Top 10 Cloud Risks That Will Keep You Awake at Night

Shankar Babu Chebrolu Ph.D., Vinay Bansal, Pankaj Telang
We want to use SalesForce.com to host our next Cisco customer application.

.. Amazon EC2 (Cloud) to host Eng. Lab testing....

.. Facebook/MySpace to collaborate with company’s customer....

.. Google docs to share Cisco documents within team....

400+ ASPs (aka Cloud Providers) in use within Cisco
Outline

- Cloud – Industry Adoption Trend
- Cloud Taxonomy
- OWASP Cloud Top 10
- Cloud Security Risks
- Risk Mitigations
- Q & A
Cloud – Industry Adoption Trend

(Global expenditure on Cloud ($ billion))

(Source Gartner)
Cloud Taxonomy

Service Models

- Software as a Service (SaaS)
- Platform as a Service (PaaS)
- Infrastructure as a Service (IaaS)

Deployment Models

- Public
- Private
- Hybrid
- Community

Broad Network Access
Rapid Elasticity
Measured Service
On-Demand Self-Service
Resource Pooling

(Adapted from CSA Guide, originally from NIST)
Cloud Top 10 - Motivation

Develop and maintain top 10 risks with cloud

Serve as a quick list of top risks with cloud adoption

Provide guidelines on mitigating the risks
Cloud Top 10 - Approach

- Easily Executable
- Most Damaging
- Incidence Frequency

Industry Experience

ISC2
CSA
Publications
NIST
IDC
News

OWASP Cloud Top 10

Category: OWASP Cloud - 10 Project

Cloud Top 10 Security Risks

Goal
According to Gartner, by 2012, 20% of businesses will adopt cloud services and own no IT assets. Goal of the project is to maintain a list of top 10 security risks faced with the Cloud Computing and SaaS Model. List will be maintained by input from community, security experts and security incidence at cloud/SaaS provider.

Most of the risks are based on the assumption that Cloud is a public or a hybrid cloud.

Audience
Audience for the project will be organizations planning on leveraging external cloud environment to host their applications or rent application in a SaaS model (Software as a Service). Aim of the "OWASP Cloud Top 10" list is to help balance security risks with the cost advantage that the Cloud and SaaS model provider. We expect the Cloud and SaaS provider to be indexed audiences for "OWASP Cloud 10", when they try to reassure their security controls to potential customers against the list.

Initial pre-alpha list of OWASP Cloud Top 10 Security Risks

1. RI - Accountability and Data Ownership
 A traditional data center of an organization is under complete control of that organization. The organization logically and physically protects the data it owns. An organization that chooses to use a public cloud for hosting its business service loses control of its data. This poses critical security risks that the organization needs to carefully consider and mitigate. (Policy, Privacy)

2. RI - User Identity Federation
 It is very important for the enterprises to keep control over user identities as they move services and applications to the different cloud providers. Rather than letting cloud providers create multiple islands of identities that become too complex to manage down the line. There should be unique identity with a federated authentication (e.g., SAML) that work across the cloud providers. User experience is enhanced when he/she does not manage multiple accounts and credentials. This allows easier back end data integrations between cloud services. (Identity, Privacy)
Cloud Top 10 Risks

- R1: Accountability & Data Risk
- R2: User Identity Federation
- R3: Regulatory Compliance
- R4: Business Continuity & Resiliency
- R5: User Privacy & Secondary Usage of Data
- R6: Service & Data Integration
- R7: Multi-tenancy & Physical Security
- R8: Incidence Analysis & Forensics
- R9: Infrastructure Security
- R10: Non-production Environment Exposure
R1: Accountability

In traditional data center, the owning organization is accountable for security at all layers.

Organization fully accountable for security at all layers

You can outsource hosted services but you cannot outsource accountability

In a cloud, who is accountable for security at these layers?
R1: Accountability (cont.)

Cloud Provider

Cloud Consumer

Accountable

Accountable

SaaS

PaaS

IaaS

Application

Web/App/DB server

Computing

Network

Storage

* Few exceptions
R1: Data Risk

How sensitive is the data?

Who owns the data?

Data encrypted? Single vs. multiple keys

Data stored anywhere!!

Informal blogs
Twitter posts
Public news
Newsgroup messages

Health records
Criminal records
Credit history
Payroll

Health records
Criminal records
Credit history
Payroll
R1: Accountability & Data Risk Mitigation

Logical isolation of the data of multiple consumers

Provider fully destroys deleted data

Multiple encryption keys
R2: Risks: Islands of User Identities

Security Risks
1. Managing Identities across multiple providers
2. Less control over user lifecycle (off-boarding)
3. User experience
R2: Mitigation: User Identity Federation

Mitigations
1. Federated Identity
2. OAuth for backend integrations
3. Tighter user provisioning controls
Data that is perceived to be secure in one country may not be perceived secure in another country/region.

Lack of transparency in the underlying implementations makes it difficult for data owners to demonstrate compliance (SOX/HIPAA etc.).

Lack of consistent standards and requirements for global regulatory compliance – data governance can no longer be viewed from a point-to-point data flow perspective but rather a multi-point to multi-point.

European Union (EU) has very strict privacy laws and hence data stored in US may not comply with those EU laws (*US Patriot Act allows federal agencies limitless powers to access any corporate data etc.*)
R3: Regulatory Compliance – Mitigation Strategy

Apply risk management framework, case-by-case basis

Define data protection requirements and SLAs

Provider / Consumer agreement to a pre-defined RACI model
R4: Business Continuity & Resiliency

Lack of know-how and capabilities needed to ensure continuity & resiliency

Cloud provider may be acquired by a consumer’s competitor

Monetary losses due to an outage
R4: Business Continuity & Resiliency Mitigation

Contract defines Recovery Time Objectives, and monetary penalty for downtime

Cloud provider’s Business Continuity program certified to standard such as BS 25999
R5: User Privacy & Secondary Usage of Data

Users vs. Providers (Priorities)

- **Privacy of my data**
 - Address, Email,..
 (Personally Identifiable Information)
 - Health, personal financial info
 - Personal Details (email, IMs,....)

- **Keep Revenue Up/ Cost Down**
 - Push out the liabilities to user via Privacy and Acceptable Use Policy
 - Build Additional Services on users behavior (targeted advertisements) e.g. Google Email, banner adv.
 - Do minimal to achieve compliance
 - Keep their social applications more open (increased adoption)
R5: Risks: User Privacy & Secondary Usage of Data

- User personal data mined or used (sold) without consent
 - Targeted Advertisements, third parties
- User Privacy data transferred across jurisdictional borders
- No opt out features for user (user can not delete data)
- Lack of individual control on ensuring appropriate usage, sharing and protection of their personal information.
- Law Obligation for providers
 - Key escrows to law agencies
 - Subpoena
R5: Mitigations: User Privacy & Secondary Usage of Data

Policy Enactment
- Privacy and Acceptable Usage
- Consent (Opt In / Opt Out)
- Policy on Secondary Usage

De-identification of personal Information

Encrypted storage

Terms of Service with providers
- Responsibility on compliance
- Geographical affinity
Data traverses through the internet between end users and cloud data centers. How secure the integrations are?
R6: Service & Data Integration – Mitigation Strategy

Data in Transit

Data at Rest

Encryption (keys, protocols etc)
R7: Risks: Multi-tenancy and Physical Security

- Security Risks:
 1. Inadequate Logical Separations
 2. Co-mingled Tenant Data
 3. Malicious or Ignorant Tenants
 4. Shared Service - single point of failures
 5. Uncoordinated Change Controls and Misconfigs
 6. Performance Risks
R7: Attacks and Incidences

- MIT demonstrating cross-tenant attacks (Amazon EC2)*
 - Side channel Attacks
 - Scanning other tenants
 - DoS

- Wordpress Outage June 2010**
 - 100s of tenants (CNN,..) down in multi-tenant environment.
 - Uncoordinated Change in database

R7: Mitigations: Multi-tenancy and Physical Security

Architecting for Multi-Tenancy

Data Encryption (per tenant key management)

Controlled and coordinated Change Management

Transparency/Audit-ability of Administrative Access

Virtual Private Cloud (VPC)

Regular Third Party Assessments
Complex integration and dynamics in cloud computing present significant challenges to timely diagnosis and resolution of incidents such as:

- Malware detection and
- Immediate intrusion response to mitigate the impact

Implications to Traditional Forensics?
(seizing equipment and analysis on media/data recovered)

International differences in relevant regulations …
R8: Incidence Analysis & Forensic Support – Mitigation Strategy

Dedicated Forensic VM Images

Comprehensive logging

Without compromising Performance
Malicious parties are actively scanning the internet for ...

- Vulnerable Applications or Services
- Active Unused Ports
- Default Passwords
- Default Configurations

Data
R9: Infrastructure Security - Mitigations

Segregation of duties and role based administrative privs

Third party audits and app vulnerability assessments

Tiered architecture with appropriate security controls between them

Hardening – Networks, OS, Apps
Non-Production Environments are used for design, development, and test activities internally within an organization.

Typical non-prod environment use generic authentication credentials.

Data copied to non-prod from its production equivalent.

High risk of an unauthorized user getting access to the non-production environment.
R10: Non-Production Environment Exposure Mitigation

Use multi layers of authentication

Don’t use cloud for developing a highly sensitive app in the cloud

Non-prod data is not identical to production
Summary: Peaceful Sleep

R5: Incidence: User Privacy & Secondary Usage of Data

Security

Google Fired Engineer for Privacy Violations

By: Brian Prince
2010-09-15
Article Rating ★★★★★ / 4

There are 0 user comments on this Security story.

Google confirmed it fired an engineer for violating its privacy policies following a media report the employee had been let go for spying on the Google accounts of teenagers.

Google confirmed today one of its engineers has been fired for violating the company’s privacy rules.

The acknowledgment followed a media report that Google employee David Barksdale accessed the accounts of several teenagers in violation of Google policies. According to Gawker, Barksdale was let go in July for abusing his position as a site reliability engineer in Google’s Kirkland, Wash., office by spying on the minors’ Google accounts, including accessing Google Voice call logs records and Google Chat transcripts.

Barksdale was fired after Google received complaints about the situation, Gawker reported.

"Site reliability engineers [SREs] are responsible for a variety of tasks, including responding to technical problems across Google’s product portfolio, and as such have unreviewed access to users’ accounts for the services they oversee,” Gawker quoted a former Google SRE as saying.

In a statement, Bill Coughran, senior vice president of engineering at Google, said Barksdale had been fired for "breaking Google’s strict internal privacy policies.”