
Smart Phones, Dumb Apps

OWASP DC

Thursday November 11th, 2010

Agenda

• Generic Smartphone Threat Model

• Sample Application

• What an Attacker Sees (Android Edition)

• What About iPhones?

• Closing Thoughts

• Questions

1

Smart Phones, Dumb Apps

• Lots of media focus on device and platform security

– Important because successful attacks give tremendous attacker leverage

• Most organizations:

– Accept realities of device and platform security

– Concerned about the security of their custom applications

– Concerned about sensitive data on the device because of their apps

– Concerned about network-available resources that support their apps

• Who has smartphone application deployed for customers?

• Who has had smartphone applications deployed without their

knowledge?

– *$!%$# marketing department…

2

Generic Smartphone Threat Model

3

Some Assumptions for Developers

• Smartphone applications are essentially thick-client applications

– That people carry in their pockets

– And drop in toilets

– And put on eBay when the new iPhone comes out

– And leave on airplanes

– And so on…

• Attackers will be able to access:

– Target user (victim) devices

– Your application binaries

• What else should you assume they know or will find out?

4

A Sample Application

• Attach to your brokerage account

• Pull stock quotes

• Make stock purchases

• (Apologies to anyone with any sense of UI design)

• This is intentionally nasty, but is it unrealistic?

5

So What Does a Bad Guy See? (Android Edition)

• Install the application onto a device

• Root the device

• Pull the application’s APK file onto a workstation for analysis

• APK files are ZIP files

• They contain:

– AndroidManifest.xml

– Other binary XML files in res/

– classes.dex DEX binary code

6

What’s Up With My XML Files?

• Binary encoding

• Use axml2xml.pl to

convert them to text

http://code.google.com/p/android-random/downloads/detail?name=axml2xml.pl

7

http://code.google.com/p/android-random/downloads/detail?name=axml2xml.pl
http://code.google.com/p/android-random/downloads/detail?name=axml2xml.pl
http://code.google.com/p/android-random/downloads/detail?name=axml2xml.pl
http://code.google.com/p/android-random/downloads/detail?name=axml2xml.pl
http://code.google.com/p/android-random/downloads/detail?name=axml2xml.pl
http://code.google.com/p/android-random/downloads/detail?name=axml2xml.pl
http://code.google.com/p/android-random/downloads/detail?name=axml2xml.pl

Much Better

• Now we see:

– Screens in application

– Permissions required

by the application

8

Do the Same Thing With the Rest of Them

• Recurse through the res/ subdirectory

• UI layouts, other resources

9

What About the Code?

• All of it is stuffed in classes.dex

• Android phones use DEX rather than Java bytecodes

– Register-based virtual machine rather than stack-based virtual machine

• Options:

– Look at DEX assembly via de-dexing

– Convert to Java bytecode and then to Java source code

10

De-Dex to See DEX Assembly

• DEX bytecode ~=

Java bytecode

• All code goes in one

file

• Disassemble to DEX

assembly with dedexer

http://dedexer.sourceforge.net/

11

http://dedexer.sourceforge.net/
http://dedexer.sourceforge.net/
http://dedexer.sourceforge.net/

Lots of Information

• Like the fun-fun world

of Java disassembly

and decompilation

– (We’ll get to the DEX

decompilation in a

moment)

• LOTS of information

available

12

But Can I Decompile to Java?

• Yes

• We

• Can

• Convert to Java bytecodes with dex2jar

– http://code.google.com/p/dex2jar/

• Convert to Java source code with your favorite Java decompiler

13

http://code.google.com/p/dex2jar/

DEX Assembly Versus Java Source Code

• De-DEXing works pretty reliably

• DEX assembly is easy to parse with grep

• DEX assembly is reasonably easy to manually analyze

• Java decompilation works most of the time

• Java source code can be tricky to parse with grep

• Java source code is very easy to manually analyze

• Verdict:

– Do both!

– Grep through DEX assembly

– Analyze Java source

14

So What Did We Learn?

• Look at the string constants

– URLs, hostnames, web paths

• Look at the de-DEXed assembly

– Method calls

– Data flow

• Developers: BAD NEWS

– The bad guys have all your code

– They might understand your app better than you

15

Is There Sensitive Data On the Device?

• Look at the code

• Grep for “File”

16

What About Java Source Code?

• Get the source code with JD-Gui

– http://java.decompiler.free.fr/

17

http://java.decompiler.free.fr/

Look for Files With Bad Permissions

• Look for file open operations using

– Context.MODE_WORLD_READABLE

– (translates to “1”)

18

Next: What Is On the Server-Side

• To access sensitive data on a device:

– Steal a device

– Want more data?

– Steal another device

• To access sensitive data from web services

– Attack the web service

• String constants for URLs, hostnames, paths

• Examples:

– 3rd party web services

– Enterprise web services

19

So Now What?

• 3rd Party Web Services

– Is data being treated as untrusted?

• Enterprise Web Services

– Did you know these were deployed?

20

Web Services Example

• Trumped up example, but based on real life

• Given a web services endpoint, what will a bad guy do?

21

What Is Wrong With the Example Application?

• Sensitive data stored on the device

• Trusts data from 3rd party web services

• Exposes enterprise web services

• Enterprise web services vulnerable to XSS attacks

• And so on…

22

What About iPhones?

• Objective-C compiled to ARMv6 machine code

– Not as fun as Java compiled to DEX bytecode

• Apps from iTunes Store

– Encrypted

– Used to be “easy” (well, mechanical) to break encryption with a jailbroken phone

and a debugger

– Now trickier

– But the default apps are not encrypted…

23

Run “strings” on the Binary

• Web services endpoints: URLs, hostnames, paths

• Objective-C calling conventions:

[myThing doStuff a b c];

becomes

obj_msgsend(myThing, “doStuff:”, a, b, c);

24

Run “otool” on the Binary

• otool –l <MyApp>

– View the load commands

– Segment info, encryption info, libraries in use

• otool –t –v <MyApp>

– Disassemble the text segment to ARMv6 assembly

– If run on an encrypted application you get garbage

• And so on…

25

iPhone URL Schemes

• iPhone applications

can be set up to

“handle” certain URL

schemes

• Defined in the

application’s Info.plist

• Binary format:

annoying

26

Decoding Files: Easy for iPhones Too

• plutil -convert xml1 Info.plist

• Much nicer

• XPath: Look for:
/plist/dict/array/dict[key='CFBundleURLSchemes']/array/string

• Now you know the

URL Schemes the app

handles

27

Net Result for iPhone

• More obscure

– But does that mean more secure?

• Can still retrieve a tremendous amount of information

28

So What Should Developers Do?

• Threat model your smartphone applications

– More complicated architectures -> more opportunities for problems

• Watch what you store on the device

– May have PCI, HIPAA implications

• Be careful consuming 3rd party services

– Who do you love? Who do you trust?

• Be careful deploying enterprise web services

– Very attractive target for bad guys

– Often deployed “under the radar”

29

So What Should Security People Do?

• Find out about smartphone projects

– Not always done by your usual development teams

– R&D, “Office of the CTO,” Marketing

• Assess the security implications of smartphone applications

– What data is stored on the device?

– What services are you consuming?

– Are new enterprise services being deployed to support the application?

30

Resources

• axml2xml.pl (Convert Android XML files to normal XML)

– http://code.google.com/p/android-random/downloads/detail?name=axml2xml.pl

• Dedexer (Convert DEX bytecodes into DEX assembler)

– http://dedexer.sourceforge.net/

• Dex2jar (Convert DEX bytecode in Java bytecode)

– http://code.google.com/p/dex2jar/

• JD-GUI (Convert Java bytecode to Java source code)

– http://java.decompiler.free.fr/

• otool (Get information about iPhone binaries)
– http://developer.apple.com/library/mac/#documentation/Darwin/Reference/ManPages/man1/otool.1.html

31

http://code.google.com/p/android-random/downloads/detail?name=axml2xml.pl
http://code.google.com/p/android-random/downloads/detail?name=axml2xml.pl
http://code.google.com/p/android-random/downloads/detail?name=axml2xml.pl
http://dedexer.sourceforge.net/
http://code.google.com/p/dex2jar/
http://java.decompiler.free.fr/
http://developer.apple.com/library/mac/

Online

• Code/etc online:

www.smartphonesdumbapps.com

32

http://www.smartphonesdumbapps.com/

Questions?

Dan Cornell

dan@denimgroup.com

Twitter: @danielcornell

www.denimgroup.com

(210) 572-4400

33

mailto:dan@denimgroup.com
http://twitter.com/danielcornell
http://www.denimgroup.com/
http://www.denimgroup.com/

