How to Implement DNSSEC without Losing Your Mind

OWASP Atlanta -- Feb 15, 2010

Joseph Gersch
Secure64 Software Corporation
Agenda

Why is DNSSEC vitally important?

How does DNSSEC work?

What are my options for implementing it?

Now what do I do?
Why is DNSSEC vitally important?
DNS Infrastructure Challenges

Performance Demands
- Web 2.0
- Hidden Computing
- More Devices

Security Demands
- Botnets
- Malware
- Cache Poisoning

Conventional DNS solutions can’t keep up with performance and security demands.
Most Concerning Threats

- Bots/Botnets
- DNS Cache Poisoning
- BGP Route Hijacking
- Link Flooding
- Identify Theft
- DNS, VOIP, other services
- Systems Compromise
- Worms

Source: Arbor Networks

Botnets, DNS and cache poisoning among the top concerns
You think your IT is protected, but....

• Firewalls, IPS, IDS....
But users might not even get to you!

DNS Query:
“where is mybank.com”?

poisoned DNS Server:
“It’s at 1.2.3.4, honest!!!”

real site:
“my firewalls are up, but where did everyone go?”

fake site
Lots of queries, lots of wrong answers

Truth... or Consequences
It’s been a year since Blackhat...

- Is the Kaminsky attack still relevant?

When you own the DNS, you own EVERYTHING!
Yes, DNS Poisoning Really Happens

Attacks are real

• 1-3% of monitored unpatched nameservers have had a poisoning event detected

• Confirmed phishing attacks have been found

• Brazilian Bank poisoned April 23, 2009

Patches are short term fix

• Patched systems have been compromised in <10 hours

• Use of botnets can greatly reduce time to compromise

DNSSEC is permanent solution

Source: IO Active, Dagon et. al.
What’s the solution?

• The DNS patch raises the bar, but DNS can still be breached
• How do you stop the storm?
• DNSSEC is the long-term permanent solution
DNSSEC does more than defend

• Sure It reduces risk
 – buts it’s not just about the Kaminsky attack

• It adds value and enables new killer apps
 – AUTHENTICATION on the net!!!
 – email, SSL, VOIP can all be made better.
 – Authentication for doctors, privacy issues, etc.
 – everything that RSA likes to talk about

• What can you do with an authenticated internet?
How does DNSSEC work?
DNS attack vectors

1. Tampering with zone data / Domain hijacking
2. Forged DNS updates
3. Master impersonating / Unauthorized zone transfers
4. Cache poisoning / DoS
5. Man in the middle / Corrupted DNS resolution path
What Is DNSSEC?

What does it do?

• Validates the source of the DNS response
• Ensures the response has not been altered in transit
• Authenticates replies of non-existence

How does it work?

• Adds digital signatures to DNS responses
• Uses chains of trust to validate responses
• Identifies bogus responses

With DNSSEC, we are certain that a response is correct
Well, if DNSSEC fixes the problem...

- Why hasn’t it been more widely deployed?
- Who has already deployed it?
- Should I deploy it?
DNSSEC Deployment Challenges

Complexity
Security
Operational Mechanics
Disaster Recovery
Scalability
Auditability

Early adopters invest 4-6+ man-months to deploy, ½ full time person to maintain
The Process Is Complex

Sign all zones
• Generate public/private key pairs (one pair per zone, ideally)
• Insert keys into zone files
• Sign the zones

Re-sign the zones
• Retrieve keys from secure storage
• Re-sign the zones

Roll the ZSKs for each zone
• Generate new key pairs per zone
• Add the new keys to the zone
• Re-sign the zone using the old key
• Wait for one TTL period
• Re-sign the zone using the new key
• Wait for one TTL period
• Remove the old ZSK from the zone file
• Re-sign the zone

Roll the KSKs for each zone
• Generate new key pairs (ideally one per zone)
• Sign the DNSKEY RRset with both KSKs
• Wait one TTL period
• Update the DS record at the parent and verify
• Remove the old KSK from the zone and re-sign

Good process discipline requires tools, procedures and training
Manual DNSSEC Deployment Steps

- Generate keys and Insert them into zone files
- Sign and publish the zones
 - generate NSECs
 - generate RRSIGs
- Do process over and over again when data changes or when keys need to be replaced
 - Labor and training intensive
 - OK for small deployments, but begs for automation
The Human Element: What could *possibly* go wrong…

- Wrong keys
- Expired Keys
- Stolen Keys
- Training/Turnover
- Solution doesn’t scale
Keys Must Be Kept Secure

Why?
• Digital signatures guarantee authenticity, but...
• Signatures can be forged if attacker gains access to private key
• Someone can hijack your domain and guarantee it!

How to protect keys?
• Keep them offline
 – Must ensure only authorized personnel can access
 – Labor intensive
 – Doesn’t work well for ZSKs in dynamic environments
• Keep them online
 – Must protect them from unauthorized access
 – OS hardening insufficient to guarantee security
 – FIPS 140-2 level 2-4 certified crypto modules work best, but can require custom hardware integration
Nevertheless, DNSSEC is deployed

• In Europe
 – .se --- Sweden is the poster child
 – .cz
 – .uk and other ccTLD’s in the works
 – .nl has signed its ENUM zone
 – many individual organizations

• Around the globe:
 – .org is signed; .com and .net will be signed; root to be signed
 – .gov (USA) is signed
 – check out secspider.cs.ucla.edu
 • 3929 production zones signed
 • >16,000 zones with DNSSEC data
And DNSSEC technology is on the rise

- make it easy
What are my options for implementing DNSSEC?
For info on this matrix, download “Choosing a DNSSEC Solution: Beware Dark Zones Ahead”

Do-It-Yourself Methods

• BIND “do-it-yourself” programs
 – DNSSEC-Keygen & DNSSEC-Signzone

• 1st & 2nd generation tools/scripts
 – www.nlnetlabs.nl: LDNS library has signer tool, etc.
 – www.dnssec-tools.org: dozens of scripts, signer, key roller
 – www.opendnssec.org:
 • not yet formally released, technology preview
 • 2nd generation tool has automation and a XML format for specifying DNSSEC policies
Full Automation Handles all the details

1. Key Generation for huge numbers of keys
 - pre-generate “spare keys”

2. Bulk Signing and Re-signing can take lots of time
 - fast crypto

3. Dynamic Updates
 - incremental signing

4. Disaster Planning
 - Automatic & Secure Backup of Metadata

5. Chain-of-Trust Coordination
 - automated key rollover

But be careful: some appliances are only “DNSSEC-compliant”, not automated
Automation: Secure64 DNS Signer

- **Simple Deployment**
 - Automated key management, rollover, signing, re-signing

- **Secure Key Repository**
 - Malware-immune OS
 - FIPS 140-2 compliant (in-review)

- **Scalable**
 - High performance signing
 - Incremental zone signing

Secure64 DNS Signer makes it easy to deploy DNSSEC correctly and securely
Simple to Configure

SERVER:

Default signing policy

Dnssec-automate: ON
Dnssec-ksk: 1024 RSASHA1
Dnssec-ksk-rollover: 0 2 1 2,8 *
Dnssec-ksk-siglife: 7D
Dnssec-zsk: 2048 RSASHA1
Dnssec-zsk-rollover: 0 1 1 * *
Dnssec-zsk-siglife: 7D
Dnssec-nsec-type: nsec3
Dnssec-nsec-settings: OPT-OUT 12 aabbccdd

ZONE:

Name: myzone.
File: myzonefile

Dnssec-nsec-type: nsec

1-line automation

Optional parameters to override defaults
Can be applied system-wide or zone by zone

DNSSEC can be deployed in days, not months
Compatible With Current Infrastructure

Provisioning System (IPAM, Registry, Hidden Master, Etc.)

Just plug it into your existing DNS provisioning system
Now what do I do?
Develop a plan to deploy DNSSEC

• Consider your situation:
 – Do I do this myself, or have my ISP do it for me?

• Consider your Objectives & Alternatives:
 – do I have the skills, enough training, the process discipline?
 – are my zones small and relatively static?
 – can I keep my keys off-line?

 » consider tools & scripts

 – does my DNS data change often? are my keys safe?
 – do I have staff turn-over?

 » consider automation appliance
Full Planning: Design For Scalability

- Can you keep up with dynamic update loads?
 - Peak DHCP load may require lots of signing horsepower

- Do you have lots of zones to sign?
 - Some zones may be changing all the time
 - Different zones roll keys on different schedules

- Do you have a Service Level Agreement to meet?
 - DNS update intervals may be guaranteed
Full Planning: Plan for Disaster

- Back up the data whenever anything changes
 - Keys can change, but also...
 - Zone signing state can change (zones may be in the process of a key rollover)
 - Must back up all information required to recover

- Protect the keys!
 - Private keys should not be in the clear in the backup

- Have a failover signing system
 - Backup signer or active/active configuration
 - Monitor active signer to detect outage

- Document backup/restore processes
 - Personnel can change
 - Don’t “lose the recipe”

If DNSSEC signatures expire, your entire domain goes dark
Consider your staff

• Your administrators already have more than enough to do
But above all:

- Do it -- deploy DNSSEC and protect your users
- but don’t drive your administrators crazy, consider automation appliances and tools
Thank You!

For More Information

• Secure64 web site: www.secure64.com

• Search YouTube for “Secure64” to view some useful DNSSEC tutorials

• Sign up for access to an online signing engine to try it out with your own data