A. Create review checklists from
known security requirements

B. Perform point-review
of high-risk code

A. Utilize automated code
analysis tools

B. Integrate code analysis into
development process

A. Customize code analysis for
application-specific concerns

B. Establish release gates for
implementation review

Assessment ✦ Do project teams have review
checklists based on common
security related problems?
 ✦ Do project teams review
selected high-risk code?

 ✦ Can project teams access
automated code analysis tools
to find security problems?
 ✦ Do stakeholders consistently
review results from code reviews?

 ✦ Do project teams utilize
automation to check code
against application-specific
coding standards?
 ✦ Does a minimum security
baseline exist for code
review results?

results ✦ Inspection for common
configuration or code
vulnerabilities that lead to
likely discovery or attack
 ✦ Lightweight review for
coding errors that lead to
severe security impact
 ✦ Basic code-level due diligence
for security assurance

 ✦ Development enabled to
consistently self-check for code-
level security vulnerabilities
 ✦ Routine analysis results to
compile historic data on per-
team secure coding habits
 ✦ Stakeholders aware of
unmitigated vulnerabilities to
support better tradeoff analysis

 ✦ Increased confidence in
accuracy and applicability
of code analysis results
 ✦ Organization-wide
baseline for secure
coding expectations
 ✦ Project teams with an
objective goal for judging
code-level security

SA
M

M
 /

TH
E S

EC
U

RI
TY

 P
RA

CT
IC

ES
 -

V1
.5

53

Activities

A . Create review checklists from known security requirements
From the known security requirements for a project, derive a lightweight
implementation review checklist for security. These can be checks specific to the
security concerns surrounding the functional requirements or checks for secure coding
best practices based on the implementation language, platform, typical technology stack,
etc. Due to these variations, often a set of checklist are needed to cover the different
types of software development within an organization.

Regardless of whether created from publicly available resources or purchased, technical
stakeholders such as development managers, architects, developers, and security auditors
should review the checklists for efficacy and feasibility. It is important to keep the lists short
and simple, aiming to catch high-priority issues that are straightforward to find in code either
manually or with simple search tools. Code analysis automation tools may also be used to
achieve this same end, but should also be customized to reduce the overall set of security
checks to a small, valuable set in order to make the scan and review process efficient.

Developers should be briefed on the goals of checklists appropriate to their job function.

B . Perform point-review of high-risk code
Since code-level vulnerabilities can have dramatically increased impacts if they occur in
security-critical parts of software, project teams should review high-risk modules for
common vulnerabilities. Common examples of high-risk functionality include authentication
modules, access control enforcement points, session management schemes, external
interfaces, input validators and data parsers, etc.

Utilizing the implementation review checklists, the analysis can be performed as a normal
part of the development process where members of the project team are assigned modules
to review when changes are made. Security auditors and automated review tools can also
be utilized for the review.

During development cycles where high-risk code is being changed and reviewed,
development managers should triage the findings and prioritize remediation appropriately
with input from other project stakeholders.

Opportunistically find basic code-level vulnerabilities and other high-risk security issues

assessment

 ✦ Do project teams have review
checklists based on common
security related problems?
 ✦ Do project teams review
selected high-risk code

results

 ✦ Inspection for common configuration
or code vulnerabilities that lead
to likely discovery or attack
 ✦ Lightweight review for coding errors
that lead to severe security impact
 ✦ Basic code-level due diligence
for security assuranc

success metrics

✦ >80% of project teams briefed on
relevant code review checklists in
the past six months

✦ >50% of project teams performing
code review on high-risk
code in the past six months

✦ >3.0 Likert Scale on usefulness of code
review checklists reported by developers

costs

 ✦ Buildout or license of code
review checklists
 ✦ Ongoing project overhead from code
review activities of high-risk code

personnel

 ✦ Developers
 ✦ Architects
 ✦ Managers
 ✦ Business Owners

related levels

 ✦ Security Requirements - 1

Implementation Review 1IR

SA
M

M
 /

TH
E S

EC
U

RI
TY

 P
RA

CT
IC

ES
 -

V1
.5

54

Activities

A . Utilize automated code analysis tools
Although any such tool can produce false positives, it can save a lot of time and energy, by
helping focus attention on the most suspicious sections of code.

Many security vulnerabilities at the code level are complex to understand and require
careful inspection for discovery. However, there are many useful automation solutions
available to automatically analyze code for bugs and vulnerabilities.

There are both commercial and open-source products available to cover popular
programming languages and frameworks. Selection of an appropriate code analysis solution
is based on several factors including depth and accuracy of inspection, product usability
and usage model, expandability and customization features, applicability to the
organization’s architec-ture and technology stack(s), etc.

Utilize input from security-savvy technical staff as well as developers and development
managers in the selection process, and review overall results with stakeholders.

B . Integrate code analysis into development process
Once a code analysis solution is selected, it must be integrated into the development process
to encourage project teams to utilize its capabilities. An effective way to accomplish this is to
setup the infrastructure for the scans to run automatically at build time or from code in
the project’s code repository. In this fashion, results are available earlier thus enabling
development teams to self-check along the way before release.

A potential problem with legacy systems or large ongoing projects is that code scanners will
typically report findings in modules that were not being updated in the release. If automatic
scanning is setup to run periodically, an effective strategy to avoid review overhead is to
limit consideration of findings to those that have been added, removed, or changed since
the previous scan. It is critical to not ignore the rest of the results however, so development
managers should take input from security auditors, stakeholders, and the project team to
formulate a concrete plan for addressing the rest of the findings.

If unaddressed findings from implementation review remain at time of release, these
must be reviewed, assigned a risk rating and accepted by project stakeholders.

Make implementation review during development more accurate and efficient through automation

assessment

 ✦ Can project teams access
automated code analysis tools
to find security problems?
 ✦ Do stakeholders consistently review
results from code reviews?

results

 ✦ Development enabled to
consistently self-check for code-
level security vulnerabilities
 ✦ Routine analysis results to
compile historic data on per-
team secure coding habits
 ✦ Stakeholders aware of unmitigated
vulnerabilities to support
better tradeoff analysis

success metrics

✦ >50% of projects with code review and
stakeholder sign-off in the past six months

✦ >80% of projects with access
to automated code review
results in the past month

costs

 ✦ Research and selection of
code analysis solution
 ✦ Initial cost and maintenance of
automation integration
 ✦ Ongoing project overhead from
automated code review and mitigation

personnel

 ✦ Developers
 ✦ Architects
 ✦ Managers
 ✦ Security Auditors

related levels

Implementation Review2IR

SA
M

M
 /

TH
E S

EC
U

RI
TY

 P
RA

CT
IC

ES
 -

V1
.5

✦ None

55

Activities

A . Customize code analysis for application-specific concerns
Code scanning tools are powered by built-in a knowledge-base of rules to check code based
on language APIs and commonly used libraries, but have limited ability to understand
custom APIs and designs to apply analogous checks. However, through customization, a
code scanner can be a powerful, generic analysis engine for finding organization and
project-specific security concerns.

While details vary between tools in terms of ease and power of custom analysis, code scan-
ner customization generally involves specifying checks to be performed at specific APIs and
function call sites. Checks can include analysis for adherence to internal coding
standards, unchecked tainted data being passed to custom interfaces, tracking and
verification of sensitive data handling, correct usage of an internal API, etc.

Checkers for usage of shared code-bases are an effective place to begin scanner
customizations since the created checkers can be utilized across multiple projects. To
customize a tool for a code-base, a security auditor should inspect both code and high-
level design to identify candidate checkers to discuss with development staff and
stakeholders for implementation.

B . Establish release gates for implementation review
To set a code-level security baseline for all software projects, a particular point in the
software development life-cycle should be established as a checkpoint where a minimum
standard for implementation review results must be met in order to make a release.

To begin, this standard should be straightforward to meet, for example by choosing one or
two vulnerability types and a setting the standard that no project may pass with any
corresponding findings. Over time, this baseline standard should be improved by adding
additional criteria for passing the checkpoint.

Generally, the implementation review checkpoint should occur toward the end of the imple-
mentation phase, but must occur before release.

For legacy systems or inactive projects, an exception process should be created to
allow those projects to continue operations, but with an explicitly assigned timeframe for
mitigation of findings. Exceptions should be limited to no more that 20% of all projects.

Mandate comprehensive implementation review process to discover language-level and application-specific risks

assessment

 ✦ Do project teams utilize automation
to check code against application-
specific coding standards?
 ✦ Does a minimum security baseline
exist for code review results?

results

 ✦ Increased confidence in accuracy and
applicability of code analysis results
 ✦ Organization-wide baseline for
secure coding expectations
 ✦ Project teams with an objective goal
for judging code-level security

success metrics

✦ >50% of projects using code
analysis customizations

✦ >75% of projects passing code
review audit in the past six months

costs

 ✦ Buildout and maintenance of
custom code review checks
 ✦ Ongoing project overhead
from code review audit
 ✦ Organization overhead from project
delays caused by failed code review audits

personnel

 ✦ Architects
 ✦ Developers
 ✦ Security Auditors
 ✦ Business Owners
 ✦ Managers

related levels

 ✦ Policy & Compliance - 2
 ✦ Secure Architecture - 3

Implementation Review 3IR

SA
M

M
 /

TH
E S

EC
U

RI
TY

 P
RA

CT
IC

ES
 -

V1
.5

56

1ST 2ST 3ST

Security Testing

objective Establish process to perform
basic security tests based
on implementation and
software requirements.

Make security testing
during development more
complete and efficient
through automation.

Require application-
specific security testing to
ensure baseline security
before deployment.

Activities A. Derive test cases from known
security requirements

B. Conduct penetration testing
on software releases

A. Utilize automated
security testing tools

B. Integrate security testing
into development process

A. Employ application-specific
security testing automation

B. Establish release gates
for security testing

Assessment ✦ Do projects specify security
testing based on defined
security requirements?
 ✦ Is penetration testing
performed on high risk
projects prior to release?
 ✦ Are stakeholders aware
of the security test status
prior to release?

 ✦ Do projects use automation to
evaluate security test cases?
 ✦ Do projects follow a consistent
process to evaluate and report
on security tests to stakeholders?

 ✦ Are security test cases
comprehensively generated
for application-specific logic?
 ✦ Does a minimum
security baseline exist
for security testing?

results ✦ Independent verification
of expected security
mechanisms surrounding
critical business functions
 ✦ High-level due diligence
toward security testing
 ✦ Ad hoc growth of a security test
suite for each software project

 ✦ Deeper and more consistent
verification of software
functionality for security
 ✦ Development teams enabled
to self-check and correct
problems before release
 ✦ Stakeholders better aware of
open vulnerabilities when making
risk acceptance decisions

 ✦ Organization-wide baseline
for expected application
performance against attacks
 ✦ Customized security test
suites to improve accuracy
of automated analysis
 ✦ Project teams aware
of objective goals for
attack resistance

SA
M

M
 /

TH
E S

EC
U

RI
TY

 P
RA

CT
IC

ES
 -

V1
.5

57

Activities

A . Derive test cases from known security requirements
From the known security requirements for a project, identify a set of test cases to check
the software for correct functionality. Typically, these test cases are derived from security
concerns surrounding the functional requirements and business logic of the system, but
should also include generic tests for common vulnerabilities based on the implementation
language or technology stack.

Often, it is most effective to use the project team’s time to build application-specific test
cases and utilize publicly available resources or purchased knowledge bases to select
applicable general test cases for security. Although not required, automated security testing
tools can also be utilized to cover the general security test cases.

This test case planning should occur during the requirements and/or design phases, but
must occur before final testing prior to release. Candidate test cases should be reviewed
for applicability, efficacy, and feasibility by relevant development, security, and quality
assurance staff.

B . Conduct penetration testing on software releases
Using the set of security test cases identified for each project, penetration testing should
be conducted to evaluate the system’s performance against each case. It is common for this
to occur during the testing phase prior to release.

Penetration testing cases should include both application-specific tests to check soundness
of business logic as well as common vulnerability tests to check the design and
implementation. Once specified, security test cases can be executed by security-savvy
quality assurance or development staff, but first-time execution of security test cases for a
project team should be monitored by a security auditor to assist and coach team members.

Prior to release or deployment, stakeholders must review results of security tests and
accept the risks indicated by failing security tests at release time. In the latter case, a
concrete timeline should be established to address the gaps over time.

Establish process to perform basic security tests based on implementation and software requirements

assessment

 ✦ Do projects specify security testing
based on defined security requirements?
 ✦ Is penetration testing performed on
high risk projects prior to release?
 ✦ Are stakeholders aware of the
security test status prior to release?

results

 ✦ Independent verification of expected
security mechanisms surrounding
critical business functions
 ✦ High-level due diligence
toward security testing
 ✦ Ad hoc growth of a security test
suite for each software project

success metrics

✦ >50% of projects specifying security
test cases in the past 12 months

✦ >50% of stakeholders briefed on
project status against security tests
in the past six months

costs

 ✦ Buildout or license of security test cases
 ✦ Ongoing project overhead from
maintenance and evaluation
of security test cases

personnel

 ✦ QA Testers
 ✦ Security Auditor
 ✦ Developers
 ✦ Architects
 ✦ Business Owners

related levels

 ✦ Security Requirements - 1

Security Testing 1ST

SA
M

M
 /

TH
E S

EC
U

RI
TY

 P
RA

CT
IC

ES
 -

V1
.5

58

Activities

A . Utilize automated security testing tools
In order to test for security issues, a potentially large number of input cases must be checked
against each software interface, which can make effective security testing using manual test
case implementation and execution unwieldy. Thus, automated security test tools should be
used to automatically test software, resulting in more efficient security testing and higher
quality results.

Both commercial and open-source products are available and should be reviewed for
appropriateness for the organization. Selecting a suitable tool is based on several factors
including robustness and accuracy of built-in security test cases, efficacy at testing
architecture types important to organization, customization to change or add test cases,
quality and usability of findings to the development organization, etc..

Utilize input from security-savvy technical staff as well as development and quality assurance
staff in the selection process, and review overall results with stakeholders.

B . Integrate security testing into development process
With tools to run automated security tests, projects within the organization should routinely
run security tests and review results during development. In order to make this scalable with
low overhead, security testing tools should be configured to automatically run on a routine
basis, e.g. nightly or weekly, and findings should be inspected as they occur.

Conducting security tests as early as the requirements or design phases can be beneficial.
While traditionally, used for functional test cases, this type of test-driven development
approach involves identifying and running relevant security test cases early in the
development cycle, usually during design. With the automatic execution of security test
cases, projects enter the implementation phase with a number of failing tests for the non-
existent functionality. Implementation is complete when all the tests pass. This provides a
clear, upfront goal for developers early in the development cycle, thus lowering risk of
release delays due to security concerns or forced acceptance of risk in order to meet
project deadlines.

For each project release, results from automated and manual security tests should be
presented to management and business stakeholders for review. If there are unaddressed
findings that remain as accepted risks for the release, stakeholders and development
managers should work together to establish a concrete timeframe for addressing them.

Make security testing during development more complete and efficient through automation

assessment

 ✦ Do projects use automation to
evaluate security test cases?
 ✦ Do projects follow a consistent
process to evaluate and report on
security tests to stakeholders?

results

 ✦ Deeper and more consistent verification
of software functionality for security
 ✦ Development teams enabled
to self-check and correct
problems before release
 ✦ Stakeholders better aware of
open vulnerabilities when making
risk acceptance decisions

success metrics

✦ >50% of projects with security testing and
stakeholder sign-off in the past six months

✦ >80% of projects with access
to automated security testing
results in the past month

costs

 ✦ Research and selection of automated
security testing solution
 ✦ Initial cost and maintenance of
automation integration
 ✦ Ongoing project overhead from
automated security testing and mitigation

personnel

 ✦ Developers
 ✦ Architects
 ✦ Managers
 ✦ Security Auditors
 ✦ QA Testers

related levels

Security Testing2ST

SA
M

M
 /

TH
E S

EC
U

RI
TY

 P
RA

CT
IC

ES
 -

V1
.5

✦ None

59

Activities

A . Employ application-specific security testing automation
Through either customization of security testing tools, enhancements to generic test case
execution tools, or buildout of custom test harnesses, project teams should formally iterate
through security requirements and build a set of automated checkers to test the security of
the implemented business logic.

Additionally, many automated security testing tools can be greatly improved in accuracy
and depth of coverage if they are customized to understand more detail about the specific
software interfaces in the project under test. Further, organization-specific concerns from
compliance or technical standards can be codified as a reusable, central test battery to make
audit data collection and per-project management visibility simpler.

Project teams should focus on buildout of granular security test cases based on the
business functionality of their software, and an organization-level team led by a security
auditor should focus on specification of automated tests for compliance and internal
standards.

B . Establish release gates for security testing
To prevent software from being released with easily found security bugs, a particular point
in the software development lifecycle should be identified as a checkpoint where an
established set of security test cases must pass in order to make a release from the
project. This establishes a baseline for the kinds of security tests all projects are expected
to pass.

Since adding too many test cases initially can result in an overhead cost bubble, begin
by choosing one or two security issues and include a wide variety of test cases for each
with the expectation that no project may pass if any test fails. Over time, this baseline
should be improved by selecting additional security issues and adding a variety of
corresponding test cases.

Generally, this security testing checkpoint should occur toward the end of the
implementation or testing, but must occur before release.

For legacy systems or inactive projects, an exception process should be created to
allow those projects to continue operations, but with an explicitly assigned timeframe for
mitigation of findings. Exceptions should be limited to no more that 20% of all projects.

Require application-specific security testing to ensure baseline security before deployment

assessment

 ✦ Are security test cases comprehensively
generated for application-specific logic?
 ✦ Does a minimum security baseline
exist for security testing?

results

 ✦ Organization-wide baseline for expected
application performance against attacks
 ✦ Customized security test suites to
improve accuracy of automated analysis
 ✦ Project teams aware of objective
goals for attack resistance

success metrics

✦ >50% of projects using security
testing customizations

✦ >75% of projects passing all
security tests in the past six months

costs

 ✦ Buildout and maintenance of
customizations to security
testing automation
 ✦ Ongoing project overhead from
security testing audit process
 ✦ Organization overhead from
project delays caused by failed
security testing audits

personnel

 ✦ Architects
 ✦ Developers
 ✦ Security Auditors
 ✦ QA Testers
 ✦ Business Owners
 ✦ Managers

related levels

 ✦ Policy & Compliance - 2
 ✦ Secure Architecture - 3

Security Testing 3ST

SA
M

M
 /

TH
E S

EC
U

RI
TY

 P
RA

CT
IC

ES
 -

V1
.5

60

1IM 2IM 3IM

Issue Management

objective Understand high-level plan
for responding to issue
reports or incidents.

Elaborate expectations
for response process to
improve consistency and
communications.

Improve analysis and data
gathering within response
process for feedback into
proactive planning.

Activities A. Identify point of contact
for security issues

B. Create informal security
response team(s)

A. Establish consistent incident
response process

B. Adopt a security issue
disclosure process

A. Conduct root cause
analysis for incidents

B. Collect per-incident metrics

Assessment ✦ Do projects have a point
of contact for security
issues or incidents?
 ✦ Does your organization have an
assigned security response team?
 ✦ Are project teams aware
of their security point(s) of
contact and response team(s)?

 ✦ Does the organization utilize a
consistent process for incident
reporting and handling?
 ✦ Are project stakeholders
aware of relevant security
disclosures related to their
software projects?

 ✦ Are incidents inspected for
root causes to generate
further recommendations?
 ✦ Do projects consistently
collect and report data and
metrics related to incidents?

results ✦ Lightweight process in place
to handle high-priority
issues or incidents
 ✦ Framework for stakeholder
notification and reporting of
events with security impact
 ✦ High-level due diligence for
handling security issues

 ✦ Communications plan for
dealing with issue reports
from third-parties
 ✦ Clear process for releasing
security patches to
software operators
 ✦ Formal process for tracking,
handling, and internally
communicating about incidents

 ✦ Detailed feedback for
organizational improvement
after each incident
 ✦ Rough cost estimation from
issue and compromises
 ✦ Stakeholders better able to
make tradeoff decisions based
on historic incident trends

SA
M

M
 /

TH
E S

EC
U

RI
TY

 P
RA

CT
IC

ES
 -

V1
.5

61

Activities

A . Identify point of contact for security issues
For each division within the organization or for each project team, establish a point of
contact to serve as a communications hub for security information. While generally this
responsibility will not claim much time from the individuals, the purpose of having a
predetermined point of contact is to add structure and governance for vulnerability
management.

Examples of incidents that might cause the utilization include receipt of a vulnerability
report from an external entity, compromise or other security failure of software in the
field, internal discovery of high-risk vulnerabilities, etc. In case of an event, the closest
contact would step in as an extra resource and advisor to the affected project team(s) to
provide technical guidance and brief other stakeholders on progress of mitigation efforts.

The point of contact should be chosen from security-savvy technical or management staff
with a breadth of knowledge over the software projects in the organization. A list of these
assigned security points of contact should be centrally maintained and updated at least
every six months. Additionally, publishing and advertising this list allows staff within the
organization to request help and work directly with one another on security problems.

B . Create informal security response team(s)
From the list of individuals assigned responsibility as a security point of contact or from
dedicated security personnel, select a small group to serve as a centralized technical
security response team. The responsibilities of the team will include directly taking
ownership of security incidents or issue reports and being responsible for triage,
mitigation, and reporting to stakeholders.

Given their responsibility when tapped, members of the security response team are
also responsible for executive briefings and upward communication during an incident. It is
likely that most of the time, the security response team would not be operating in this
capacity, though they must be flexible enough to be able to respond quickly or a smooth
process must exist for deferring and incident to another team member.

The response team should hold a meeting at least annually to brief security points of
contact on the response process and high-level expectations for security-related
reporting from project teams.

Understand high-level plan for responding to issue reports or incidents

assessment

 ✦ Do projects have a point of contact
for security issues or incidents?
 ✦ Does your organization have an
assigned security response team?
 ✦ Are project teams aware of their security
point(s) of contact and response team(s)?

results

 ✦ Lightweight process in place to handle
high-priority issues or incidents
 ✦ Framework for stakeholder
notification and reporting of
events with security impact
 ✦ High-level due diligence for
handling security issues

success metrics

✦ >50% of the organization briefed
on closest security point of
contact in the past six months

✦ >1 meeting of security response team and
points of contact in the past 12 months

costs

 ✦ Ongoing variable project overhead
from staff filling the security
point of contact roles
 ✦ Identification of appropriate
security response team

personnel

 ✦ Security Auditors
 ✦ Architects
 ✦ Managers
 ✦ Business Owners

related levels

 ✦ Education & Guidance - 2
 ✦ Strategy & Metrics - 3

Issue Management 1IM

SA
M

M
 /

TH
E S

EC
U

RI
TY

 P
RA

CT
IC

ES
 -

V1
.5

62

Activities

A . Establish consistent incident response process
Extending from the informal security response team, explicitly document the organization’s
incident response process as well as the procedures that team members are expected to
follow. Additionally, each member of the security response team must be trained on this
material at least annually.

There are several tenets to sound incident response process and they include initial triage
to prevent additional damage, change management and patch application, managing project
personnel and others involved in the incident, forensic evidence collection and
preservation, limiting communication about the incident to stakeholders, well-defined
reporting to stakeholders and/or communications trees, etc.

With development teams, the security responders should work together to conduct
the technical analysis to verify facts and assumptions about each incident or issue report.
Likewise, when project teams detect an incident or high-risk vulnerability, they should
follow an internal process that puts them in contact with a member of the security
response team.

B . Adopt a security issue disclosure process
For most organizations, it is undesirable to let news of a security problem become public,
but there are several important ways in which internal-to-external communications on
security issues should be fulfilled.

The first and most common is through creation and deployment of security patches for
the software produced by the organization. Generally, if all software projects are only used
internally, then this becomes less critical, but for all contexts where the software is
being operated by parties external to the organization, a patch release process must exist.
It should provide for several factors including change management and regression
testing prior to patch release, announcement to operators/users with assigned criticality
category for the patch, sparse technical details so that an exploit cannot be directly
derived, etc.

Another avenue for external communications is with third parties that report security
vulnerabilities in an organization’s software. By adopting and externally posting the
expected process with timeframes for response, vulnerability reporters are encouraged
to follow responsible disclosure practices.

Lastly, many states and countries legally require external communications for incidents
involving data theft of personally identifiable information and other sensitive data type.
Should this type of incident occur, the security response team should work with managers
and business stakeholders to determine appropriate next-steps.

Elaborate expectations for response process to improve consistency and communications

assessment

 ✦ Does the organization utilize a
consistent process for incident
reporting and handling?
 ✦ Are project stakeholders aware of
relevant security disclosures related
to their software projects?

results

 ✦ Communications plan for dealing with
issue reports from third-parties
 ✦ Clear process for releasing security
patches to software operators
 ✦ Formal process for tracking, handling, and
internally communicating about incidents

success metrics

✦ >80% of project teams
briefed on incident response
process in the past six months

✦ >80% of stakeholders briefed on security
issue disclosures in the past six months

costs

 ✦ Ongoing organization overhead
from incident response process

personnel

 ✦ Security Auditors
 ✦ Managers
 ✦ Business Owners
 ✦ Support/Operators

related levels

Issue Management2IM

SA
M

M
 /

TH
E S

EC
U

RI
TY

 P
RA

CT
IC

ES
 -

V1
.5

✦ None

63

Activities

A . Conduct root cause analysis for incidents
Though potentially time consuming, the incident response process should be augmented to
include additional analysis to identify the key, underlying security failures. These root causes
can be technical problems such as code-level vulnerabilities, configuration errors, etc. or they
can be people/process problems such as social engineering, failure to follow procedures, etc.

Once a root cause is identified for an incident, it should be used as a tool to find other
potential weaknesses in the organization where an analogous incident could have occurred.
For each identified weakness additional recommendations for proactive mitigations should
be communicated as part of closing out the original incident response effort.

Any recommendations based on root cause analysis should be reviewed by management and
relevant business stakeholders in order to either schedule mitigation activities or note the
accepted risks.

B . Collect per-incident metrics
By having a centralized process to handle all compromise and high-priority issue reports, an
organization is enabled to take measurements of trends over time to determine impact and
efficiency of initiatives for security assurance.

Records of past incidents should be stored and reviewed at least every 6 months. Group
similar incidents and simply tally the overall count for each type of problem. Additional
measurements to take from the incidents include frequency of software projects affected by
incidents, system downtime and cost from loss of use, human resources taken in handling
and cleanup of the incident, estimates of long-term costs such as regulatory fines or brand
damage, etc. For root causes that were technical problems in nature, it is also helpful to
identify what kind of proactive, review, or operational practice might have detected it earlier
or lessened the damage.

This information is concrete feedback into the program planning process since it represents
the real security impact that the organization has felt over time.

Improve analysis and data gathering within response process for feedback into proactive planning

assessment

 ✦ Are incidents inspected for root causes
to generate further recommendations?
 ✦ Do projects consistently collect
and report data and metrics
related to incidents?

results

 ✦ Detailed feedback for organizational
improvement after each incident
 ✦ Rough cost estimation from
issue and compromises
 ✦ Stakeholders better able to
make tradeoff decisions based
on historic incident trends

success metrics

✦ >80% of incidents documented with
root causes and further
recommendations in the past six months

✦ >80% of incidents collated for metrics
in the the past six months

costs

 ✦ Ongoing organization overhead
from conducting deeper research
and analysis of incidents
 ✦ Ongoing organization overhead from
collection and review of incident metrics

personnel

 ✦ Security Auditors
 ✦ Managers
 ✦ Business Owners
 ✦ Support/Operators

related levels

 ✦ Strategy & Metrics - 3

Issue Management 3IM

SA
M

M
 /

TH
E S

EC
U

RI
TY

 P
RA

CT
IC

ES
 -

V1
.5

64

1EH 2EH 3EH

Environment Hardening

objective Understand baseline
operational environment
for applications and
software components.

Improve confidence in
application operations by
hardening the operating
environment.

Validate application health
and status of operational
environment against
known best practices.

Activities A. Maintain operational
environment specification

B. Identify and install critical
security upgrades and patches

A. Establish routine patch
management process

B. Monitor baseline environment
configuration status

A. Identify and deploy relevant
operations protection tools

B. Expand audit program for
environment configuration

Assessment ✦ Do projects document
operational environment
security requirements?
 ✦ Do projects check for security
updates to third-party
software components?

 ✦ Is a consistent process used
to apply upgrades and patches
to critical dependencies?
 ✦ Do projects leverage automation
to check application and
environment health?

 ✦ Are stakeholders aware of
options for additional tools
to protect software while
running in operations?
 ✦ Does a minimum
security baseline exist
for environment health
(versioning, patching, etc)?

results ✦ Clear understanding of
operational expectations
within the development team
 ✦ High-priority risks from
underlying infrastructure
mitigated on a well-
understood timeline
 ✦ Software operators with a high-
level plan for security-critical
maintenance of infrastructure

 ✦ Granular verification of
security characteristics of
systems in operations
 ✦ Formal expectations on timelines
for infrastructure risk mitigation
 ✦ Stakeholders consistently
aware of current operations
status of software projects

 ✦ Reinforced operational
environment with layered
checks for security
 ✦ Established and measured
goals for operational
maintenance and performance
 ✦ Reduced likelihood of
successful attack via flaws
in external dependencies

SA
M

M
 /

TH
E S

EC
U

RI
TY

 P
RA

CT
IC

ES
 -

V1
.5

65

Activities

A . Maintain operational environment specification
For each project, a concrete definition of the expected operating platforms should be
created and maintained. Depending on the organization, this specification should be jointly
created with development staff, stakeholders, support and operations groups, etc.

Begin this specification should by capturing all details that must be true about the operating
environment based upon the business function of the software. These can include
factors such as processor architecture, operating system versions, prerequisite software,
conflicting software, etc. Further, note any known user or operator configurable options
about the operating environment that affect the way in which the software will behave.

Additionally, identify any relevant assumptions about the operating environment that were
made in design and implementation of the project and capture those assumptions in the
specification.

This specification should be reviewed and updated at least every six months for active
projects or more often if changes are being made to the software design or the expected
operating environment.

B . Identify and install critical security upgrades and patches
Most applications are software that runs on top of another large stack of software
composed of built-in programming language libraries, third-party components and
development frameworks, base operating systems, etc. Because security flaws contained in
any module in that large software stack affect the overall security of the organization’s
software, critical security updates for elements of the technology stack must be installed.

As such, regular research or ongoing monitoring of high-risk dependencies should be
performed to stay abreast of the latest fixes to security flaws. Upon identification of a
critical upgrade or patch that would impact the security posture of the software
project, plans should be made to get affected users and operators to update their
installations. Depending on the type of software project, details on doing this can vary.

Understand baseline operational environment for applications and software components

assessment

 ✦ Do projects document operational
environment security requirements?
 ✦ Do projects check for security updates
to third-party software components?

results

 ✦ Clear understanding of
operational expectations within
the development team
 ✦ High-priority risks from underlying
infrastructure mitigated on a
well-understood timeline
 ✦ Software operators with a high-
level plan for security-critical
maintenance of infrastructure

success metrics

✦ >50% of projects with updated
operational environment
specification in the past six months

✦ >50% of projects with updated list
of relevant critical security patches
in the past six months

costs

 ✦ Ongoing project overhead from
buildout and maintenance of operational
environment specification
 ✦ Ongoing project overhead
from monitoring and installing
critical security updates

personnel

 ✦ Developers
 ✦ Architects
 ✦ Managers
 ✦ Support/Operators

related levels

 ✦ Operational Enablement - 2

Environment Hardening 1EH

SA
M

M
 /

TH
E S

EC
U

RI
TY

 P
RA

CT
IC

ES
 -

V1
.5

66

Activities

A . Establish routine patch management process
Moving to a more formal process than ad hoc application of critical upgrades and patches,
an ongoing process should be created in the organization to consistently apply updates to
software dependencies in the operating environment.

In the most basic form, the process should aim to make guarantees for time lapse between
release and application of security upgrades and patches. To make this process efficient,
organizations typically accept high latency on lower priority updates, e.g. maximum of two
days for critical patches spanning to a maximum of 30 days for low priority patches.

This activity should be primarily conducted by support and operations staff, but routine
meetings with development should also be conducted to keep the whole project abreast of
past changes and scheduled upgrades.

Additionally, development staff should share a list of third-party components upon which the
software project internally depends so that support and operations staff can monitor those
as well to cue development teams on when an upgrade is required.

B . Monitor baseline environment configuration status
Given the complexity of monitoring and managing patches alone across the variety of
components composing the infrastructure for a software project, automation tools
should be utilized to automatically monitor systems for soundness of configuration.

There are both commercial and open-source tools available to provide this type of
functionality, so project teams should select a solution based on appropriateness to the
organization’s needs. Typical selection criteria includes ease of deployment and
customization, applicability to the organization’s platforms and technology stacks, built-in
features for change management and alerting, metrics collection and trend tracking etc.

In addition to host and platform checks, monitoring automation should be customized
to perform application-specific health checks and configuration verifications. Support and
operations personnel should work with architects and developers to determine the
optimal amount of monitoring for a given software project.

Ultimately, after a solution is deployed for monitoring the environment’s configuration status,
unexpected alerts or configuration changes should be collected and regularly reviewed by
project stakeholders as often as weekly but at least once per quarter.

Improve confidence in application operations by hardening the operating environment

assessment

 ✦ Is a consistent process used
to apply upgrades and patches
to critical dependencies?
 ✦ Do projects leverage automation
to check application and
environment health?

results

 ✦ Granular verification of security
characteristics of systems in operations
 ✦ Formal expectations on timelines
for infrastructure risk mitigation
 ✦ Stakeholders consistently
aware of current operations
status of software projects

success metrics

✦ >80% of project teams briefed on patch
management process in the past 12 months

✦ >80% of stakeholders aware of current
patch status in the past six months

costs

 ✦ Ongoing organization overhead from
patch management and monitoring
 ✦ Buildout or license of infrastructure
monitoring tools

personnel

 ✦ Architects
 ✦ Developers
 ✦ Business Owners
 ✦ Managers
 ✦ Support/Operators

related levels

Environment Hardening2EH

SA
M

M
 /

TH
E S

EC
U

RI
TY

 P
RA

CT
IC

ES
 -

V1
.5 ✦ None

67

Activities

A . Identify and deploy relevant operations protection tools
In order to build a better assurance case for software in its operating environment,
additional tools can be used to enhance the security posture of the overall system.
Operational environments can vary dramatically, thus the appropriateness of given
protection technology should be considered in the project context.

Commonly used protections tools include web application firewalls, XML security
gateways for web services, anti-tamper and obfuscation packages for client/embedded
systems, network intrusion detection/prevention systems for legacy infrastructure, forensic
log aggregation tools, host-based integrity verification tools, etc.

Based on the organization and project-specific knowledge, technical stakeholders should
work with support and operations staff to identify and recommend selected operations
protection tools to business stakeholders. If deemed a valuable investment in terms of risk-
reduction versus cost of implementation, stakeholders should agree on plans for a pilot,
widespread rollout, and ongoing maintenance.

B . Expand audit program for environment configuration
When conducting routine project-level audits, expand the review to include inspection of
artifacts related to hardening the operating environment. Beyond an up-to-date specification
for the operational environment, audits should inspect current patch status and historic
data since the previous audit. By tapping into monitoring tools, audits can also verify key
factors about application configuration management and historic changes. Audits should also
inspect the usage of operations protections tools against those available for the software’s
architecture type.

Audits for infrastructure can occur at any point after a project’s initial release and
deployment, but should occur at least every six months. For legacy systems or projects
without active development, infrastructure audits should still be conducted and reviewed
by business stakeholders. An exception process should be created to allow special-case
projects to continue operations, but with an explicitly assigned timeframe for mitigation of
findings. Exceptions should be limited to no more that 20% of all projects.

Validate application health and status of operational environment against known best practices

assessment

 ✦ Are stakeholders aware of options for
additional tools to protect software
while running in operations?
 ✦ Does a minimum security baseline
exist for environment health
(versioning, patching, etc)?

results

 ✦ Reinforced operational environment
with layered checks for security
 ✦ Established and measured goals
for operational maintenance
and performance
 ✦ Reduced likelihood of successful attack
via flaws in external dependencies

success metrics

✦ >80% of stakeholders briefed on
relevant operations protection
tools in the past six months

✦ >75% of projects passing infrastructure
audits in the past six months

costs

 ✦ Research and selection of
operations protection solutions
 ✦ Buildout or license of operations
protections tools
 ✦ Ongoing operations overhead from
maintenance of protection tools
 ✦ Ongoing project overhead from
infrastructure-related audits

personnel

 ✦ Business Owners
 ✦ Managers
 ✦ Support/Operators

related levels

 ✦ Policy & Compliance - 2

Environment Hardening 3EH

SA
M

M
 /

TH
E S

EC
U

RI
TY

 P
RA

CT
IC

ES
 -

V1
.5

68

1OE 2OE 3OE

Operational Enablement

objective Enable communications
between development teams
and operators for critical
security-relevant data.

Improve expectations
for continuous secure
operations through provision
of detailed procedures.

Mandate communication
of security information
and validate artifacts
for completeness.

Activities A. Capture critical security
information for deployment?

B. Document procedures for
typical application alerts

C. Create per-release change
management procedures

D. Maintain formal operational
security guides

A. Expand audit program for
operational information

B. Perform code signing for
application components

Assessment ✦ Are security notes delivered
with each software release?
 ✦ Are security-related alerts and
error conditions documented
on a per-project basis?

 ✦ Do projects utilize a change
management process
that’s well understood?
 ✦ Do project teams deliver an
operational security guide
with each product release?

 ✦ Are project releases audited
for appropriate operational
security information?
 ✦ Is code signing routinely
performed on software
components using a
consistent process?

results ✦ Ad hoc improvements to
software security posture
through better understanding
of correct operations
 ✦ Operators and users aware
of their role in ensuring
secure deployment
 ✦ Improved communications
between software developers
and users for security-
critical information

 ✦ Detailed guidance for security-
relevant changes delivered
with software releases
 ✦ Updated information
repository on secure operating
procedures per application
 ✦ Alignment of operations
expectations among developers,
operators, and users.

 ✦ Organization-wide
understanding of
expectations for security-
relevant documentation
 ✦ Stakeholders better able
to make tradeoff decisions
based on feedback from
deployment and operations
 ✦ Operators and/or users
able to independently verify
integrity of software releases

SA
M

M
 /

TH
E S

EC
U

RI
TY

 P
RA

CT
IC

ES
 -

V1
.5

69

Activities

A . Capture critical security information for deployment
With software-specific knowledge, project teams should identify any security-relevant
configuration and operations information and communicate it to users and operators. This
enables the actual security posture of software at deployment sites to function in the same
way that designers in the project team intended.

This analysis should begin with architects and developers building a list of security features
built-in to the software. From that list, information about configuration options and their
security impact should be captured as well. For projects that offer several different
deployment models, information about the security ramifications of each should be noted
to better inform users and operators about the impact of their choices.

Overall, the list should be lightweight and aim to capture the most critical information. Once
initially created, it should be reviewed by the project team and business stakeholders for
agreement. Additionally, it is effective to review this list with select operators or users
in order to ensure the information is understandable and actionable. Project teams should
review and update this information with every release, but must do so at least every six
months.

B . Document procedures for typical application alerts
With specific knowledge of ways in which software behaves, project teams should identify
the most important error and alert messages which require user/operator attention. From
each identified event, information related to appropriate user/operator actions in response
to the event should be captured.

From the potentially large set of events that the software might generate, select the
highest priority set based on relevance in terms of the business purpose of the software.
This should include any security-related events, but also may include critical errors and
alerts related to software health and configuration status.

For each event, actionable advice should be captured to inform users and operators
of required next steps and potential root causes of the event. These procedures must be
re-viewed by the project team and updated at every major product release, every 6
months, but can be done more frequently, e.g. with each release.

Enable communications between development teams and operators for critical security-relevant data

assessment

 ✦ Are security notes delivered
with each software release?
 ✦ Are security-related alerts and
error conditions documented
on a per-project basis?

results

 ✦ Ad hoc improvements to software
security posture through better
understanding of correct operations
 ✦ Operators and users aware of their
role in ensuring secure deployment
 ✦ Improved communications between
software developers and users for
security-critical information

success metrics

 ✦ >50% of projects with updated
deployment security information in
the past six months

✦ >50% of projects with operational
procedures for events updated in
the past six months

costs

 ✦ Ongoing project overhead from
maintenance of deployment
security information
 ✦ Ongoing project overhead
from maintenance of critical
operating procedures

personnel

 ✦ Developers
 ✦ Architects
 ✦ Managers
 ✦ Support/Operators

related levels

Operational Enablement 1OE

SA
M

M
 /

TH
E S

EC
U

RI
TY

 P
RA

CT
IC

ES
 -

V1
.5

✦ None

70

Activities

A . Create per-release change management procedures
To more formally update users and operators on relevant changes in the software, each
release must include change management procedures relevant to upgrade and first-time
installation. Overall, the goal is to capture the expected accompanying steps that ensure the
deployment will be successful and not incur excessive downtime or degradation of security
posture.

To build these procedures during development, the project teams should setup a lightweight
internal process for capturing relevant items that would impact deployments. It is effective
to have this process in place early in the development cycle so that this information can be
retained as soon as it is identified while in the requirements, design, and implementation
phases.

Before each release, the project team should review the list as a whole for
completeness and feasibility. For some projects, extensive change procedures
accompanying a given release may warrant special handling, such as building automated
upgrade scripts to prevent errors during deployment.

B . Maintain formal operational security guides
Starting from the information captured on critical software events and the procedures for
handling each, project teams should build and maintain formal guides that capture all
the security-relevant information that users and operators need to know.

Initially, this guide should be built from the known information about the system, such
as security-related configuration options, event handling procedures, installation and
upgrade guides, operational environment specifications, security-related assumptions
about the deployment environment, etc. Extending this, the formal operational security
guide should elaborate on each of these to cover more details such that the majority of
the users and operators will be informed for all the questions they might have had. For
large or complex systems, this can be challenging, so project teams should work with
business stakeholders to determine the appropriate level of documentation. Additionally,
project teams should document any recommendations for deployments that would
enhance security.

The operational security guide, after initial creation, should be reviewed by project teams
and updated with each release.

Improve expectations for continuous secure operations through provision of detailed procedures

assessment

 ✦ Do projects utilize a change management
process that’s well understood?
 ✦ Do project teams deliver an operational
security guide with each product release?

results

 ✦ Detailed guidance for security-relevant
changes delivered with software releases
 ✦ Updated information
repository on secure operating
procedures per application
 ✦ Alignment of operations expectations
among developers, operators, and users.

success metrics

✦ >50% of projects with updated
change management procedures
in the past six months

✦ >80% of stakeholders briefed on
status of operational security
guides in the past six months

costs

 ✦ Ongoing project overhead
from maintenance of change
management procedures
 ✦ Ongoing project overhead from
maintenance of operational
security guides

personnel

 ✦ Developers
 ✦ Architects
 ✦ Managers
 ✦ Support/Operators

related levels

 ✦ Environment Hardening - 1

Operational Enablement2OE

SA
M

M
 /

TH
E S

EC
U

RI
TY

 P
RA

CT
IC

ES
 -

V1
.5

71

Activities

A . Expand audit program for operational information
When conducting routine project-level audits, expand the review to include inspection of ar-
tifacts related to operational enablement for security. Projects should be checked to ensure
they have an updated and complete operational security guides as relevant to the specifics
of the software.

These audits should begin toward the end of the development cycle close to release, but
must be completed and passed before a release can be made. For legacy systems or inactive
projects, this type of audit should be conducted and a one-time effort should be made to
address findings and verify audit compliance, after which additional audits for operational
enablement are no longer required.

Audit results must be reviewed with business stakeholders prior to release. An exception
process should be created to allow projects failing an audit to continue with a release, but
these projects should have a concrete timeline for mitigation of findings. Exceptions should
be limited to no more that 20% of all active projects.

B . Perform code signing for application components
Though often used with special-purpose software, code signing allows users and operators
to perform integrity checks on software such that they can cryptographically verify the
authenticity of a module or release. By signing software modules, the project team enables
deployments to operate with a greater degree of assurance against any corruption or modi-
fication of the deployed software in its operating environment.

Signing code incurs overhead for management of signing credentials for the organization. An
organization must follow safe key management processes to ensure the ongoing confidential-
ity of the signing keys. When dealing with any cryptographic keys, project stakeholders must
also consider plans for dealing with common operational problems related to cryptography
such as key rotation, key compromise, or key loss.

Since code signing is not appropriate for everything, architects and developers should work
with security auditors and business stakeholders to determine which parts of the software
should be signed. As projects evolve, this list should be reviewed with each release, especially
when adding new modules or making changes to previously signed components.

Mandate communication of security information and validate artifacts for completeness

assessment

 ✦ Are project releases audited
for appropriate operational
security information?
 ✦ Is code signing routinely performed
on software components using
a consistent process?

results

 ✦ Organization-wide understanding
of expectations for security-
relevant documentation
 ✦ Stakeholders better able to make
tradeoff decisions based on feedback
from deployment and operations
 ✦ Operators and/or users able to
independently verify integrity
of software releases

success metrics

✦ >80% of projects with updated
operational security guide in the
last six months

✦ >80% of stakeholders briefed
on code signing options and
status in the past six months

costs

 ✦ Ongoing project overhead from
audit of operational guides
 ✦ Ongoing organization overhead from
management of code signing credentials
 ✦ Ongoing project overhead
from identification and signing
of code modules.

personnel

 ✦ Developers
 ✦ Architects
 ✦ Managers
 ✦ Security Auditors

related levels

Operational Enablement 3OE

SA
M

M
 /

TH
E S

EC
U

RI
TY

 P
RA

CT
IC

ES
 -

V1
.5

✦ None

sponsors

We would like to thank the following sponsors who have donated funds to the SAMM project in the past:

Belgium

London

