Managed Application Security

trends and best practices in application security

Adrian Locusteanu, B2B Delivery Director, Telekom Romania
adrian.locusteanu@telekom.ro

OWASP
The Open Web Application Security Project
Adrian Locusteanu is the B2B Delivery Director of Telekom Romania.

His background includes the management of selling & delivery of ICT projects within multi-cultural enterprise environment having more than 20 years of experience in the ICT solutions and services market for government & Top100 enterprises.

Adrian graduated Facultatea Automatica (UPB) and Academia de Studii Economice. He also holds an Executive MBA degree, a Master in Information Security and is a member of the Association of Chartered Certified Accountants.
MAIN SECURITY ATTACK VECTORS
COMPELLING & BASIC TRUTHS ABOUT APPLICATION SECURITY

- **Top breaches***:
 - Web Application Attacks 30%
 - CyberEspionage 14.93%
 - Privilege Misuse 14.3%
 - Miscellaneous Errors 11.5%

*source: Verzione Data Breach Investigations Report 2017

- **Top incidents***:
 - Denial of Service 26.7%
 - Privilege Misuse 18.4%
 - Crimeware 16.5%
 - Web Application Attacks 11.5%

- Application Security represents the highest risk attack vector with the least amount of strategic planning and spend (read opportunity!!)

- Attack surface expands as all organizations are continuously increasing web presence and application spend in order to optimize business
OWASP Top Application Security Risks

2013
- A1 Injection
- A2 Broken Authentication and Session Management
- A3 Cross-Site Scripting (XSS)
- A4 Insecure Direct Object References
- A5 Security Misconfiguration
- A6 Sensitive Data Exposure
- A7 Missing Function Access Level Control
- A8 Cross-Site Request Forgery
- A9 Using Components with Known Vulnerabilities
- A10 Unvalidated Redirects and Forwards

2017
- A1 Injection
- A2 Broken Authentication and Session Management
- A3 Cross-Site Scripting (XSS)
- A4 Broken Access Control
- A5 Security Misconfiguration
- A6 Sensitive Data Exposure
- A7 Insufficient Data Protection
- A8 Cross-Site Request Forgery
- A9 Using Components with Known Vulnerabilities
- A10 Underprotected APIs

- Top3 vulnerabilities remain unchanged
- Controversed new A7 (Insufficient Data Protection)
- A10 (Underprotected APIs) reflecting technology evolution (IoT, Cloud, etc...)
Security Testing Within the Software Lifecycle

Most Issues are found by security auditors prior to going live.
Security Testing Within the Software Lifecycle

% of Issue Found by Stage of SDLC

Desired Profile
TYPICAL DEVELOPMENT CYCLE SHORTCUTS and issues

- Ambitious time-to-market puts pressure on security testing schedule
- Compromise on security to reach desired functionalities
- Deviations from security development methodologies
- No investment in specialized testing tools
- Not involving specialized security consultants in testing process
- Insufficient or no security training/awareness for developers
HOW SHOULD APPLICATION SECURITY BE APPROACHED

an example from a related area

- PCI Compliance
- Secret Management
- Software Authentication
- Key Injection

PCI-DSS

- Key Management Requirements
- PCI PIN (equivalent)
- PTS

Device Requirements

Software Requirements
HOW SHOULD APPLICATION SECURITY BE APPROACHED

Lessons learned from POS Application

- **End2End secured environment**: strict and inter-related security requirements at all levels (hardware, kernel, key management, communication, software)

- **Standardized application security testing**: Visa/Mastercard application testing

- **Control mechanisms (audits), discipline and penalties**
The Need to Scale Security Testing

Phase 1 – Introducing Automated Security Testing

Phase 2 – Extending Automation

Phase 3 – Completely Integrated Automation

People Involved

Low % Applications Tested

High % Applications Tested

- Security Team
- Security Team
- QA Team
- Development Team
- Development Team
DAST and SAST – Issue Type Coverage

SAST Only
- Null pointer dereference
- Threading issues
- Code quality issues
- Issues in dead code
- Insecure crypto functions
- Issues in back-end application code
- Complex injection issues
- Issues in non-web app code

Manual Testing
- Business logic issues

DAST Only
- Environment configuration issues
- Patch level issues
- Runtime privileges issues
- Authentication issues
- Protocol parser issues
- Session management issues
- Issues in 3rd party web components
- Cross-site request forgery
- Malware analysis

DAST & SAST
- SQL Injection
- Cross Site Scripting
- HTTP Response Splitting
- OS Commanding
- LDAP Injection
- XPath Injection
- Path Traversal
- Buffer Overflows
- Format String Issues
- …
Find more vulnerabilities using the most advanced techniques

Static Analysis
- Analyze Source Code
- Use during development
- Uses Taint Analysis / Pattern Matching

Dynamic Analysis
- Analyze Live Web Application
- Use during testing
- Uses HTTP tampering

More adv. Techniques

Client-Side Analysis
- Analyze downloaded Javascript code which runs in client
- Unique in the industry

Run-Time Analysis
- Combines Dynamic Analysis with run-time agent
- More results, better accuracy

Hybrid Analysis
- Correlate Dynamic and Static results
- Assists remediation by identification of line of code
Advanced security testing collaboration & governance through application lifecycle

Challenge to Share Test Results and Enable Self-Testing in the SDLC

Blackbox security testing
End2end security testing
Whitebox code analysis
SECURE TRANSPARENCY
The data subject needs to know what personal information we collect, we manipulate, to what purpose, and have control in the process. All personal data should be secured and remain private during the entire lifecycle.

INFORMATION LIFECYCLE MANAGEMENT
policy-based approach to managing the flow of information through a life cycle from creation to final disposition.

SECURITY
GDPR was developed to ensure the end user that his personal information remains private

TRANSPARENCY
GDPR was developed to ensure the end user has visibility to his data

SECURITY BY DESIGN !

SECURITY BY DEFAULT !
DECISION: IN-HOUSE VERSUS OUTSOURCE

Outsource
- Complexity: HIGH
- Strategic Importance: LOW

Minimize Effort
- Complexity: LOW
- Strategic Importance: LOW

Process Improvement
- Complexity: HIGH
- Strategic Importance: HIGH

Automate
- Complexity: LOW
- Strategic Importance: HIGH

Minimum effort
- OUTSOURCE
- process improvement

OWASP
The Open Web Application Security Project
SERVICE CENTRIC APPLICATION SECURITY

Security Operations Center

- Dynamic Application Security Testing
- Application Firewall
- Integration with Vulnerability management
- Integration with Threat Intelligence
- Integration with Incident management
- Static Code Review Services