the leading secure software development firm

What Permissions Does Your Database User
REALLY Need?

Dan Gornell
CT0, Denim Group
@danielcornell

© Copyright 2012 Denim Group - All Rights Reserved

My Background
 Dan Cornell, founder and CTO of
Denim Group

« Software developer by background
(Java, .NET, etc)

« OWASP San Antonio, Global
Membership Committee

© Copyright 2012 Denim Group - All Rights Reserved

Denim Group Background

« Secure software services and products company

— Builds secure software

— Helps organizations assess and mitigate risk of in-house developed and third party
Software

— Provides classroom training and e-Learning so clients can build software securely
« Software-centric view of application security

— Application security experts are practicing developers

— Development pedigree translates to rapport with development managers

— Business impact: shorter time-to-fix application vulnerabilities
» Culture of application security innovation and contribution

— Develops open source tools to help clients mature their software security programs
* Remediation Resource Center, ThreadFix

— OWASP national leaders & regular speakers at RSA, SANS, OWASP, ISSA, CSI
— World class alliance partners accelerate innovation to solve client problems

© Copyright 2012 Denim Group - All Rights Reserved

Who has deployed a web
application to production
attached to its database as
the “sa” or “root” user?

© Copyright 2012 Denim Group - All Rights Reserved

© Copyright 2012 Denim Group - All Rights Reserved 6

Web Application Database User Permissions

« Data = Value

 Web Applications Are Front-Ends For Web
Databases

* Web Applications Are Full of SQL Injection
Vulnerabillities

* Therefore: Choosing You Web Database User
Permissions Has a Large Potential Impact On
Your Security Posture

© Copyright 2012 Denim Group - All Rights Reserved

Problems With Web Database Access Security

* Nearly all applications use a single database user
to access the database
— Masks the true identity of the caller to the database

« Too often this user is hyper-privileged
 Why?

— Lazy configuration management for production environment
— DBA attitude of “one app — one schema — one user”

— “Too hard” to figure out what permissions are needed

— Schema ownership required by 3 party code

© Copyright 2012 Denim Group - All Rights Reserved -

Result

« Any SQL injection vulnerability exploit owns the entire
database
— Schema: Map it out

— Data: INSERT, UPDATE, SELECT, DELETE
« Whole “Confidentiality, Integrity and Availability” thing: out
the window

« This can even be automated:
— sqlmap: http://sqlmap.sourceforge.net/

« |f that database user’s privileges extend beyond the database
supporting the vulnerable application...

© Copyright 2012 Denim Group - All Rights Reserved -

Test Environment

* (Crappy) PHP Web Application: Crap-E-Commerce
« Database Access With Full Permissions

© Copyright 2012 Denim Group - All Rights Reserved

Environment Setup Tips

* If you want to symlink to the commerce/ examples on OS X
— http.//tirobinson.net/blog/2008/06/mac-0s-x-web-sharing-apache-and-symlinks/

« Use “127.0.0.1" rather than ‘localhost’ for the MySQL database host

— http.//stackoverflow.com/questions/3968013/cakephp-no-such-file-or-directory-
trying-to-connect-via-unix-var-mysql-mysq

© Copyright 2012 Denim Group - All Rights Reserved

What Is Wrong With Our Target Application?

* Process:

— Scan with OWASP ZAProxy to find vulnerabilities:
http://code.qooqle.com/p/zaproxy/

— Use sqglmap to see what we can find

* Results:
— Publicly-accessible SQL injections!

© Copyright 2012 Denim Group - All Rights Reserved

Sqgilmap Results

« Command
— ./sqlmap.py -u http.//localhost/~dcornell/commerce/order.php?order _id=1 --dump-all

 Data retrieved:
— All of it...

© Copyright 2012 Denim Group - All Rights Reserved

Actual Business Impact

 From sqglmap: Lost all data in the database:
— Usernames and passwords
— Order history
— Full credit card information

» Additional possibilities: UPDATE, DELETE,
INSERT

© Copyright 2012 Denim Group - All Rights Reserved

We Need To Make Some Progress

!

© Copyright 2012 Denim Group - All Rights Reserved

That Was With a Powerful Database User

So what happens if we deploy the
application with a less powerful
user?

To do this we need to know what
access a legitimate user needs...

What Privileges Does a Database User Need?

* Ask the development team
— Good luck with that
— Do they even know given frameworks and abstraction layers like ORMs
— Doesn’t scale

* Ask the DBA

— Double good luck with that
— Doesn’t scale

* Inspect the code
— Ugh
— Error prone
— Doesn’t scale

© Copyright 2012 Denim Group - All Rights Reserved

Any Way To Automate This?

* Interesting Article:

— http.//www.teamshatter.com/fopics/general/team-shatter-exclusive/what-are-my-
users%E2%80%99-effective-database-privileges/

— See http:.//www.petefinnigan.com/tools.htm for more along these lines
e Less than ideal
— What assets can this user access?
versus
— What assets does the user need to access?

» Could be helpful determining possible impact of a breach

© Copyright 2012 Denim Group - All Rights Reserved

Other Permission Calculation Tools

 .NET Permission Calculator Tool (Permcalc.exe)
— http.//msdn.microsoft.com/en-us/library/ms165077(v=vs.90).aspx

« Stowaway (Android Permissions Calculator)
— http:.//www.android-permissions.org/

« Both of these tools appear to rely solely on static analysis

— Makes sense from a coverage standpoint
— Would be really hard for databases potentially accessed by multiple applications

© Copyright 2012 Denim Group - All Rights Reserved

Alternate Approach

« Dynamically analyze traffic to the database server

» Use that traffic as a “representative sample” of required database
access

» Create user permissions based on this

« Why?

— Static analysis is really hard to get exactly right — this relies on observed behavior

© Copyright 2012 Denim Group - All Rights Reserved

sqlpermcalc

« Tool that calculates the least-privilege database permissions required
to execute a given set of SQL queries
— Written in Python
— https:/github.com/denimgroup/sqlpermcalc

* Helper tools:
— Start and stop MySQL logging
— Capture query log from a MySQL database

* Relies on python-sqlparse for basic SQL parsing support
— https.//code.google.com/p/python-sqlparse/
— Thanks Andi Albrecht! (http.//andialbrecht.de/)

© Copyright 2012 Denim Group - All Rights Reserved

An Aside: “Pythonic”

» Definition of “pythonic”

— “To be Pythonic is to use the Python constructs and data structures with clean,
readable idioms”

— http://faassen.n--tree.net/bloq/view/weblog/2005/08/06/0

» At this point sqglpermcalc is more ... “python-ish”
— Enjoy ©
— Any Python gurus are more than welcome to help with cleanup...

© Copyright 2012 Denim Group - All Rights Reserved

Support Tools

 Turn on MySQL logging with mysqgl_start_logging.sh
— Not recommended for use in production because of potential performance impact
— Also we’re logging to MySQL tables rather than a log file — even worse

» Retrieve MySQL log data with mysql_get logfile.sh

— Pulls queries from a given user into a local .sql file

« Turn off MySQL logging with mysql_stop logging.sh
— Stops logging

© Copyright 2012 Denim Group - All Rights Reserved

Process

« Stop webserver

« Turn on MySQL logging

« Start webserver

« Exercise application

* Retrieve logs

« Turn off MySQL logging

* Analyze logs for permission usage

© Copyright 2012 Denim Group - All Rights Reserved

Calculating Permissions

« SELECT
* INSERT
 UPDATE
 DELETE

© Copyright 2012 Denim Group - All Rights Reserved

SELECT Permissions

» Can control on a table-wide basis
« Can control on a per-column basis for a table
 WHERE clause will require additional SELECT permissions

« Scenarios:
— SELECT * FROM MyTable
— SELECT col1, col2, col3 FROM MyTable
— SELECT * FROM MyTable WHERE col1 = 1 AND col2 = 2 OR col3 = ‘three’
— SELECT col1, col2 FROM MyTable where col3 = ‘three’

© Copyright 2012 Denim Group - All Rights Reserved

INSERT Permissions

» Can control on a table-wide basis
« Can control on a per-column basis for a table

« Scenarios:
— Full table: INSERT INTO MyTable VALUES (1, 2, ‘three’)
— Columns in table: INSERT INTO MyTable (col1, col2, col3) VALUES (1, 2, ‘three’)

© Copyright 2012 Denim Group - All Rights Reserved

UPDATE Permissions

« Can control on a table-wide basis
« Can control on a per-column basis for a table
 WHERE clause will require SELECT permissions as well

 Scenarios:
— UPDATE MyTable SET col1 = 1
— UPDATE MyTable SET col2 = 2 WHERE col3 = ‘three’

© Copyright 2012 Denim Group - All Rights Reserved

DELETE Permissions

« Can only control on a table-wide basis
« WHERE clause will require SELECT permissions as well

 Scenarios:
— DELETE FROM MyTable
— DELETE FROM MyTable WHERE col1 = 1

© Copyright 2012 Denim Group - All Rights Reserved

A Note About Wildcards

« DELETE always impacts all columns in a table
— Hence it only has table-level permissions — not column-level

« SELECT and INSERT sometimes impact all columns in a table
— SELECT * FROM MyTable
— INSERT INTO MyTable VALUES (1, 2, ‘three’)

* Currently we do not “know” the actual database schema
— Therefore we do not know all of the actual column names
— So instead we track *’ to represent “all columns”

» This should not cause problems
— What we see accessed in the queries should be what we need to access

© Copyright 2012 Denim Group - All Rights Reserved

What Permissions Are Actually Needed?

* INSERT

— CommerceUser: email first nhame,last name,password
— CreditCard: CVV,expiration,number,type
— Orderltem: order _id,price,product _id,product _name,quantity

« SELECT

— CommerceUser: *

— Order: date,total,user _id

— Orderltem: price,product _id,product _name,quantity
— Product: *

© Copyright 2012 Denim Group - All Rights Reserved

Given The Model We Can Generate GRANTSs

 For MySQL we need to know the user account name and
host for access

GRANT INSERT (email,first name,last name,password) ON
sqglpermcalc commerce.CommerceUser TO 'spc publiclow'@'localhost';

GRANT INSERT (CVV,expiration,number,type) ON sglpermcalc commerce.CreditCard
TO 'spc publiclow'@'localhost';

GRANT INSERT (order id,price,product id,product name,quantity) ON
sglpermcalc commerce.OrderItem TO 'spc publiclow'@'localhost';

GRANT SELECT ON sglpermcalc commerce.CommerceUser TO
'spc_publiclow'@'localhost';

GRANT SELECT (date,total,user id) ON sqglpermcalc commerce.Order TO
'spc_publiclow'@'localhost';

GRANT SELECT (order id,price,product id,product name,quantity) ON
sglpermcalc commerce.OrderItem TO 'spc publiclow'@'localhost';

GRANT SELECT ON sglpermcalc commerce.Product TO 'spc publiclow'@'localhost';

© Copyright 2012 Denim Group - All Rights Reserved

© Copyright 2012 Denim Group - All Rights Reserved

Re-Run sqglmap

» Can still recover a whole lot of data
— But not the credit card data (or even the credit card primary key IDs)
— So that is better. Kinda

 But...
— No UPDATE or DELETE access to any tables
— Limited INSERT access

 What Does That Get Us?
— Can’t INSERT into Products or modify Products
— Automated SQL worms can’t “infect” the site with malware via SQL injection
— So that is definitely better

© Copyright 2012 Denim Group - All Rights Reserved

Other Uses

* Insight into database usage
— Do you have any idea what database assets your web application touches?
— Even if you don’t generate new user permissions, you can still use this to explore

 Forensic review over time
— Gather usage logs from production servers at intervals?
— Why did this app suddenly start using additional permissions?

« Compare multiple user roles or applications
— What does each need to do?
— How are the access needs different?

© Copyright 2012 Denim Group - All Rights Reserved

Calculating Permission for Multiple Scenarios

« Hosting Multiple Applications Accessing the Same Database(s)
— Two applications (public and admin) share several databases
— Public site is read-only and heavily cached

— Admin site is read/write
During series of attacks we had to manually calculate constrained permissions

* Hosting Same Application In Different VMs
— Cannot make code changes but need to harden infrastructure
— Host different configuration files for database access

— Example: Falling Rock Networks Armored Stack infrastructure
» http://www.fallingrocknetworks.com/armored-stack.html

© Copyright 2012 Denim Group - All Rights Reserved

Limits of This Approach

« Assumes that assets touched during a test run are all that a legitimate
user session will ever need
— If we miss something we will see runtime errors
— Likely needs re-calculation when code is changed
— Comprehensive unit/regression test suite can help (Rugged DevOps!)

 Many applications require a lot of access so the security benefit might
not be as great as desired
— In the example application: we still lost usernames/passwords

© Copyright 2012 Denim Group - All Rights Reserved

Current sqlpermcalc Limitations

* Only supports basic SQL functionality
— SELECT, INSERT, UPDATE, DELETE

« Parsing is still crudimentary
— More advanced SELECT statements — JOINs, subqueries — are not yet supported
— Precludes use for apps using common frameworks and tools

* Only tested on MySQL

— Every databases SQL dialect is a little different
— Every database has different ways to grant/revoke privileges

© Copyright 2012 Denim Group - All Rights Reserved

Next Steps

* Improve the SQL supported by the parser
— Support all SQL queries generated by Hibernate for a non-trivial application
— Look into adding support for stored procedures

« Clean up code
— This is kind of “scripty” right now
— Allow others to use the capabilities
— Make it more Pythonic
— http://kennethreitz.com/repository-structure-and-python. html

» Support for other databases
— Pull MS SQL Server queries from the Profiler

© Copyright 2012 Denim Group - All Rights Reserved

Other Stuff To Look At

« SE PostgreSQL.: https://code.google.com/p/sepgsql/

© Copyright 2012 Denim Group - All Rights Reserved

Get The Code

» sqlpermcalc on Github: https://github.com/denimgroup/sqlpermcalc
— Sqlpermcalc Python code
— Example Crap-E-Commerce app
— Support scripts for MySQL

© Copyright 2012 Denim Group - All Rights Reserved

Dan Cornell
dan@denimgroup.com
Twitter: @danielcornell

www.denimqgroup.com
qgithub.com/denimagroup/sqlpermcalc
(210) 572-4400

© Copyright 2012 Denim Group - All Rights Reserved

