
Revisiting SSL/TLS Implementations:
New Bleichenbacher Side Channels

and Attacks

Juraj Somorovsky
Ruhr University Bochum

3curity GmbH
juraj.somorovsky@3curity.de

mailto:juraj.somorovsky@3curity.de

2

About me

● Security Researcher at:

– Chair for Network and Data Security, Ruhr University Bochum

● Prof. Dr. Jörg Schwenk
● Web Services, Single Sign-On, (Applied) Crypto, SSL, crypto

currencies
● Provable security, attacks and defenses

– Horst Görtz Institute for IT-Security

● Further topics: embedded security, malware, crypto…
● Co-founder of 3curity GmbH:

– Penetration tests, security analyses, security workshops…

– Web, Single Sign-On, SSL, applied crypto

– www.3curity.de

http://www.3curity.de/

3

Publications

● XML Security:

– All your Clouds Are Belong to us: Security Analysis of Cloud
Management Interfaces (CCSW’11)

– How to Break XML Encryption (CCS’11)

– On Breaking SAML: Be Whoever you Want to Be (USENIX’12)

– On the Insecurity of XML Security (Dissertation)

● Further topics:

– Revisiting SSL/TLS Implementations: New Bleichenbacher Side
Channels and Attacks (USENIX’14)

– Untrusted Third Parties: When IdPs Break Bad (in submission, by
my colleagues Christian Mainka, Vladislav Mladenov and Jörg
Schwenk)

4

About this talk

● Revisiting SSL/TLS Implementations: New
Bleichenbacher Side Channels and Attacks

● Paper accepted at Usenix Security 2014
● Authors: Christopher Meyer, Juraj Somorovsky,

Eugen Weiss, Jörg Schwenk, Sebastian
Schinzel, Erik Tews

● Describes new side channels in specific TLS
implementations

5

Overview

● TLS
● Bleichenbacher's Attack

– Attack Intuition

– Oracle Strength

– Attack Challenges

● Attacks
– Error Messages in JSSE

– Additional Random Number Generation

– Additional Exception in JSSE

– Unexpected Timing Behavior by Hardware Appliances

● Conclusion

6

TLS

● Invented by Netscape in 1994
– Name: Secure Sockets Layer

● Adopted by IETF in 1999
– Renamed to Transport Layer Security

● Versions:
– SSL 1.0, 2.0, 3.0

– TLS 1.0, 1.1, 1.2, (1.3 in development)

● Implementations:
– OpenSSL, GnuTLS, JSSE, Microsoft Schannel, MatrixSSL,

LibreSSL, ...

7

TLS

● Very complex
● Contains various crypto primitives: RSA, EC,

AES-CBC, AES-GCM, RC4, 3DES, MD5,
SHA1, MACs, Signatures, PRFs, ...

● Can be executed over TCP or UDP (DTLS)
● Contains various extensions
● TLS-Renegotiation

8

TLS Handshake

● Used for negotiation of cryptographic keys for
data transport

ClientHello

ServerHello

Certificate

ServerHelloDone

ClientKeyExchange

ChangeCipherSpec

Client Finished

ChangeCipherSpec

Server Finished

Contains key material
(PremasterSecret)

9

ClientKeyExchange

● Contains encrypted PremasterSecret (for
example, encrypted using RSA or EC)

● PremasterSecret is used to derive all TLS
session keys

● Decryption of PremasterSecret == decryption of
the TLS traffic

Snidely Whiplash
(Dudley Do-Right of the Mounties)

10

Overview

● TLS
● Bleichenbacher's Attack

– Attack Intuition

– Oracle Strength

– Attack Challenges

● Attacks
– Error Messages in JSSE

– Additional Random Number Generation

– Additional Exception in JSSE

– Unexpected Timing Behavior by Hardware Appliances

● Conclusion

11

RSA PKCS#1 v1.5 Encryption

● Used e.g. to distribute symmetric keys

● Textbook-RSA: CRSA = me mod N

– Short messages need padding

– No randomization

● PKCS#1 adds randomized padding to the PremasterSecret,
it works as follows:

– Take a PremasterSecret PMS

– Set m := 00 || 02 || pad || 00 || PMS

– Compute CPKCS = me mod N

● A ciphertext is “valid”, if its decryption has the correct format

0200 00 Randomnonzero padding

256 Bytes

205 Bytes 48 Bytes PMS

03 01

12

Bleichenbacher's Attack

● 1998: Attack on RSA-PKCS#1 v1.5
(Bleichenbacher, Crypto 1998)

● SSL implementations applied an ad-hoc fix
● Well-noticed in crypto and security community
● PKCS#1 was updated to v2.0 (RSA-OAEP)

– Still standardized in many applications,
including TLS

13

Attack Applied to ...

● SSL / TLS:
– D. Bleichenbacher: Chosen ciphertext attacks against

protocols based on the RSA encryption standard PKCS #1,
Crypto’98

● Cryptographic Hardware:
– Romain Bardou, Riccardo Focardi, Yusuke Kawamoto,

Graham Steel, and Joe-Kai Tsay. Efficient Padding Oracle
Attacks on Cryptographic Hardware, Crypto‘12

● XML Encryption:
– Tibor Jager, Sebastian Schinzel, Juraj Somorovsky:

Bleichenbacher’s Attack Strikes Again: Breaking PKCS#1 v1.5
in XML Encryption, ESORICS'12

14

Motivation

● Attack worked in 1998...
● Is PKCS#1 v1.5 implemented correctly in TLS

now?

15

Overview

● TLS
● Bleichenbacher's Attack

– Attack Intuition

– Oracle Strength

– Attack Challenges

● Attacks
– Error Messages in JSSE

– Additional Random Number Generation

– Additional Exception in JSSE

– Unexpected Timing Behavior by Hardware Appliances

● Conclusion

16

Bleichenbacher's Attack

● Requires a “ciphertext validity oracle”

● Adaptive Chosen-ciphertext attack

XML Encryption ciphertext C = Enc(M)

Chosen ciphertext C1

valid/invalid

M = Dec(C)

TLS Server
Chosen ciphertext C2

valid/invalid

ClientKeyExchange

…
(repeated several times)

Snidely Whiplash
(Dudley Do-Right of the Mounties)

Client

Dec(CPKCS) =
00 || 02 || “bytes”

???

17

Attack Intuition

● d: private key

● (e,N): public key

● m = 00 || 02 || “bytes”

● In RSA we can multiply the encrypted plaintext without
knowing the private key

● m = cd mod N

● c = me mod N

● c’ = (c · se) mod N s Z∈ N

● c’ = (ms)e mod N

18

Attack Intuition

● OK, so we can multiply a plaintext ...

● We define: B = 2(|N|-2), where |N| is byte length

– Example: 2B = 00 02 00 … 00

● Attack Approach:

– Multiply “plaintext” with s: c’ = (c · se) mod N

– Query oracle if the decrypted plaintext is in interval <2B,3B)

0 N

Somewhere here
is the secret m

x

2B 3B

s=2 s=3 s=4 s=s
x
-1 s=s

xs=s
x

Modulo
Reduction!

valid

19

Attack Intuition

0 N2B 3B

s=2 s=3 s=4 s=s
x
-1 s=s

xs=s
x

0 N2B 3B

s=2 s=4 s=5 s=s
y
-2 s=s

y
-1

m
x

m
y

s=6s=3s=s
y
-1 s=s

y

● sy > sx

● Intuition:
– Large s value indicates m is in the near of 2B

– Small s value indicates m is in the near of 3B

20

Attack

● sx allows us to compute new interval for m:

2B ≤ mx sx − N < 3B

● From this follows:

(2B + N) / sx < mx < (3B + N) / sx

● Full algorithm:
– Searches for further s values

– Reduces the interval

21

Demo Time

22

Attack Countermeasure

generate a random PMSR

decrypt the ciphertext: m := dec(c)

if ((m ? 00||02||PS||00||k) OR (|k| ? 48)) then

 proceed with PMS := PMSR

else

 proceed with PMS := k

23

Overview

● TLS
● Bleichenbacher's Attack

– Attack Intuition

– Oracle Strength

– Attack Challenges

● Attacks
– Error Messages in JSSE

– Additional Random Number Generation

– Additional Exception in JSSE

– Unexpected Timing Behavior by Hardware Appliances

● Conclusion

24

Attack Performance

● Bleichenbacher's attack is also called Million Messages attack

● The attack performance varies: it depends on the oracle
message validation

● The oracle responds with “valid” when:

– The message starts with 00 02

– (and) the PremasterSecret is of valid length?

– Further checks?
Ciphertext C

205 Bytes 48 Bytes PMS

0200 00 Randomnonzero padding 03 01

25

Oracle Strength

● Oracle with less checks brings better performance

● Oracle strength: Probability the oracle responds with
“valid” when the message starts with 00 02

● Why important?

0 N2B 3B

s=2 s=3 s=4 s=s
x
-1 s=s

xs=s
x

valid

m
x

invalid

26

Overview

● TLS
● Bleichenbacher's Attack

– Attack Intuition

– Oracle Strength

– Attack Challenges

● Attacks
– Error Messages in JSSE

– Additional Random Number Generation

– Additional Exception in JSSE

– Unexpected Timing Behavior by Hardware Appliances

● Conclusion

27

Attack Challenges

● Implement an oracle based on the server behavior
– Using different error messages, timing

● Analyze oracle strength
– Probability

– If timing: how many server requests are needed to respond
one oracle request

● Execute Bleichenbacher's attack

Ciphertext C

TLS Server

TLS Handshake (C)

Valid / invalid

28

With the help of T.I.M.E.

● T.I.M.E.: TLS Inspection Made Easy
● Automatic scanning of TLS implementations
● Written (mainly) by Christopher Meyer:

– http://www-brs.ub.ruhr-uni-bochum.de/netahtml/HSS
/Diss/MeyerChristopher/diss.pdf

● Supports further features like TLS fingerprinting

http://www-brs.ub.ruhr-uni-bochum.de/netahtml/HSS/Diss/MeyerChristopher/diss.pdf
http://www-brs.ub.ruhr-uni-bochum.de/netahtml/HSS/Diss/MeyerChristopher/diss.pdf

29

For Timing Measurements...

● T.I.M.E. was not appropriate, caused too much noise
● We used our Bleichenbacher attack module with a patched

MatrixSSL library
● NetTimer for response times evaluation:

– http://sebastian-schinzel.de/nettimer

C

TLS Server

TLS Handshake (C)

Valid / invalid

MatrixSSLBleichenbacher

Measurement
machine

http://sebastian-schinzel.de/nettimer

30

Overview

● TLS
● Bleichenbacher's Attack

– Attack Intuition

– Oracle Strength

– Attack Challenges

● Attacks
– Error Messages in JSSE

– Additional Random Number Generation

– Additional Exception in JSSE

– Unexpected Timing Behavior by Hardware Appliances

● Conclusion

31

Error Messages in JSSE

● With T.I.M.E. we sent differently formatted
PKCS#1 messages to a JSSE server

● Server responded with:
– INTERNAL ERROR and

– HANDSHAKE FAILURE

32

Analysis

● 0x00 bytes inserted at specific positions cause an internal
ArrayIndexOutOfBoundsException

● Lead to a different TLS alert message

0200

0.99" PMS

48 Bytes

IE

77 Bytes
 padding

0x00 positions provoking an
INTERNAL_ERROR

1

205 Bytes padding

8 Bytes 117 Bytes 80 Bytes

0200 IEINTERNAL_ERROR

2

0200

461 Bytes padding

IE

373 Bytes 80 Bytes

INTERNAL_ERROR

8 Bytes

3

|N| = 1024 bit

|N| = 2048 bit

|N| = 1024 bit

|N| = 4096 bit

33

● We were able to construct an oracle:
– INTERNAL_ERROR: message valid, starts with 00 02

– HANDSHAKE FAILURE: message invalid

● What is the probability for triggering INTERNAL_ERROR?
– 2048 bit key:

● Number of bytes provoking INTERNAL_ERROR: 117
● Probability:

P2048 = (255/256)8 (1 – (255/256)117) = 35 %

– 4096 bit key:

P4096 = 74 %

– 1024 bit key:

P1024 = 0,2 %

Oracle Strength

34

Evaluation

● Attack on server with 1024 bit keys not practical because of the weak
oracle

● Patched in October 2012 – JDK 6, Update 37 (JDK 6u37): CVE-2012-5081

Mean Median

2048 bit RSA key 177 000 37 000

4096 bit RSA key 73 000 28 000

35

Overview

● TLS
● Bleichenbacher's Attack

– Attack Intuition

– Oracle Strength

– Attack Challenges

● Attacks
– Error Messages in JSSE

– Additional Random Number Generation

– Additional Exception in JSSE

– Unexpected Timing Behavior by Hardware Appliances

● Conclusion

36

Additional Random Number
Generation

● Recommended
Countermeasure:

generate a random PMSR

decrypt the ciphertext: m := dec(c)

if ((m ? 00||02||PS||00||k) OR

 (|k| ? 48)) then

 proceed with PMS := PMSR

else

 proceed with PMS := k

● Countermeasure in
OpenSSL, GnuTLS, ...:

decrypt the ciphertext: m := dec(c)

if ((m ? 00||02||PS||00||k) OR

 (|k| ? 48)) then

 generate a random PMSR

 proceed with PMS := PMSR

else

 proceed with PMS := k

37

Analysis

● We saw this in more implementations
● Important observation: Random PMS

generated only in case of invalid decryption
step

● Does this misbehavior allow us to execute
practical attacks?

38

Oracle Strength

● We were able to measure different timing responses, however
the timing difference was very small (cca. 2 microseconds)

● Probability of returning a valid message small:

P = 2,7 * 10 -8

Valid TLS structure.
Starts with 00 02,

No random
number generation.

39

Evaluation

● Attack not practical
● Too many oracle queries
● The timing difference too small

40

Overview

● TLS
● Bleichenbacher's Attack

– Attack Intuition

– Oracle Strength

– Attack Challenges

● Attacks
– Error Messages in JSSE

– Additional Random Number Generation

– Additional Exception in JSSE

– Unexpected Timing Behavior by Hardware Appliances

● Conclusion

41

Additional Exception in JSSE

● PKCS#1 unpadding function in Java:

private byte [] unpadV15 (byte[] padded) throws
BadPaddingException {

 if (not PKCS compliant) {

 throw new BadPaddingException();

 } else {

 return unpadded text;

 }

}

42

Analysis

● We tested the JSSE server with different valid
and invalid PKCS#1 messages

● We were not able to trigger a different alert...
● ...but we saw an additional exception in case

of invalid message

43

Oracle Strength

● We evaluated that an additional exception
consumes about 20 microseconds!

● Enough to measure over LAN

Valid PKCS#1.
Starts with 00 02,

No exception.

44

Oracle Strength

● We were able to construct an oracle:
– Shorter time: message valid, PKCS#1 compliant

– Longer time: message invalid, additional exception
produced

● Large probability of about 60%

45

Evaluation

● Attack evaluation:
– About 20 000 oracle queries to decrypt a PMS

– Each oracle query takes about 500 server queries

– 20% false negatives, no false positive

– 20 hours, over LAN

– Executed against OpenJDK and Oracle JDK

● Patched in January 2014 – JDK 7, Update 45: CVE-
2014-411

● Similar behavior found in Bouncy Castle (Java and C#)
– Reported, not fixed

C

TLS Server

TLS Handshake (C)

Valid / invalid

MatrixSSLBleichenbacher

46

Overview

● TLS
● Bleichenbacher's Attack

– Attack Intuition

– Oracle Strength

– Attack Challenges

● Attacks
– Error Messages in JSSE

– Additional Random Number Generation

– Additional Exception in JSSE

– Unexpected Timing Behavior by Hardware Appliances

● Conclusion

47

Unexpected Timing Behavior by
Hardware Appliances

● We used T.I.M.E. to execute TLS handshakes
using malformed PKCS#1 messages

● Our Hardware Appliance accepted malformed
PKCS#1 formatted PremasterSecrets:
– 01 02 … 00 PMS

– 02 02 … 00 PMS

– 03 02 … 00 PMS

● The first byte was not checked at all and we
could execute valid TLS handshakes

48

Analysis

● It was not directly exploitable

– the attacker is not able to produce valid ClientFinished
messages

● … but we smelled a timing leakage in the PKCS#1 processing

● Black box analysis

ClientHello

ServerHello

Certificate

ServerHelloDone

ClientKeyExchange

ChangeCipherSpec

Client Finished

ChangeCipherSpec

Server Finished

49

Oracle Strength

● We found a timing difference of about 15
microseconds between messages starting with ?? 02
and other messages (?? indicates an arbitrary byte)

Starts with ?? 02,
Message accepted.

50

Oracle Strength

● We were able to construct an oracle:
– Longer time: message valid, starts with ?? 02

– Shorter time: message invalid, different second
byte

● The oracle is not “Bleichenbacher” compliant

0 N2B 3B

s=2 s=3 s=4 s=s
x
-1 s=s

xs=s
x

51

Evaluation

● We extended Bleichenbacher's attack to work with our oracle
● Performance improvement:

– About 4700 oracle queries to decrypt a PMS

● Real attack:
– 7371 oracle queries

– 4 000 000 server queries at total

– 40 hours

– 1290 false negatives, no false positive

● Developers notified, be prepared to update your appliances
● Public disclosure in August

52

Overview

● TLS
● Bleichenbacher's Attack

– Attack Intuition

– Oracle Strength

– Attack Challenges

● Attacks
– Error Messages in JSSE

– Additional Random Number Generation

– Additional Exception in JSSE

– Unexpected Timing Behavior by Hardware Appliances

● Conclusion

53

Conclusion and Outlook

● We showed first practical timing

 Bleichenbacher attacks on TLS

● A tiny side channel can lead to

 catastrophic results

● Crypto code should be handled with care, especially when
assuming local attackers: e.g., crypto in browser

● We motivate for the usage of secure cryptographic primitives

● Future Work:

– Analysis of further crypto standards

– Development of TLS penetration tools

TLS impl. Type Queries Time

OpenSSL timing NA

JSSE direct 177 000 12 h

JSSE timing 18 600 20 h

Hardware timing 7 400 41 h

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53

