
© Copyright 2012 Denim Group - All Rights Reserved

What Permissions Does Your Database User
REALLY Need?

Dan Cornell!
CTO, Denim Group!
@danielcornell

© Copyright 2012 Denim Group - All Rights Reserved 2

My Background

•  Dan Cornell, founder and CTO of
Denim Group

•  Software developer by background
(Java, .NET, etc)

•  OWASP San Antonio, Global
Membership Committee

© Copyright 2012 Denim Group - All Rights Reserved

Denim Group Background

•  Secure software services and products company
–  Builds secure software
–  Helps organizations assess and mitigate risk of in-house developed and third party

software
–  Provides classroom training and e-Learning so clients can build software securely

•  Software-centric view of application security
–  Application security experts are practicing developers
–  Development pedigree translates to rapport with development managers
–  Business impact: shorter time-to-fix application vulnerabilities

•  Culture of application security innovation and contribution
–  Develops open source tools to help clients mature their software security programs

•  Remediation Resource Center, ThreadFix
–  OWASP national leaders & regular speakers at RSA, SANS, OWASP, ISSA, CSI
–  World class alliance partners accelerate innovation to solve client problems

3

© Copyright 2012 Denim Group - All Rights Reserved

Who has deployed a web
application to production
attached to its database as
the “sa” or “root” user?

4

© Copyright 2012 Denim Group - All Rights Reserved

LIARS!

5

© Copyright 2012 Denim Group - All Rights Reserved

The Weakest Link

6

© Copyright 2012 Denim Group - All Rights Reserved

Web Application Database User Permissions

•  Data = Value
•  Web Applications Are Front-Ends For Web

Databases
•  Web Applications Are Full of SQL Injection

Vulnerabilities

•  Therefore: Choosing You Web Database User
Permissions Has a Large Potential Impact On
Your Security Posture

7

© Copyright 2012 Denim Group - All Rights Reserved

Problems With Web Database Access Security

•  Nearly all applications use a single database user
to access the database
–  Masks the true identity of the caller to the database

•  Too often this user is hyper-privileged
•  Why?

–  Lazy configuration management for production environment
–  DBA attitude of “one app – one schema – one user”
–  “Too hard” to figure out what permissions are needed
–  Schema ownership required by 3rd party code

8

© Copyright 2012 Denim Group - All Rights Reserved

Result

•  Any SQL injection vulnerability exploit owns the entire
database
–  Schema: Map it out
–  Data: INSERT, UPDATE, SELECT, DELETE

•  Whole “Confidentiality, Integrity and Availability” thing: out
the window

•  This can even be automated:
–  sqlmap: http://sqlmap.sourceforge.net/

•  If that database user’s privileges extend beyond the database
supporting the vulnerable application…

9

© Copyright 2012 Denim Group - All Rights Reserved

Test Environment
•  (Crappy) PHP Web Application: Crap-E-Commerce
•  Database Access With Full Permissions

10

© Copyright 2012 Denim Group - All Rights Reserved

Environment Setup Tips
•  If you want to symlink to the commerce/ examples on OS X

–  http://tlrobinson.net/blog/2008/06/mac-os-x-web-sharing-apache-and-symlinks/

•  Use ‘127.0.0.1’ rather than ‘localhost’ for the MySQL database host
–  http://stackoverflow.com/questions/3968013/cakephp-no-such-file-or-directory-

trying-to-connect-via-unix-var-mysql-mysq

11

© Copyright 2012 Denim Group - All Rights Reserved

What Is Wrong With Our Target Application?

•  Process:
–  Scan with OWASP ZAProxy to find vulnerabilities:

http://code.google.com/p/zaproxy/
–  Use sqlmap to see what we can find

•  Results:
–  Publicly-accessible SQL injections!

12

© Copyright 2012 Denim Group - All Rights Reserved

Sqlmap Results
•  Command

–  ./sqlmap.py -u http://localhost/~dcornell/commerce/order.php?order_id=1 --dump-all

•  Data retrieved:
–  All of it…

13

© Copyright 2012 Denim Group - All Rights Reserved

Actual Business Impact

•  From sqlmap: Lost all data in the database:
–  Usernames and passwords
–  Order history
–  Full credit card information

•  Additional possibilities: UPDATE, DELETE,
INSERT

14

© Copyright 2012 Denim Group - All Rights Reserved

We Need To Make Some Progress

15

© Copyright 2012 Denim Group - All Rights Reserved

That Was With a Powerful Database User

So what happens if we deploy the
application with a less powerful

user?

To do this we need to know what
access a legitimate user needs…

16

© Copyright 2012 Denim Group - All Rights Reserved

What Privileges Does a Database User Need?
•  Ask the development team

–  Good luck with that
–  Do they even know given frameworks and abstraction layers like ORMs
–  Doesn’t scale

•  Ask the DBA
–  Double good luck with that
–  Doesn’t scale

•  Inspect the code
–  Ugh
–  Error prone
–  Doesn’t scale

17

© Copyright 2012 Denim Group - All Rights Reserved

Any Way To Automate This?
•  Interesting Article:

–  http://www.teamshatter.com/topics/general/team-shatter-exclusive/what-are-my-
users%E2%80%99-effective-database-privileges/

–  See http://www.petefinnigan.com/tools.htm for more along these lines

•  Less than ideal
–  What assets can this user access?

 versus
–  What assets does the user need to access?

•  Could be helpful determining possible impact of a breach

18

© Copyright 2012 Denim Group - All Rights Reserved

Other Permission Calculation Tools
•  .NET Permission Calculator Tool (Permcalc.exe)

–  http://msdn.microsoft.com/en-us/library/ms165077(v=vs.90).aspx

•  Stowaway (Android Permissions Calculator)
–  http://www.android-permissions.org/

•  Both of these tools appear to rely solely on static analysis
–  Makes sense from a coverage standpoint
–  Would be really hard for databases potentially accessed by multiple applications

19

© Copyright 2012 Denim Group - All Rights Reserved

Alternate Approach
•  Dynamically analyze traffic to the database server

•  Use that traffic as a “representative sample” of required database
access

•  Create user permissions based on this

•  Why?
–  Static analysis is really hard to get exactly right – this relies on observed behavior

20

© Copyright 2012 Denim Group - All Rights Reserved

sqlpermcalc
•  Tool that calculates the least-privilege database permissions required

to execute a given set of SQL queries
–  Written in Python
–  https://github.com/denimgroup/sqlpermcalc

•  Helper tools:

–  Start and stop MySQL logging
–  Capture query log from a MySQL database

•  Relies on python-sqlparse for basic SQL parsing support
–  https://code.google.com/p/python-sqlparse/
–  Thanks Andi Albrecht! (http://andialbrecht.de/)

21

© Copyright 2012 Denim Group - All Rights Reserved

An Aside: “Pythonic”
•  Definition of “pythonic”

–  “To be Pythonic is to use the Python constructs and data structures with clean,
readable idioms”

–  http://faassen.n--tree.net/blog/view/weblog/2005/08/06/0

•  At this point sqlpermcalc is more … “python-ish”
–  Enjoy 
–  Any Python gurus are more than welcome to help with cleanup…

22

© Copyright 2012 Denim Group - All Rights Reserved

Support Tools
•  Turn on MySQL logging with mysql_start_logging.sh

–  Not recommended for use in production because of potential performance impact
–  Also we’re logging to MySQL tables rather than a log file – even worse

•  Retrieve MySQL log data with mysql_get_logfile.sh
–  Pulls queries from a given user into a local .sql file

•  Turn off MySQL logging with mysql_stop_logging.sh
–  Stops logging

23

© Copyright 2012 Denim Group - All Rights Reserved

Process
•  Stop webserver
•  Turn on MySQL logging
•  Start webserver
•  Exercise application
•  Retrieve logs
•  Turn off MySQL logging
•  Analyze logs for permission usage

24

© Copyright 2012 Denim Group - All Rights Reserved

Calculating Permissions

• SELECT
•  INSERT
• UPDATE
• DELETE

25

© Copyright 2012 Denim Group - All Rights Reserved

SELECT Permissions
•  Can control on a table-wide basis
•  Can control on a per-column basis for a table
•  WHERE clause will require additional SELECT permissions

•  Scenarios:
–  SELECT * FROM MyTable
–  SELECT col1, col2, col3 FROM MyTable
–  SELECT * FROM MyTable WHERE col1 = 1 AND col2 = 2 OR col3 = ‘three’
–  SELECT col1, col2 FROM MyTable where col3 = ‘three’

26

© Copyright 2012 Denim Group - All Rights Reserved

INSERT Permissions
•  Can control on a table-wide basis
•  Can control on a per-column basis for a table

•  Scenarios:

–  Full table: INSERT INTO MyTable VALUES (1, 2, ‘three’)
–  Columns in table: INSERT INTO MyTable (col1, col2, col3) VALUES (1, 2, ‘three’)

27

© Copyright 2012 Denim Group - All Rights Reserved

UPDATE Permissions
•  Can control on a table-wide basis
•  Can control on a per-column basis for a table
•  WHERE clause will require SELECT permissions as well

•  Scenarios:
–  UPDATE MyTable SET col1 = 1
–  UPDATE MyTable SET col2 = 2 WHERE col3 = ‘three’

28

© Copyright 2012 Denim Group - All Rights Reserved

DELETE Permissions
•  Can only control on a table-wide basis
•  WHERE clause will require SELECT permissions as well

•  Scenarios:
–  DELETE FROM MyTable
–  DELETE FROM MyTable WHERE col1 = 1

29

© Copyright 2012 Denim Group - All Rights Reserved

A Note About Wildcards
•  DELETE always impacts all columns in a table

–  Hence it only has table-level permissions – not column-level

•  SELECT and INSERT sometimes impact all columns in a table
–  SELECT * FROM MyTable
–  INSERT INTO MyTable VALUES (1, 2, ‘three’)

•  Currently we do not “know” the actual database schema
–  Therefore we do not know all of the actual column names
–  So instead we track ‘*’ to represent “all columns”

•  This should not cause problems
–  What we see accessed in the queries should be what we need to access

30

© Copyright 2012 Denim Group - All Rights Reserved

What Permissions Are Actually Needed?

•  INSERT
–  CommerceUser: email,first_name,last_name,password
–  CreditCard: CVV,expiration,number,type
–  OrderItem: order_id,price,product_id,product_name,quantity

•  SELECT

–  CommerceUser: *
–  Order: date,total,user_id
–  OrderItem: price,product_id,product_name,quantity
–  Product: *

31

© Copyright 2012 Denim Group - All Rights Reserved

Given The Model We Can Generate GRANTs

•  For MySQL we need to know the user account name and
host for access

GRANT INSERT (email,first_name,last_name,password) ON
sqlpermcalc_commerce.CommerceUser TO 'spc_publiclow'@'localhost';

GRANT INSERT (CVV,expiration,number,type) ON sqlpermcalc_commerce.CreditCard
TO 'spc_publiclow'@'localhost';

GRANT INSERT (order_id,price,product_id,product_name,quantity) ON
sqlpermcalc_commerce.OrderItem TO 'spc_publiclow'@'localhost';

GRANT SELECT ON sqlpermcalc_commerce.CommerceUser TO
'spc_publiclow'@'localhost';

GRANT SELECT (date,total,user_id) ON sqlpermcalc_commerce.Order TO
'spc_publiclow'@'localhost';

GRANT SELECT (order_id,price,product_id,product_name,quantity) ON
sqlpermcalc_commerce.OrderItem TO 'spc_publiclow'@'localhost';

GRANT SELECT ON sqlpermcalc_commerce.Product TO 'spc_publiclow'@'localhost';

32

© Copyright 2012 Denim Group - All Rights Reserved

Impact of Slimmed-Down Permissions?

33

© Copyright 2012 Denim Group - All Rights Reserved

Re-Run sqlmap
•  Can still recover a whole lot of data

–  But not the credit card data (or even the credit card primary key IDs)
–  So that is better. Kinda

•  But…
–  No UPDATE or DELETE access to any tables
–  Limited INSERT access

•  What Does That Get Us?
–  Can’t INSERT into Products or modify Products
–  Automated SQL worms can’t “infect” the site with malware via SQL injection
–  So that is definitely better

34

© Copyright 2012 Denim Group - All Rights Reserved

Other Uses
•  Insight into database usage

–  Do you have any idea what database assets your web application touches?
–  Even if you don’t generate new user permissions, you can still use this to explore

•  Forensic review over time
–  Gather usage logs from production servers at intervals?
–  Why did this app suddenly start using additional permissions?

•  Compare multiple user roles or applications
–  What does each need to do?
–  How are the access needs different?

35

© Copyright 2012 Denim Group - All Rights Reserved

Calculating Permission for Multiple Scenarios
•  Hosting Multiple Applications Accessing the Same Database(s)

–  Two applications (public and admin) share several databases
–  Public site is read-only and heavily cached
–  Admin site is read/write
–  During series of attacks we had to manually calculate constrained permissions

•  Hosting Same Application In Different VMs
–  Cannot make code changes but need to harden infrastructure
–  Host different configuration files for database access
–  Example: Falling Rock Networks Armored Stack infrastructure

•  http://www.fallingrocknetworks.com/armored-stack.html

36

© Copyright 2012 Denim Group - All Rights Reserved

Limits of This Approach
•  Assumes that assets touched during a test run are all that a legitimate

user session will ever need
–  If we miss something we will see runtime errors
–  Likely needs re-calculation when code is changed
–  Comprehensive unit/regression test suite can help (Rugged DevOps!)

•  Many applications require a lot of access so the security benefit might
not be as great as desired

–  In the example application: we still lost usernames/passwords

37

© Copyright 2012 Denim Group - All Rights Reserved

Current sqlpermcalc Limitations
•  Only supports basic SQL functionality

–  SELECT, INSERT, UPDATE, DELETE

•  Parsing is still crudimentary
–  More advanced SELECT statements – JOINs, subqueries – are not yet supported
–  Precludes use for apps using common frameworks and tools

•  Only tested on MySQL
–  Every databases SQL dialect is a little different
–  Every database has different ways to grant/revoke privileges

38

© Copyright 2012 Denim Group - All Rights Reserved

Next Steps
•  Improve the SQL supported by the parser

–  Support all SQL queries generated by Hibernate for a non-trivial application
–  Look into adding support for stored procedures

•  Clean up code
–  This is kind of “scripty” right now
–  Allow others to use the capabilities
–  Make it more Pythonic
–  http://kennethreitz.com/repository-structure-and-python.html

•  Support for other databases

–  Pull MS SQL Server queries from the Profiler

39

© Copyright 2012 Denim Group - All Rights Reserved

Other Stuff To Look At
•  SE PostgreSQL: https://code.google.com/p/sepgsql/

40

© Copyright 2012 Denim Group - All Rights Reserved

Get The Code
•  sqlpermcalc on Github: https://github.com/denimgroup/sqlpermcalc

–  sqlpermcalc Python code
–  Example Crap-E-Commerce app
–  Support scripts for MySQL

41

© Copyright 2012 Denim Group - All Rights Reserved 42

Conclusions and Questions

Dan Cornell
dan@denimgroup.com
Twitter: @danielcornell

www.denimgroup.com
github.com/denimgroup/sqlpermcalc
(210) 572-4400

