Classification, Facets, and Conceptual Space in Security Analysis and the Use of Patterns

Dr. Michael Van Hilst
Farquhar College of Arts and Sciences
Nova Southeastern University
Security Challenges

- Gaps in knowledge
- Gaps in coverage
- Risks that are complicated and subtle
- Broad range of issues
- Different kinds of expert knowledge

- One exploit is one too many
Goal of Work at NSU & FAU

1. Easier ways to apply solutions
 – disseminate knowledge and expertise
2. Better ways to see the big picture
 – comprehensive coverage (no gaps)
3. Simpler solutions with better protection
 – system level approach

• Not unlike OWASP’s lists & tools
Two security topics for today

1. Patterns
2. Classification & Coverage

Work with

Eduardo Fernandez (FAU)
Saeed Rajput (Nova)
1. Patterns

• Patterns capture the experience of experts about good or best practices and document these nuggets of wisdom in a format that is easy to understand.

• The use of patterns raises the level of awareness and discourse in a discipline.
A Brief History of Patterns

– 1977 Christopher Alexander – A Pattern Language
timeless wisdom in architecture & town design
– 1978 Trygve Reenskaug – Model View Controller
– 1987 Cunningham & Beck – OOPSLA paper
– 1994 Gamma, Helm, Johnson, Vlissides - GoF
– 1997 Yoder & Barclaw – security patterns
– 2006 Eduardo B. Fernandez – book(s)
estimated 400 security related patterns exist today
A pattern is self-contained

- Synopsis
- Context where applies
- Example problem
- Problem
- Forces
- Solution

- Solution structure
- Solution dynamics
- Example solution
- Variations
- Known uses
- Consequences
Different kinds of patterns

<table>
<thead>
<tr>
<th>Traditional patterns</th>
<th>Less traditional patterns</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Design</td>
<td>• Attacks</td>
</tr>
<tr>
<td>• Architecture</td>
<td>• Domains</td>
</tr>
<tr>
<td>• Analysis</td>
<td>– EHR, banking</td>
</tr>
<tr>
<td>• Organizational</td>
<td>• Standards</td>
</tr>
<tr>
<td>• Management</td>
<td>– HIPPA, SSL, WiMax</td>
</tr>
<tr>
<td>• Anti-patterns</td>
<td>• Forensics</td>
</tr>
<tr>
<td></td>
<td>– VOIP</td>
</tr>
</tbody>
</table>
Signed configuration mgmt.

A developer with bad intent could install trap doors or malicious code in the system.

Ensure only validated code is used and create accountability by signing artifacts.

Consequences: code cannot be changed after check and must be signed by the developer.

Known Uses: GIT, Bit Keeper, …
WiMax key mgmt structure
WiMax authenticate dynamic

Subscriber Station (peer) → Base Station (authenticator) → Authentication Server

- (optional) EAP Start
- EAP Request (type, ...)
- (optional) Nak
- (optional) Request (type, ...)
- EAP Response (type, ...)
- EAP Complete
- (Success, payload) / Failure

- Response Forward
- Accept / Reject
Patterns make a difference

• Patterns deliver targeted knowledge
 – Assume minimal prior knowledge
 – Useable in arbitrary groups and ordering
 – Searchable, downloadable, write your own

• Patterns raise the level of discourse
 – Each pattern represents a higher level solution
 – Each pattern becomes a term in the vocabulary
Classification of patterns?

- With 400+ security patterns, how do we know which ones to look at?
- With patterns, or checklists, how do we know what isn’t covered?
- Classification is needed both for search and for coverage analysis
- *OWASP has same problem for its lists*
Hierarchy

- The first classifications of patterns used hierarchy (i.e. Yoder and others)
- Good for pattern writers (is it new?)
- Same model as used in biology
- Allows only one label
- Not so good for pattern users
Facets

- The software reuse community uses facets or tags (i.e. Prieto Diaz)
- Gmail and tweets (hashtags)
- Good for grouping and search
- Arbitrary number of labels
- Without relationships among labels, they are just points (doesn’t solve coverage)
Ontology / Concept Map

- Network (map) of relationships
- Good for meaning (i.e. semantic Web)
- Does not address coverage (what’s missing)
George Kelly’s Concept Grid

Psychological space divided on bi-polar axes is based on psychologist George Kelly’s *Personal Construct Theory* (1955).

- Conceptual categories fit along an axis
- Categories can be disjoint and/or overlap

![Continuum](COLD - HOT)

- Note about conversation with Paul Black, NIST

Van Hilst
Regions on continua

- Assume a single problem space
- Slice along separate dimensions
- Each dimension is a bi-polar continuum
- Mapping on a continuum reveals the gaps

The challenge is to choose the poles

 coverage gap
Attack stage responses

- Avoidance
- Deterrence
- Prevention
- Detection
- Mitigation
- Recovery
- Forensics

Stage of Attack

Intent

Aftermath
Stages in lifecycle

- Domain Analysis
- Requirements
- Architectural Analysis
- Design
- Implementation
- Verification/Testing
- Integration
- Deployment/Configuration
- Operation
- Maintenance
- Disposal
Stages in lifecycle (IS)

- Domain Analysis
- Requirements
- Systems Analysis
- Acquisition
- Installation
- Verification/Testing
- Integration
- Deployment/Configuration
- Operation
- Maintenance
- Disposal
Code source (apropos control)

- New code
- Open-source
- Runtime script
- Model transformation
- Wizard forms
- Reuse Library
- Outsourced
- Legacy
- Off-the-shelf
- Remote web service

Van Hilst
Level of constraint

- Technical
- Human
- Organizational
- Regulatory
Leveson’s levels of constraint

- Technical
- Human
- Organizational
- Regulatory

Van Hilst
Other matrix/grid properties

• Supports topic navigation and learning
 – Meaningful adjacency and generality relations
• New axes can be added any time
 – Their use is complementary, not intermingled
 – Axes can also be removed/hidden
• Can have no distinctions on some axes
• Bi-polar concepts don’t fit all issues …
Some dimensions not bipolar

- **Solution type**
 - Encryption, access control, hash digest, … ?

- **Problem type**
 - Authentication, authorization, availability, integrity, non-repudiation, … ?

- **Problem domain**
 - Cellphone, smart grid, e-commerce, … ?
What do/don’t these cover?

- Common Criteria
- National Training Standard for Information Systems Security Professionals (INFOSEC)
- Sarbanes-Oxley
- Systems Security Engineering Capability Maturity Model
- Viega and McGraw’s 10 principles
- OWASP 15 principles, 10 coding principles
- OWASP 20 weaknesses or vulnerabilities
- OWASP 12 countermeasures
Conclusion

1. Patterns are good for teaching
 – for students
 – for practitioners
 – for experts

2. Coverage classification gives perspective
 – for big picture
 – for consequences of details
Misuse case

- For each action
 - Who could do harm?
 - What could go wrong?
Misuse case

• For each action
 – Who could do harm?
 – What could go wrong?

• Add checkable conditions

Van Hilst