Unregister Attack in SIP

Anat Bremler-Barr Ronit Halachmi-Bekel Jussi Kangasharju

Interdisciplinary center Herzliya *Darmstadt University of Technology*
Unregister Attack

• We present a new VoIP Denial Of Service/impersonating attack
• Attacker cancels the registration of the phone number in the system
• The victim can no longer be reached
• The victim has no idea that he cannot be reached
WHAT DO YOU EXPECT TO JUMP OUT OF THAT PHONE--A MAN?
• Introduction to Telephony
• VoIP
• SIP
• Unregister Attack
• SOHA Solution
• Conclusion
Introduction to Telephony

- Manual switchboards
- Electronic switchboards
- VoIP phones
- The technology is still changing dramatically
Circuit Switching

- Two sides of the call creates an electric circuit between them.
- All the communication of the call travels this circuit, and the channels are fully dedicated to the call.
- Waste of resources when there is silence.
- Designated specifically to phone calls.
- Considered secure.
Packet Switching

- No physical link between source and destination, the path between them varies
- Resources are shared by all users (Internet)
- No meaning to physical location
- Vulnerable
• Introduction to Telephony
• VoIP
• SIP
• Unregister Attack
• SOHA Solution
• Conclusion
Voice Over Internet Protocol (VoIP)

• A technology that allows phone calls to be made over the internet
• Packet switching
• Use of existing technology
• Two Phases:
 – Registration (dynamic / static)
 – Calls
• Signaling: SIP, MGCP, H323
• Media: RTP
VoIP Advantages

- Resources are shared by all users.
- Mobility
- Functionality
 - Forking
 - Advanced call flows
- Cost
 - Uses existing platforms
 - Decreased price of domestic and international calls
• Introduction to Telephony
• VoIP
• SIP
• Unregister Attack
• SOHA Solution
• Conclusion
Session Initiation Protocol (SIP)

- A text based signaling protocol
- Works mostly over UDP
- Used for internet telephony, instant messaging and presence services
SIP (Cont.)

• Client-server model
 – Client: telephone (endpoint)
 – Server

• Messages
 – Request
 – Responses
Can you accept the call?

Do you know 2000?

yes

Call accepted

Look for 2000 location

No record for 2000

Look for 2000 location

Found address
Registration

• Set of messages that eventually forms a record at the server

• Record: a foursome of the type Name, Number, IP, Port

• Authorization and authentication are possible:
 – Handled per request
 – A challenge/response mechanism
 – The server \textbf{SHOULD} authenticate the endpoint (RFC 3261)
Registration (Cont.)

• Expiry field - indicates how long the record will be valid for

• Call-id – unique identifier that groups together a series of messages.
 • It MUST be the same for all requests and responses related to the same dialog.
 • It SHOULD be the same in each registration.

• Cseq - identify and order transactions
Registration server without authentication

Initialization

Register

OK

Periodically

User 1000

server
Record list: 1000
Registration server with authentication

Initialization

Register

407 Proxy authentication required

User
1000

Register
Proxy authorization

OK

Periodically

server
Record list: 1000
Endpoint removal

• Endpoint removal:
 – Record expires according to the expiry value
 – User sent unregister message – a register message with expiry value of zero.

• Server SHOULD support the unregister message (RFC 3261).
• Introduction to Telephony
• VoIP
• SIP
• Unregister Attack
• SOHA Solution
• Conclusion
The Unregister Attack

• A new kind of Denial of Service/impersonating attack on SIP servers
• The attacker sends a spoof unregister packet
• As a result the server removes the victim’s record
• The victim has no indication that he is not registered at the server
Experiments

- The attacker uses a simple script written in C
- Tested on 3 different common servers
- Servers with/without authentication
- Attacker with/without traffic knowledge

<table>
<thead>
<tr>
<th></th>
<th>Attacker without traffic knowledge</th>
<th>Attacker with traffic knowledge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Server without authentication</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Server with authentication</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Traffic knowledge – possible to receive

- Frustrated employee scenario
- Wireless
 - Public services without authentication
 - Some of wireless encryption is possible to decrypt
Server *without* authentication
Attacker *without* traffic knowledge

- Pre knowledge:
 - IP address of the victim
 - Phone number of the victim
 - IP address of the server
- Prevention:
 - Verification *call-id* and *cseq* fields
- In practice the attack succeeded on two different common servers
Attacks

<table>
<thead>
<tr>
<th></th>
<th>Attacker without traffic knowledge</th>
<th>Attacker with traffic knowledge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Server without</td>
<td>Permissive definition</td>
<td></td>
</tr>
<tr>
<td>authentication</td>
<td>call – id and cseq verification</td>
<td></td>
</tr>
<tr>
<td>Server with</td>
<td></td>
<td></td>
</tr>
<tr>
<td>authentication</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Problem

Solution
Server **without** authentication
Attacker **with** traffic knowledge

- Pre knowledge:
 - IP address of the victim
 - Phone number of the victim
 - IP address of the server
 - Call-id and Cseq

- Without encryption of the packet there is no way to prevent the attack
Attacks

<table>
<thead>
<tr>
<th>Problem</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Server without authentication</td>
<td>Permissive definition</td>
</tr>
<tr>
<td>Attacker without traffic knowledge</td>
<td>Not covered in the RFC</td>
</tr>
<tr>
<td>call – id and cseq verification</td>
<td>SOHA solution (our solution)</td>
</tr>
<tr>
<td>Server with authentication</td>
<td></td>
</tr>
</tbody>
</table>
Server with authentication
Attacker without traffic knowledge

- No way to perform the attack
Attacks

<table>
<thead>
<tr>
<th>Server without authentication</th>
<th>Attacker without traffic knowledge</th>
<th>Attacker with traffic knowledge</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Permissive definition</td>
<td>Not covered in the RFC</td>
</tr>
<tr>
<td></td>
<td>call – id and cseq verification</td>
<td>SOHA solution (our solution)</td>
</tr>
<tr>
<td>Server with authentication</td>
<td>Impossible to attack</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Server with authentication
Attacker with traffic knowledge

• Replay attack –
 – Attacker uses the authentication data from the captured packet
• Pre knowledge:
 – IP address of the victim
 – Phone number of the victim
 – IP address of the server
 – Call-id and Cseq
 – Previous authorization field value
• Prevention
 – Server should ask for new authorization value for every packet it receives
Victim phone number 1000

Attacker

Worried mother

Register
From: 1000
Expiry: 1800
Call-id: abcdefg
Cseq 5

407 Proxy authentication required

Register
From: 1000
Expiry: 1800
Call-id: abcdefg...
Cseq 6
Proxy-authorization: xyzxyz...
Expiry: 1800

OK
From: 1000
Expiry: 1800
Call-id: abcdefg
Cseq: 6

Register
From: 1000
Expiry: 0
Call-id: abcdefg
Cseq 7
Proxy-authorization: xyzxyz...

OK
From: 1000
Expiry: 0
Call-id: abcdefg
Cseq: 7

Invite
To: 1000

404 not found

Record list: 1000
Attacks summary

<table>
<thead>
<tr>
<th></th>
<th>Attacker without traffic knowledge</th>
<th>Attacker with traffic knowledge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Server without</td>
<td>Permissive definition</td>
<td>Not covered in the RFC</td>
</tr>
<tr>
<td>authentication</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Server with</td>
<td>Impossible to attack</td>
<td>Permissive implementation</td>
</tr>
<tr>
<td>authentication</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>call – id and cseq verification</td>
<td>SOHA solution (our solution)</td>
</tr>
<tr>
<td></td>
<td>-------------------------------</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Zero duration nonce value</td>
<td></td>
</tr>
</tbody>
</table>
• Introduction to Telephony
• VoIP
• SIP
• Unregister Attack
• SOHA Solution
• Conclusion
Sip One way Hash function Algorithm - SOHA

- Provides a protection from the attack of server without authentication and attacker with traffic knowledge
- Provides protection from all other attacks as well
- Does not require configuration changes
- Based on “first is exclusive” rule - the first user to capture the record becomes the exclusive user
SOHA (cont.)

• Hash function –
 – Takes a variable-length string as the input
 – Produces a fixed-length value as the output.

• One way function - a function that follows the following rules:
 – The description of the function is known and does not require any secret information for its operation.
 – \(H(x) \Rightarrow Y \)
 – \(Y \Rightarrow H(?) \)
n, x – random numbers

h – one way hash function

\[z = h(h(h(h(\ldots h(x))\ldots)) \]
\[n \text{ times} \]

Register
X-hash-authenticate: z

OK
X-soha

User

z’ = h(h(h(h(\ldots h(x))\ldots))
\[n-1 \text{ times} \]

Register/Invite
X-hash-authenticate: z’

server

If h(z’) = z
OK
X-soha

If h(z’) != z
Reject
X-soha

Record list: 1000, Z
Record list: 1000, Z’
When n is close to zero or upon user’s choice user reset z value by adding x-hash-reset to x-hash-authenticate.

Register/Invite
X-hash-authenticate: z'
X-hash-reset: new value

User

OK
X-soha

server

Record list: 1000, Z
SOHA (cont.)

• Does not verify the identity of the user

• Ensures that a correctly registered user will not be removed from the server by the attacker
SOHA (cont.)

• Fully backward compatible
• Requires an addition of header fields (supported by SIP RFC):
 – x-hash-authenticate – used by the client.
 – x-hash-reset – used by the client.
 – x-soha – used by the server to indicate it supports SOHA
• SOHA similar to one time key password (RFC 2289)
• Introduction to Telephony
• VoIP
• SIP
• Unregister Attack
• SOHA Solution
• Conclusion
Conclusion

• With advancement of telephony comes a new set of possible attacks

• The attacks are either on VoIP protocols or on supplementary protocols (UDP, DNS etc)
Conclusion (cont.)

• Some of the attacks can be prevented with strict implementation of the RFC

• It is worth considering changing some of the RFC requirements from SHOULD to MUST to prevent possible attacks

• The consequence of implementing a SHOULD mechanism is not clear
 – non authentication in the server => unregister attack