
JavaScript-based ESAPI:
An In-Depth Overview

Marcus Niemietz
marcus.niemietz@rub.de

Practical Work

at

Chair for Network and Data Security
Prof. Dr. Jörg Schwenk

advised through Dipl.-Ing. Mario Heiderich

Partner: OWASP Foundation
http://www.owasp.org

2011-04-14

Horst-Görtz Institute Ruhr-University of Bochum

http://www.owasp.org

Contents

List of Figures and Listings . 4

1. Introduction 5

2. ESAPI 6
2.1. General information . 6

2.1.1. Installation . 6
2.1.2. Usage . 7

Countermeasures against DOM-based XSS . 8
2.2. Assurance criteria . 9

2.2.1. OWASP Top 10 . 9
2.2.2. Performance vs. security . 10
2.2.3. Training and experience of developers . 10
2.2.4. Using tools . 10
2.2.5. Unauthorised alterations . 11
2.2.6. Understanding the code . 11
2.2.7. Threat level analyses . 11

3. Improvements 12
3.1. General objectives . 12

3.1.1. Retrofit security . 12
3.1.2. Same basic design . 12

3.2. Modification of objects . 13
3.2.1. Overwriting DOM properties in IE . 13
3.2.2. defineProperty for objects . 13

3.3. Redundancy . 14
3.3.1. Empty methods . 14
3.3.2. Duplicates . 15
3.3.3. Unnecessary methods . 15
3.3.4. jQuery-Encoder . 15

3.4. Methods . 16
3.4.1. Analysis of existing methods . 16

Encoder interface . 16
Clickjacking . 16

3.4.2. Creating new methods . 17
International Bank Account Number . 17
Identity card . 18
International Standard Book Number . 19

4. Conclusion and outlook 20

Contents 3

A. Appendix 21
A.1. ESAPI . 21
A.2. Improvements . 21

List of Figures and Listings

List of Figures

2.1. DOM in a depth of four levels of the object “org” from the file “esapi.js” 8

List of Listings

2.1. JavaScript files of the ESAPI4JS (filename: index.html - Part 1/2) 6
2.2. Example of using the ESAPI4JS (filename: index.html - Part 2/2) 7
2.3. An example of a vulnerable JavaScript code (file: domXSS.html) 8
2.4. An example of a vulnerable JavaScript code (file: domXSSsanitized.html) 9

3.1. Redefining the “url” object in IE (filename: ie.html) . 13
3.2. Define an object with the configurable attribute (filename: ie9secure.html - Part 1/2) . . . 13
3.3. Protection by the configurable attribute (filename: ie9secure.html - Part 2/2) 14
3.4. Redundancy example: Empty method (filename: esapi.js - lines 348 to 350) 14
3.5. Redundancy example: Duplicate (filename: esapi.js - lines 1998 to 2002) 15
3.6. Redundancy example: Unnecessary methods (filename: esapi.js - lines 2004 to 2010) . . 15
3.7. JavaScript code execution using the Base64 method (filename: base64.html) 16

A.1. Example of using the ESAPI4JS (filename: index.html) 21
A.2. JavaScript method to verify the correctness of an identification card number 21
A.3. JavaScript method to check an ISBN . 22

1. Introduction

Nowadays there are different companies present that make use of web applications on the Internet. They
provide services like enabling users to search the Web, to utilise social networks, or to do shopping [1].
A primary goal of each company should be to generate a high profit so that each web site receives a high
commercial relevance. That can begin with upgrading the image of a company or by obtaining direct
sales.

The continuous development process shows that new languages like HTML5 [2] and CSS3 [3] will be
frequently used in the future. In addition, there are techniques like “Asynchronous JavaScript and XML”
available to enable the client to use web applications in an interactive way so that such applications
behave more like desktop software. [4].

This development process requires extensive knowledge of web development. One aspect that should
not be ignored is the security of these web applications. There are, for example, different business logic
flaws that can put a web site at risk [5]. One must pay attention to session handling and managing credit
card transactions as well as password recovery.

Some languages like JavaScript have been growing in their functionality. Thus, there are often no security
mechanism available to do input validation to protect a user of a web site from the malicious code of an
attacker. For the protection of such web applications, new security-relevant code has to be written for
each application. This code can have errors in it or can be poorly written. If one considers that there are
many problems that are based on faulty or quirky implementations of, for example, browser vendors, the
problem of writing secure code is even bigger [6].

So there should be an instance that takes care of this problem. The target is that a developer without a
broad security knowledge should write secure applications. This is exactly what this paper is about. A
community of security-experienced people is developing an interface to offer possibilities for security
and lower-risk applications by ready-made methods.

This paper analyses the JavaScript-based ESAPI as such a tool. It is presented in general and each
given assurance criteria is discussed for security reasons. After that improvements on general objectives,
redundancy aspects, and old as well as newly defined methods are shown. The paper concludes with an
outlook about how the ESAPI affects itself and the future.

2. ESAPI

In the following, information is given regarding the ESAPI in general, an installation guide, and a dis-
cussion concerning the ESAPI4JS. Last but not least, the from the OWASP for the project mentioned,
assurance criteria are explained [7].

2.1. General information

The not-for-profit worldwide charitable organisation OWASP, which is the abbreviation for “Open Web
Application Security Project”, has its focus on improving the security of web applications [8]. One
project of the OWASP is called “ESAPI”. It is the short form of “Enterprise Security API”, in which
“API” stands for “Application Programming Interface”. According to OWASP, it should allow develop-
ers to write secure code very easily without having extensive prior knowledge of web application security
[9]. Next to the new development with ESAPI approach, it should be also possible to retrofit security
into existing applications. For the reason that the API covers, especially in enterprise business, many se-
curity challenges, developers do not have to care about writing parts of their own security-relevant code
any-more. All ESAPI files are free and totally open. They are available under the BSD license, which
ensures that one can use or modify the project however one likes [10].

All OWASP ESAPI versions have the same basic design to make it possible to develop software for
applications, which make use of different programming or scripting languages. Thus, the ESAPI is avail-
able as a “Java”, “.NET”, “ASP”, “PHP”, or “JavaScript” implementation [8]. This paper will concentrate
on the JavaScript-based part. It is also known under the name “ESAPI4JS “ and is being led and was
founded by Chris Schmidt [11]. The current version “0.1.3” of the ESAPI4JS was released in January
2011 [12]. It is a young project and not yet finished as one can see from the version number “0.1.3”.
Clear indications for this thesis will be highlighted in Chapter 2.1.1, 2.1.2, and especially in 3.3.

2.1.1. Installation

OWASP provides a sample implementation of the ESAPI4JS [13]. It consists of a step-by-step guide
about how to do the installation for basic use. It leads a developer through six steps, beginning with the
download and unpacking of the distribution, which is available as a compressed “.tar.gz” or “zip” file.
After that, a developer should create a directory called “esapi4js”. Inside the new directory, there should
be copied the files of the unpacked ESAPI4JS distribution.

The above-mentioned sample implementation consists of two different parts. The first part is a com-
bination of “script”-tags, which includes the given ESAPI4JS files. It is important to note that one has to
follow a strict order of the file inclusion to fulfil some requirements. This was not observed in the sample
implementation, so a correct implementation of the first part is given in Listing 2.1.

Listing 2.1: JavaScript files of the ESAPI4JS (filename: index.html - Part 1/2)

2.1 General information 7

1 <!-- esapi4js dependencies -->
2 <script type="text/javascript" language="JavaScript" src="http://localhost/esapi/

esapi4js/lib/log4js.js"></script>
3 <!-- esapi4js core -->
4 <script type="text/javascript" language="JavaScript" src="http://localhost/esapi/

esapi4js/esapi.js"></script>
5 <!-- esapi4js i18n resources -->
6 <script type="text/javascript" language="JavaScript" src="http://localhost/esapi/

esapi4js/resources/i18n/ESAPI_Standard_en_US.properties.js"></script>
7 <!-- esapi4js configuration -->
8 <script type="text/javascript" language="JavaScript" src="http://localhost/esapi/

esapi4js/resources/Base.esapi.properties.js"></script>

The second part of the sample implementation shows some possibilities about how to use a few methods,
especially the most basic, of the ESAPI4JS. In addition to the first part, an implementation error is also
given. The modified and working version is shown in Listing 2.2. The complete implementation is
displayed in the Appendix in Listing A.1. First of all, some configuration options are listed that are
sourced in the first implementation part. After that the application name is defined in line ten. The next
line initialises the API, followed by using the “Logger”. In line thirteen, an example of how to use the
“Encoder” is shown. Finally, a possible usage of the integrated validator is given from lines fourteen to
sixteen.

Listing 2.2: Example of using the ESAPI4JS (filename: index.html - Part 2/2)

1 <script type="text/javascript" language="JavaScript">
2 Base.esapi.properties.logging[’ApplicationLogger’] = {
3 Level: org.owasp.esapi.Logger.ALL,
4 Appenders: [new Log4js.ConsoleAppender()],
5 LogUrl: true,
6 LogApplicationName: true,
7 EncodingRequired: true
8 };
9

10 Base.esapi.properties.application.Name = "My Application v1.0";
11 org.owasp.esapi.ESAPI.initialize();
12 $ESAPI.logger(’ApplicationLogger’).info(org.owasp.esapi.Logger.EventType.

EVENT_SUCCESS, ’This is a test message’);
13 document.writeln($ESAPI.encoder().encodeForHTML("<a href=\"http://owasp-

esapi-js.googlecode.com\">Check out esapi4js"));
14 var validateCreditCard = function() {
15 return $ESAPI.validator().isValidCreditCard($(’CreditCard’).value);
16 }
17 </script>

2.1.2. Usage

As shown in Listing 2.2, several mechanisms are integrated in the ESAPI4JS. Because there is no docu-
mentation about the existing mechanisms for the JavaScript-based ESAPI implementation available, the
ESAPI JavaDoc 1 can be used. As already mentioned in Chapter 2.1, all ESAPI versions have the same
basic design, so the JavaDoc can be used as a rough guide for ESAPI4JS. To gain a better knowledge

1The ESAPI JavaDocs are available under the following URL: http://owasp-esapi-java.googlecode.com/
svn/trunk_doc/index.html

http://owasp-esapi-java.googlecode.com/svn/trunk_doc/index.html
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/index.html

2.1 General information 8

about the existing methods, one should look into the source code of the file “esapi.js”. An analysis of the
file shows that it consists of nearly 3,000 lines of source code and many methods, which are mapped to
the typical ESAPI class structure.

To gain more clarity about the existing classes, a graph in Figure 2.1 is displayed. It shows the DOM 2

in a depth of four levels of the object “org” from the file “esapi.js”. Furthermore, each node of the last
two node levels is a method or includes at least one method.

owasp esapi

codecs

Base64

UTF8

CSSCodec

Codec

HTMLEntityCodec

JavascriptCodec

PercentCodec

PushbackString

IntrusionException

HTTPUtilities

PreparedString

ESAPI initialize

ValidationErrorList

net Cookie

EnterpriseSecurityException

Logger EventType

ValidationRule

reference

encoding

logging

validation
Validator

LogFactory

i18n

ArrayResourceBundle

Locale

ObjectResourceBundle

ResourceBundleEncoder

Figure 2.1.: DOM in a depth of four levels of the object “org” from the file “esapi.js”

Countermeasures against DOM-based XSS

One of the three basic types of XSS 3 is called “DOM-based”. Besides reflective and persistent XSS,
DOM-based XSS can be used on static web pages, too [14].

2“DOM” is the abbreviation for “Document Object Model” and is the standard model for representing HTML or XML content.
Thus, one can use JavaScript code to access or modify HTML DOM objects [14]. More information is available under the
URL: http://www.w3.org/DOM/

3Cross-site scripting, also known as “XSS”, is an attack that one can typically find in web applications. Its capability includes
the theft of data, changes of the visual appearance, and distributed denial-of-service attacks. [15]

http://www.w3.org/DOM/

2.2 Assurance criteria 9

Listing 2.3: An example of a vulnerable JavaScript code (file: domXSS.html)

1 <script>document.write(document.URL);</script>

An example of a vulnerable JavaScript code that can be used with DOM-based XSS is given in Listing
2.3. In the case where this code is placed on “example.org”, one can inject malicious code by using a
URL like “http://example.org?<script>alert(0)</script>”. If there are no filters activated, it causes a web
browser to show an alert window with the message “0”.

The ESAPI4JS offers a way to protect a user against this kind of XSS attack. The code of Listing 2.4
can be used as shown in the Appendix in Listing A.1. In this case “encodeForHTML” encodes data by
using HTML entity encoding [16]. It makes use of “encode(IMMUNE_HTML, sInput)”, whereby “IM-
MUNE_HTML” is an array with explicitly allowed characters like “,” or “.”. According to the displayed
graph of Figure 2.1, “encodeForHTML” is inside “org.owasp.esapi.reference.encoding.DefaultEncoder”.

Listing 2.4: An example of a vulnerable JavaScript code (file: domXSSsanitized.html)

1 document.write($ESAPI.encoder().encodeForHTML(document.URL));

2.2. Assurance criteria

The term assurance shows in the field of system security how much one can trust a system. Thus,
assurance is a quantifier of trust. The term includes the consideration of the specification, design, and
implementation of a system [17]. To achieve a certain degree of assurance, Abadi and Needham released
some design principles for robust protocols in 1995 [18]. They used basic principles like “explicitness”
and “appropriate action” as well as principles like “naming”, “encryption”, “timeliness”, “recognizing
messages and encodings”, and “trust”. These are informal guidelines for a good protocol design.

In addition to that, OWASP also published some coding practices for the ESAPI. They are described in
the following subsections [7].

2.2.1. OWASP Top 10

The “OWASP Top 10” web application security risks defined in 2010 are given in the following enumer-
ation.

1. Injection

2. Cross-Site Scripting (XSS)

3. Broken Authentication and Session Management

4. Insecure Direct Object References

5. Cross-Site Request Forgery (CSRF)

6. Security Misconfiguration

7. Insecure Cryptographic Storage

8. Failure to Restrict URL Access

9. Insufficient Transport Layer Protection

10. Unvalidated Redirects and Forwards

2.2 Assurance criteria 10

OWASP offers some information boxes for each point of the Top 10 list in their “Top 10” pdf file [19].
These boxes answer the questions about vulnerability to the attack and how one can protect an application
from it. In addition to that, there is also a box with an examplary attack scenario and a box with some
references in it. With regard to the development of web applications, especially for the ESAPI4JS, each
“How Do I Prevent” box can be evaluated to fulfil the first assurance criterion.

2.2.2. Performance vs. security

The second criterion is to find a balance between the performance and the security of the ESAPI. From the
viewpoint of a developer, this might be debatable. A conceivable scenario is a server-based application
that is used by thousands of people simultaneously. In compliance with the human response time of a
web application, it is a desirable goal to get a fast response from an application [20].

In a security context, the statement does not mean that one should reduce the security to gain more
performance. It should rather be understood as a point of a policy to be achieved. Some options to
attain more performance by having a constant security level are to use programs with a smaller duration
4. This means, for example, that implemented algorithms should be chosen thoughtfully if there are
alternatives available. Another way is to avoid redundancy or to select the right programming language.
Not everything that makes sense in one programming or scripting language makes sense in another
language [21].

2.2.3. Training and experience of developers

Attaining knowledge about the current training level of developers plays an important role in the third
criterion. There also arises the question about the amount of experience in the web development process
[7]. Regardless of the needed programming language skills, there should be a certain degree of IT-
security knowledge. If this fundamental prerequisite is not present, one can not assume that security
features, such as those integrated in the ESAPI, will be used. To have partial knowledge about the
necessary fields of IT-security can also be a problem. It can lead a developer to use security mechanisms
in a wrong or insufficient way.

2.2.4. Using tools

The fourth criterion is to decide about which tools to use during and at the end of the whole development
process [7]. This assurance criterion is not defined clearly, so it can be interpreted in different ways.

First of all, it is not clear if these tools should help a developer to avoid errors in the field of IT-security or
just at certain points, for example to have no code redundancy or syntax errors. If both fits there occurs
a second argument. Because security tools are written very generally, one can not assume to gain more
security by using them. It can help but it is no replacement for experienced security researchers, which
can analyse the entire code more efficiently. In addition to the “training and experience of developers”
criterion of Chapter 2.2.3, it is more important to have trained developers with much experience.

As a consequence, the criterion has to be redefined in a clearer way. It would also be useful to evaluate
the importance of each criterion.

4A comparison between the duration of algorithms can be achieved by using the Landau notation. URL: http://sse.
tggs.kmutnb.ac.th/teaching/ea/slides/landau.pdf

http://sse.tggs.kmutnb.ac.th/teaching/ea/slides/landau.pdf
http://sse.tggs.kmutnb.ac.th/teaching/ea/slides/landau.pdf

2.2 Assurance criteria 11

2.2.5. Unauthorised alterations

One question for this criterion is to check how the code repository is protected against unauthorised
alternations. This requires access control mechanisms, which make use of identity establishment to
ensure that only authorised users are securely associated with a legitimate entity. One has to prove that
the entity is really the entity it claims to be [22].

This act of authorisation is realised with the help of the project hosting on “Google Code”. It authenticates
a user with her or his mail address against a web server, whereby each user has well-defined privileges
to modify the project and thus also the repository [23].

2.2.6. Understanding the code

The topic “Understanding the code” summarises the issue of the needed required work for code check-in
and independent review [7]. Badly written code, which is written like it holds obfuscation methods 5

in it, can not be analysed by a researcher as fast as in the case of clearly structured code. A suitable
and very important supplement is to set comments into the programming code. The detail level of each
comment could vary by checking the code complexity and the effort of refactoring the code after one has
misunderstood it two or more times.

ESAPI4JS does not meet this ESAPI criterion. Comments are not contained in some parts of the
“esapi.js” file, so it usually takes a lot of time to understand it. This is underlined by the fact that the file
contains nearly 3,000 lines of source code. Sometimes the existing comments are also not sufficient. A
positive message is that a few comment parts are based on the JavaDoc style guidelines 6. This makes it
easy to understand the code because of the similar basic design of the ESAPI, as already mentioned in
Chapter 2.1.

2.2.7. Threat level analyses

A threat is a potential violation of security that can have an undesirable effect on at least one system asset
or resource [25]. Therefore, it is important to know what threat level is being accounted for the ESAPI
[7].

From this it follows for the ESAPI that one has to prove if existing protection mechanisms work against
all and not just some kinds of attacks. The ESAPI and especially the ESAPI4JS are characterised by
providing more security, so the assumption of an attacker-resistant software, at least insofar as it can be
implemented, is very important. Furthermore, it should be also clear which threat modelling is being
used. This is not specified by the OWASP for the ESAPI but is already mentioned at an existing “Threat
Risk Modelling” web page [26].

5With obfuscation methods, it may also be possible to bypass security measures like input filters or web-based intrusion
detection systems. [24]

6Oracle provides a web page with “How to Write Doc Comments for the Javadoc Tool” guidelines. It is reachable under the
URL: http://www.oracle.com/technetwork/java/javase/documentation/index-137868.html

http://www.oracle.com/technetwork/java/javase/documentation/index-137868.html

3. Improvements

This chapter discusses general objectives like retrofitting security into existing applications and having
the same basic design in all ESAPI implementations. Also highlighted is a way to modify objects and
references to this possible countermeasure. Similarly, redundancy aspects such as empty methods or du-
plicates are focussed. Last but not least are analysed and introduced existing and newly created methods.

3.1. General objectives

In this chapter it will be analysed whether it makes sense to retrofit security into used applications and if
one should rely on the same basic design of the ESAPI to reach the same application security level.

3.1.1. Retrofit security

One of the goals of the ESAPI design is to make it easier for developers to retrofit security into applica-
tions [8]. This should be enjoyed with caution because there might occur the impression for a developer
that she or he can secure an application by only using the ESAPI, or in this paper rather the ESAPI4JS.

In general a security life cycle of an IT-system starts with an analysis of potential violations of security,
which is also called “threat” [27]. Such threats should generally be considered from the start of a devel-
oping process. If this is not the case, it can be difficult to analyse security issues in a complex application.
Therefore, retrofitting security in a existing application is a patchwork and should be only used as a last
resort.

3.1.2. Same basic design

One of the advertised benefits of the ESAPI is to have the same basic design [8]. This makes it possible
to gain security by using the same structure in each language where the ESAPI is implemented. This is
a good thing if one pays attention to a few limitations.

Such limitations can be easily explained by the fact that each language has its own data handling. On
the one hand, there are client-side interpreted languages and on the other hand there are server-side
interpreted languages. Server-side languages will be compiled and executed by a server where client-
side languages like JavaScript rely on the interpretation of third-party tools like a web browser. In the
case of JavaScript, a user can deactivate it to inter alia avoid JavaScript-based XSS, too. This approach
to gain more security can destroy the execution of ESAPI4JS, which this paper concentrates on.

Therefore, it is important to tell developers that the same security mechanism of the ESAPI, which
provides security in a server-side language like PHP 1, will not provide the same security level in each
implemented language.

1PHP is a widely used scripting language for web applications especially. [28]

3.2 Modification of objects 13

3.2. Modification of objects

A typical characteristic of the language JavaScript is the client-side interpretation by a web browser. The
source code is therefore open and accessible for a client. For this reason, the question arises as to what
will happen if there is, under some circumstances, even a partial filtered XSS vulnerability on a web page
using ESAPI4JS. A desired property is to secure all via the ESAPI4JS protected areas regardless if there
is a vulnerability on the web page or not.

As described in Chapter 3.2.1, the ESAPI4JS is not hardened for Internet Explorer. An existing counter-
measure for new web browsers is given in Chapter 3.2.2.

3.2.1. Overwriting DOM properties in IE

In Internet Explorer 6,7,8, and 9, it is possible to overwrite DOM properties by using “id” attributes in
markup languages like HTML. An example is shown in Listing 3.1 [29]. It illustrates that one can inter
alia redefine the “URL” object such that an alert window will be executed.

Listing 3.1: Redefining the “url” object in IE (filename: ie.html)

1
2 <script>
3 location=url;
4 </script>

This procedure can also be transferred to the ESAPI4JS. As shown in Listing 2.2 and Figure 2.1, the tool
has an object “org”, which includes other objects, respectively methods. By redefining the object “org”
with

• <form id="org">

at the beginning of the ESAPI4JS code, as in the Appendix in Listing A.1, one can create a JavaScript
interpretation error in Internet Explorer. This ensures that the whole JavaScript code and especially the
ESAPI4JS files of the vulnerable web page will not be executed any-more. From this it follows that there
are no active protection mechanism by the ESAPI any-more.

3.2.2. defineProperty for objects

A countermeasure against the attack described in Chapter 3.2.1 is to use the “JavaScript 1.8.5” integrated
function “defineProperty” [30]. It is completely supported by Internet Explorer 9, Firefox 4, Safari 5,
and last but not least by Chrome 5 [31]. The syntax looks like

• Object.defineProperty(obj, prop, descriptor)

where “obj” is the object with the to be defined or modified property “prop”. The “descriptor” can include
a “configurable” attribute with the value “true” or “false”. It controls if the property of the given object
can be deleted or changed [32]. An example is given in Listing 3.2.

Listing 3.2: Define an object with the configurable attribute (filename: ie9secure.html - Part 1/2)

1 <script>
2 var org = {};
3 Object.defineProperty(org, "owasp", { value : 1, configurable : false });

3.3 Redundancy 14

4 </script>

An illustrative example of how the object protection mechanism works is shown in Listing 3.3 [32]. After
defining “org.owasp” in Listing 3.2, an alert window is executed with the value “1” in it. Nothing will
happen if an attacker wants to “delete” the previously defined object, and similarly a redefinition with
“defineProperty” is not possible any-more. This is illustrated by the other commented alert windows.

Listing 3.3: Protection by the configurable attribute (filename: ie9secure.html - Part 2/2)

1 <script>
2 alert(org.owasp); // alerts 1
3 delete org.owasp; // nothing happens
4 alert(org.owasp); // alerts 1
5

6 Object.defineProperty(org, "owasp", {value : 0}); // throws a type error
7 alert(org.owasp); // not executed
8 alert(5); // not executed
9 </script>

Overall, it shows that the principle “first come first served” fits very well in the “defineProperty” case. If
an attacker finds a workable XSS vulnerability before the API code is executed, it is possible to specify
the full behaviour of the ESAPI4JS. If there is a vulnerability after the API and if “defineProperty” with
“configurable : false” is used, an attacker can not control the behaviour of the previously defined objects
anymore. Therefore, one has a tool to protect application objects, and in this case the objects of the API
against XSS in one direction, regardless if there is an XSS vulnerability or not.

3.3. Redundancy

The issue of redundancy has already been roughly addressed in Chapters 2.2.2 and 2.2.3. One of the
ways in which the term redundancy can be described is to use a definition of Shannon [33]. He defined
the term as “the difference between channel capacity and source entropy” [34]. This definition comes
from the field of information technology and can also be described as an indicator that occurs if the full
information capacity of a communication channel is not used.

Hence, one can suggest for the ESAPI, or in general for applications, that there should not be any empty
methods, duplicates, or unessential methods that make at most only use of an existing JavaScript method.
Such things are present in the analysed ESAPI4JS. To underline this statements, a few examples for
redundancy are given in Chapters 3.3.1, 3.3.2, 3.3.3, and 3.3.4.

3.3.1. Empty methods

As shown in Listing 3.4, an empty method “org.owasp.esapi.Encoder” is defined in the ESAPI4JS. It is
also never used inside the “esapi.js” file, so it should be deleted to shrink the ESAPI4JS.

Listing 3.4: Redundancy example: Empty method (filename: esapi.js - lines 348 to 350)

1 org.owasp.esapi.Encoder = function() {
2

3 }

3.3 Redundancy 15

3.3.2. Duplicates

In general it does not make any sense to use duplicates. In JavaScript one can use the keyword “this” to
make a reference to a current object. In the case of the ESAPI4JS, a method “encodeForJavaScript” is
defined and after that the same method is redefined with “this.encodeForJavaScript” again. This code is
displayed in Listing 3.5.

Listing 3.5: Redundancy example: Duplicate (filename: esapi.js - lines 1998 to 2002)

1 encodeForJavaScript: function(sInput) {
2 return !sInput ? null : _javascriptCodec.encode(IMMUNE_JAVASCRIPT, sInput);
3 },
4

5 encodeForJavascript: this.encodeForJavaScript,

3.3.3. Unnecessary methods

Repeating something unnecessarily for twice or even more times should be banned from the developing
process to avoid redundancy. In the case of the ESAPI4JS, methods that work according to a certain
principle in, inter alia, “encodeForURL” or “decodeFromURL” are used. First, it is verified if the input
“sInput” is not empty. If it is not empty, “escape” is used to encode a string and “unescape” to decode
a string. To avoid redundancy, the code should be deleted because a developer can apply “escape” or
“unescape” directly.

Listing 3.6: Redundancy example: Unnecessary methods (filename: esapi.js - lines 2004 to 2010)

1 encodeForURL: function(sInput) {
2 return !sInput ? null : escape(sInput);
3 },
4

5 decodeFromURL: function(sInput) {
6 return !sInput ? null : unescape(sInput);
7 },

It should be noted that it does make sense to define the above method because the goal is to have the
same basic design in ESAPI. However, in this case it provides also the not undesired redundancy.

3.3.4. jQuery-Encoder

jQuery is a JavaScript library that simplifies a developing process with a rapid web development approach
[35]. The available methods can be expanded by using plugins. One of these plugins is called “jquery-
encoder” 2. It is also known under the name “jqencoder”. The goal is “to do contextual output encoding
on untrusted data” [36].

Chris Schmidt is, as in the case of the ESAPI4JS, the author of the jQuery plugin [37]. He adds few
methods to jQuerry via this plugin, which looks similar to the methods of the ESAPI “Encoder” interface.
Such methods are “encodeForHTML”, “encodeForHTMLAttribute”, or “encodeForURL” [38].

2The jQuery plugin “jqencoder” can be downloaded under the URL: https://github.com/chrisisbeef/
jquery-encoder

https://github.com/chrisisbeef/jquery-encoder
https://github.com/chrisisbeef/jquery-encoder

3.4 Methods 16

If a developer is using jQuery in a web application and there is just the requirement to have some
ESAPI4JS encoding functions, one should use the jQuery plugin instead of the ESAPI4JS. This approach
minimises the JavaScript size of a web page and provides, therefore, less redundancy.

3.4. Methods

This chapter takes a look at existing and newly defined methods of the ESAPI. Each method will be
individually considered for its implementation.

3.4.1. Analysis of existing methods

Below are listed two eye-catching protection mechanisms of the ESAPI. It will be discussed if they are
well-integrated in terms of things like articulation and logic, among other things.

Encoder interface

In some cases, the logic of using a given method plays an important role when using the ESAPI. A
good example is to take a look at the “Encoder” interface by taking the Base64 “decode” and “encode”
methods. First of all, it should be clear that the ESAPI and especially the ESAPI4JS are designed to
provide more application security. This can be interpreted by a developer as a complementary ticket to
secure a web application by only using one method of the ESAPI4JS. This assumption is not correct.

As displayed in the proof of concept of Listing 3.7, an attacker can execute malicious code by using a
given method of the ESAPI4JS. First of all the JavaScript alert-window code will be encoded such that
the Base64 output is:

• PHNjcmlwdD5hbGVydCgwKTwvc2NyaXB0Pg==

This output will be decoded to the previously encoded code and afterwards written into the source code
of the web page. The source code will be interpreted and executed by a web browser such that an alert
window occurs.

Listing 3.7: JavaScript code execution using the Base64 method (filename: base64.html)

1 document.writeln(org.owasp.esapi.codecs.Base64.decode(org.owasp.esapi.codecs.
Base64.encode("<script>alert(0)<\/script>")));

A way to prevent this logical attack is to use “$ESAPI.encoder().encodeForHTML” as a wrapper around
the “decode” and “encode” methods. As discussed in Chapter 2.2, “encodeForHTML” encodes data by
using HTML entity encoding. It is therefore necessary that a user is aware of this issue. This can be
explicitly mentioned in the ESAPI documentation.

Clickjacking

The Java-based ESAPI offers, in contrast to the ESAPI4JS, a clickjacking protection mechanism. This
mechanism can be reached in Java via “org.owasp.esapi.filters.ClickjackFilter” [39]. Apart from the
desire that a clickjacking protection mechanism should be also implemented in the ESAPI4JS, it should
be also clear that the given mechanism is not a solution to prevent clickjacking attacks.

3.4 Methods 17

Clickjacking is a term that includes attacks like “basic clickjacking” [40], “likejacking” [41], “stroke-
jacking” [42], and “cursorjacking” [43]. A clickjacking attack forces a victim to unintentionally click
on an obviously invisible web page, which is usually framed [44]. At least in the case of cursorjacking,
the “HTTP X-FRAME-OPTIONS” header does not protect a user from clickjacking any-more. This is
because this HTTP header manages with its value if a web page can be framed or not. If the header
detects a violation the framed page will not be loaded by the web browser [45]. Cursorjacking does not
use such a framing technique; it changes just the way the mouse pointer looks.

Thus, one should rename the expression “ClickjackFilter” to “FramingFilter”. Currently, there is no way
to handle all clickjacking attacks, so the class “ClickjackFilter” should be deleted.

3.4.2. Creating new methods

For the reason that the ESAPI offers security features for enterprise applications and that it, as well as
the ESAPI4JS, includes a credit card validation process, it should be obvious to also implement some
validation processes for other important business flows [46].

International Bank Account Number

The International Bank Account Number, which is the abbreviation for “IBAN”, is an international stan-
dard for identifying bank accounts in European Union countries [47]. Each bank account number consists
of thirty-four letters maximum [48].

An example for a valid IBAN is [47]:

• Paper Format: GB29 NWBK 6016 1331 9268 19

• Electronic Format: GB29NWBK60161331926819

The first pair consists of two characters. It shows the country where the account is held. After that there
are two check digits displayed followed by up to thirty basic characters of the bank account number
(BBAN). The BBAN can consist of numeric, alphabetic, or alphanumeric characters. Norway has the
shortest account number length with fifteen characters, so the BBAN consists of eleven characters [49].
This will be treated as the infimum 3 for the BBAN with the already mentioned supremum of thirty
characters [50].

For the reason that the IBAN can be designed similarly to the credit card validation process, a
regular expression is given for the usually applied electronic format. It can be added to the
“Base.esapi.properties.js” file of ESAPI4JS:

• ^[a-zA-Z]{2}[0-9]{2}[a-zA-Z0-9]{11,30}$

The first character matches the beginning of a line. Similarly, the last characters match the end of a
line. Among them is the above-discussed IBAN design specified. The expression checks if there are two
large or small letters, two numbers from zero to nine, and at least eleven, up to a maximum of thirty,
non-case-sensitive alphanumeric characters.

3Infimum is also known as “greatest lower bound”. Correlated to that, to that supremum is known as “least upper bound”.

3.4 Methods 18

Identity card

An identification card can be a document to verify a person’s personal identity [51]. In Germany an
identity card is valid up to ten years after it is issued.. Since November 2010 there has been a new
identity card available, so old cards are valid till 2020 [52]. Since this is a very long period in the
information technology business, there will be introduced a process to verify if the numbers of an old
German identity card are valid or not.

An example for “Angelika Mustermann” [53] is given in the following:

• Example: 1220001518D<<6408125<1110078<<<<<<<0

As displayed, there is a certain structure for the identification numbers, which can be generalised [54].
At first there are ten numeric characters followed by a “D” for the nationality “Deutsch” and two less-
than signs. After that there are seven numeric characters with one less-than sign. Finally, it ends with
seven numeric characters, seven less-than signs, and one numeric sign. In total it consists of thirty-six
characters. This is shown in the following regular expression and can be used as is in the case of the
“International Bank Account Number” in Chapter 3.4.2:

• ^[0-9]{10}D<<[0-9]{7}<[0-9]{7}<<<<<<<[0-9]{1}$

A mathematical formal form looks like [54]:

• x1x2x3x4x5x6x7x8x9c1D << y1y2y3y4y5y6c2 < z1z2z3z4z5z6c3 <<<<<<< ctotal

where

• c1 ≡ 7× x1 +3× x2 +1× x3 +7× x4 +3× x5 +1× x6 +7× x7 +3× x8 +1× x9 (mod 10)

• c2 ≡ 7× y1 + 3× y2 + 1× y3 + 7× y4 + 3× y5 + 1× y6 (mod 10)

• c3 ≡ 7× z1 + 3× z2 + 1× z3 + 7× z4 + 3× z5 + 1× z6 (mod 10)

• ctotal ≡ 7× x1 + 3× x2 + 1× x3 + 7× x4 + 3× x5 + 1× x6 + 7× x7 + 3× x8 + 1× x9 + 7× c1
+ 3× y1 + 1× y2 + 7× y3 + 3× y4 + 1× y5 + 7× y6 + 3× c2 + 1× z1 + 7× z2 + 3× z3 + 1× z4
+ 7× z5 + 3× z6 + 1× c3 (mod 10)

with

• x1, x2, x3, x4, x5, x6, x7, x8, x9, y1, y2, y3, y4, y5, y6, z1, z2, z3, z4, z5, z6, c1, c2, c3, ctotal ∈
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

As shown above, there are different checksum characters “c”. They can be used to verify if the number
was typed in correctly. If one uses the regular expression together with the formal form of the identitiy
card numbers, a method for the ESAPI4JS can be created.

An example implementation is given in the Appendix in Listing A.2. The “idCard” method created there
can be executed with the following exemplary code:

• document.write(idCard("1220001518D<<6408125<1110078<<<<<<<0"));

The method returns “true” if the form was entered correctly and if the computed checksums are equal
to the one of the input string. The “true” or “false” value will be written on the web page with “docu-
ment.write”. In the example, the method “idCard” returns the value “true”.

3.4 Methods 19

International Standard Book Number

ISBN is the abbreviation for “International Standard Book Number” and is ISO Standard 2108. It was
developed as a unique international identification system and can be found in, inter alia, books. It shows
that it has a high commercial relevance [55]. Originally, it was developed as a “(British) Standard Book
Number” in 1968 [56]. Before 2007 each ISBN was ten digits long; since 2007 it had a length of thirteen
numbers.

An example of what a valid thirteen-characters-long ISBN looks like [57]:

• 978-3-8362-1194-9

Different ways are used to separate the numbers of an ISBN, so the following regular expression only
matches such a structured ISBN as displayed above:

• ^[0-9]{3}-[0-9]{1}-[0-9]{4}-[0-9]{4}-[0-9]{1}$

The expression checks if there is the right sequence of numeric characters and hyphens. Similar to the
identity card of Chapter 3.4.2, a check digit is also given. In the case of an ISBN, it is the last number.

Formally, it can be described as

• x1x2x3 − x4 − x5x6x7x8x9 − x10x11x12 − ctotal

where [58]

• ctotal = (10 - ((x1 + x3 + x5 + x7 + x9 + x11 + 3× (x2 + x4 + x6 + x7 + x10 + x12)) mod 10
)) mod 10

with

• x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, ctotal ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

A JavaScript-based implementation of the ISBN for the ESAPI4JS is given in the Appendix in Listing
A.3. The method “isbn” created there can be executed with the following exemplary code:

• document.write(isbn("978-3-8362-1194-9"));

The method returns the value “true” if the regular expression was matched and if the checksum was
computed and compared correctly. Otherwise, it returns “false”.

4. Conclusion and outlook

In Chapter 2 general information and assurance criteria are discussed regarding the ESAPI as a web
application security tool. There it is addressed that this paper is particularly concerned with ESAPI4JS.
Regarding this JavaScript-based tool, an installation and usage guide with an implementation example is
given in Chapter 2.1. This guide shows that it is easy to implement countermeasures against, for example,
DOM-based XSS. Chapter 2.2 illustrates assurance criteria in the form of coding practices, which are
available for the ESAPI and thus also for the ESAPI4JS. They are analysed in detail to determine if the
assurance criteria are fulfiled.

Chapter 3 demonstrates possible improvement aspects. First if all, there are general objectives introduced
in Chapter 3.1. They include an analysis of the important points “retrofit security” and “same basic de-
sign” of ESAPI4JS. After that the modification of objects is discussed in Chapter 3.2. It includes an
attack for overwriting DOM properties in Internet Explorer and a countermeasure by using “defineProp-
erty”. Chapter 3.3 displays some typical examples for redundancy like “empty methods”, “duplicates”,
and “unnecessary methods”. As a redundancy aspect the “jQuery-Encoder” is also given as a plugin for
the JavaScript library jQuery.

Last but not least, existing and newly defined methods for the ESAPI4JS are listed in Chapter 3.4. In the
analyses of the existing methods, the “Encoder” interface with a proof of concept in the “Base64” case
and the not-yet-implemented ESAPI4JS clickjacking protection mechanism of the Java-based ESAPI are
analysed. The new methods verify an IBAN, a German identity card number, and an ISBN for its validity.

Overall, it can be said in the outlook that the main work is done, so the ESAPI4JS gives a positive first
impression. Thus, it might be a promising project in the future. A correct usage of the methods can
provide, in a case where there are no XSS vulnerabilities on the web page, more security or a lower risk
in new or even existing web applications, as advertised by the OWASP.

However, a closer look shows that it still needs much work to meet the self-imposed requirements. Com-
prehensible discussed examples are, inter alia, the inadequate documentation and incomplete implemen-
tation regarding the native program ESAPI. The newly defined methods show that it is easy to customise
ESAPI4JS for one’s own needs.

For the future, it could be advisable, in addition to the improvements explained in this paper, to program
more verification methods. It should be possible to download them separately as plugins for a specific
integration to avoid redundancy or unused source code. Examples are the “Value Added Tax (VAT)
Identification Number” [59] and the “Universal Product Code” (UPC) [60]. Such a work can be listed
on an already available project roadmap [61]. It is not maintained any-more but it should be active to
increase the development process by inspiring other new potential developers.

A. Appendix

A.1. ESAPI

Listing A.1: Example of using the ESAPI4JS (filename: index.html)

1 <!-- esapi4js dependencies -->
2 <script type="text/javascript" language="JavaScript" src="http://localhost/esapi/

esapi4js/lib/log4js.js"></script>
3 <!-- esapi4js core -->
4 <script type="text/javascript" language="JavaScript" src="http://localhost/esapi/

esapi4js/esapi.js"></script>
5 <!-- esapi4js i18n resources -->
6 <script type="text/javascript" language="JavaScript" src="http://localhost/esapi/

esapi4js/resources/i18n/ESAPI_Standard_en_US.properties.js"></script>
7 <!-- esapi4js configuration -->
8 <script type="text/javascript" language="JavaScript" src="http://localhost/esapi/

esapi4js/resources/Base.esapi.properties.js"></script>
9

10 <script type="text/javascript" language="JavaScript">
11 Base.esapi.properties.logging[’ApplicationLogger’] = {
12 Level: org.owasp.esapi.Logger.ALL,
13 Appenders: [new Log4js.ConsoleAppender()],
14 LogUrl: true,
15 LogApplicationName: true,
16 EncodingRequired: true
17 };
18

19 Base.esapi.properties.application.Name = "My Application v1.0";
20 org.owasp.esapi.ESAPI.initialize();
21 $ESAPI.logger(’ApplicationLogger’).info(org.owasp.esapi.Logger.EventType.

EVENT_SUCCESS, ’This is a test message’);
22 document.writeln($ESAPI.encoder().encodeForHTML("<a href=\"http://owasp-

esapi-js.googlecode.com\">Check out esapi4js"));
23 var validateCreditCard = function() {
24 return $ESAPI.validator().isValidCreditCard($(’CreditCard’).value);
25 }
26 </script>

A.2. Improvements

Listing A.2: JavaScript method to verify the correctness of an identification card number

1 <script>
2 /**
3 * The method idCard verifies if sInput is a valid ID card string.
4 * It returns ’’true’’ if the string is valid - otherwise it returns ’’false’’.
5 * @param sInput {String} a <code>String</code> with the ID card numbers

A.2 Improvements 22

6 */
7 idCard = function(sInput) {
8 // Defining a regular expression to check the right input format
9 var pattern = new RegExp("^[0-9]{10}D<<[0-9]{7}<[0-9]{7}<<<<<<<[0-9]{1}$");

10 // True if pattern matches
11 if (pattern.test(sInput)) {
12 // Checksum verification of character nine
13 if (((7* sInput.charAt(0)+3*sInput.charAt(1)+1*sInput.charAt(2)+7*sInput.

charAt(3)+3*sInput.charAt(4)+1*sInput.charAt(5)+7*sInput.charAt(6)+3*
sInput.charAt(7)+1*sInput.charAt(8))%10) == sInput.charAt(9)) {

14 // Checksum verification of character nineteen
15 if (((7* sInput.charAt(13)+3*sInput.charAt(14)+1*sInput.charAt(15)+7*sInput

.charAt(16)+3*sInput.charAt(17)+1*sInput.charAt(18))%10) == sInput.
charAt(19)) {

16 // Checksum verification of character twenty-seven
17 if (((7* sInput.charAt(21)+3*sInput.charAt(22)+1*sInput.charAt(23)+7*

sInput.charAt(24)+3*sInput.charAt(25)+1*sInput.charAt(26))%10) ==
sInput.charAt(27)) {

18 // Checksum verification of the last character
19 if (((7* sInput.charAt(0)+3*sInput.charAt(1)+1*sInput.charAt(2)+7*

sInput.charAt(3)+3*sInput.charAt(4)+1*sInput.charAt(5)+7*sInput.
charAt(6)+3*sInput.charAt(7)+1*sInput.charAt(8)+7*sInput.charAt(9)
+3* sInput.charAt(13)+1*sInput.charAt(14)+7*sInput.charAt(15)+3*
sInput.charAt(16)+1*sInput.charAt(17)+7*sInput.charAt(18)+3*sInput.
charAt(19)+1* sInput.charAt(21)+7*sInput.charAt(22)+3*sInput.charAt
(23)+1*sInput.charAt(24)+7*sInput.charAt(25)+3*sInput.charAt(26)+1*
sInput.charAt(27))%10) == sInput.charAt(35)) {

20 // Return true if everything was calculated correctly
21 return true;
22 } else {
23 return false;
24 }
25 } else {
26 return false;
27 }
28 } else {
29 return false;
30 }
31 } else {
32 return false;
33 }
34 } else {
35 return false;
36 }
37 }
38 </script>

Listing A.3: JavaScript method to check an ISBN

1 <script>
2 /**
3 * The method isbn verifies if sInput is a valid ISBN.
4 * It returns ’’true’’ if the string is valid - otherwise it returns ’’false’’.
5 * @param sInput {String} a <code>String</code> with the ID chard numbers
6 */
7 isbn = function(sInput) {
8 // Defining a regular expression to check the right input format

A.2 Improvements 23

9 var pattern = new RegExp("^[0-9]{3}-[0-9]{1}-[0-9]{4}-[0-9]{4}-[0-9]{1}$");
10 // True if pattern matches
11 if (pattern.test(sInput)) {
12 // Checksum verification of character sixteen
13 if (((10-((parseInt(sInput.charAt(0))+parseInt(sInput.charAt(2))+parseInt(

sInput.charAt(6))+parseInt(sInput.charAt(8))+parseInt(sInput.charAt(11))+
parseInt(sInput.charAt(13)))+3*(parseInt(sInput.charAt(1))+parseInt(
sInput.charAt(4))+parseInt(sInput.charAt(7))+parseInt(sInput.charAt(9))+
parseInt(sInput.charAt(12))+parseInt(sInput.charAt(14))))%10)%10) ==
sInput.charAt(16)) {

14 // Return true if everything was calculated correctly
15 return true;
16 } else {
17 return false;
18 }
19 } else {
20 return false;
21 }
22 }
23 </script>

Bibliography

[1] (2011, March) Alexa Top 500 Global Sites. Alexa Internet, Inc. [Online]. Available:
http://www.alexa.com/topsites

[2] (2011, March) HTML5. World Wide Web Consortium. [Online]. Available: http://dev.w3.org/
html5/spec/Overview.html

[3] (2001, May) Introduction to CSS3. World Wide Web Consortium. [Online]. Available:
http://www.w3.org/TR/css3-roadmap/

[4] Thomas Powell, AJAX: The Complete Reference. Mcgraw-Hill Professional, 2008, ch. Introduc-
tion to Ajax, p. 3.

[5] Jeremiah Grossman, “Seven Business Logic Flaws That Put Your Website At Risk,” October 2007,
p. 2. [Online]. Available: http://www.whitehatsec.com/home/assets/WP_bizlogic092407.pdf

[6] Mario Heiderich. (2011, March) html5security - Project Hosting on Google Code. [Online].
Available: http://code.google.com/p/html5security/

[7] (2011, March) ESAPI Assurance - OWASP. [Online]. Available: http://www.owasp.org/index.php/
ESAPI_Assurance

[8] OWASP. (2011, March) Project Information: OWASP Enterprise Security API Project. [Online].
Available: http://www.owasp.org/index.php/EASPI

[9] Jeff Williams. OWASP EU Summit 2008 (Portugal) - ESAPI. OWASP. [Online]. Available:
http://www.youtube.com/watch?v=QAPD1jPn04g

[10] Karl Franz Fogel, Producing Open Source Software: How to Run a Successful Free Software
Project. O’Reilly Media, 2005, pp. 240–241.

[11] Chris Schmidt. User:Chris Schmidt. OWASP. [Online]. Available: http://www.owasp.org/index.
php/User:Chris_Schmidt

[12] (2011, March) Downloads - owasp-esapi-js - Project Hosting on Google Code. OWASP. [Online].
Available: http://code.google.com/p/owasp-esapi-js/downloads/list

[13] (2011, March) GettingStarted - owasp-esapi-js - Information on installation and basic use -
Project Hosting on Google Code. [Online]. Available: http://code.google.com/p/owasp-esapi-js/
wiki/GettingStarted

[14] Marcus Niemietz, Authentication Web Pages with Selenium. AVM - Akademische Verlagsgemein-
schaft München, 2010, ch. DOM-based cross-site scripting, pp. 26–27.

[15] ——, Authentication Web Pages with Selenium. AVM - Akademische Verlagsgemeinschaft
München, 2010, ch. Cross-site scripting, p. 23.

[16] (2011, Jan) MitigatingDOMBasedXSS - owasp-esapi-js - Mitigating DOM Based XSS with
ESAPI4JS - Project Hosting on Google Code. [Online]. Available: http://code.google.com/p/
owasp-esapi-js/wiki/MitigatingDOMBasedXSS

[17] Ahmad-Reza Sadeghi, Biljana Cubaleska, “Introduction to System Security,” in System security,

http://www.alexa.com/topsites
http://dev.w3.org/html5/spec/Overview.html
http://dev.w3.org/html5/spec/Overview.html
http://www.w3.org/TR/css3-roadmap/
http://www.whitehatsec.com/home/assets/WP_bizlogic092407.pdf
http://code.google.com/p/html5security/
http://www.owasp.org/index.php/ESAPI_Assurance
http://www.owasp.org/index.php/ESAPI_Assurance
http://www.owasp.org/index.php/EASPI
http://www.youtube.com/watch?v=QAPD1jPn04g
http://www.owasp.org/index.php/User:Chris_Schmidt
http://www.owasp.org/index.php/User:Chris_Schmidt
http://code.google.com/p/owasp-esapi-js/downloads/list
http://code.google.com/p/owasp-esapi-js/wiki/GettingStarted
http://code.google.com/p/owasp-esapi-js/wiki/GettingStarted
http://code.google.com/p/owasp-esapi-js/wiki/MitigatingDOMBasedXSS
http://code.google.com/p/owasp-esapi-js/wiki/MitigatingDOMBasedXSS

Bibliography 25

2010, p. 64.

[18] Martín Adabi, Roger Needham, “Prudent Engineering Practice for Cryptographic Protocols,” 1995.

[19] OWASP, “OWASP TOP 10 - 2010,” 2010, p. 6. [Online]. Available: http://owasptop10.googlecode.
com/files/OWASP%20Top%2010%20-%202010.pdf

[20] Anders Johansen, “Probing human response times,” 2008. [Online]. Available: http:
//arxiv.org/pdf/cond-mat/0305079v2

[21] Jason Voegele. (2011, March) Programming Language Comparison. [Online]. Available:
http://www.jvoegele.com/software/langcomp.html

[22] Messaoud Benantar, Access Control Systems: Security, Identity Management and Trust Models.
Springer, 2005, ch. Elemens of System Security, pp. 3–4.

[23] (2011, March) owasp-esapi-js - Project Hosting on Google Code. [Online]. Available:
http://code.google.com/p/owasp-esapi-js/

[24] Mario Heiderich, Eduardo Alberto Vela Nava, Gareth Heyes, Web Application Obfuscation. Syn-
gress Media, 2010, ch. Introduction, p. 2.

[25] M. A. Bishop, Computer Security: Art and Science. Macmillan Technical Publishing, 2002, ch.
Building Systems with Assurance, p. 498.

[26] OWASP. (2011, March) Threat Risk Modeling - OWASP. [Online]. Available: http:
//www.owasp.org/index.php/Threat_Risk_Modeling

[27] Ahmad-Reza Sadeghi, Biljana Cubaleska, “Introduction to System Security,” in System security,
2010, p. 86.

[28] (2011, March) PHP: Hypertext Preprocessor. The PHP Group. [Online]. Available: http:
//www.php.net/

[29] (2008, November) <malicious></markup>: HTML Form Controls reviewed: Index. [Online].
Available: http://maliciousmarkup.blogspot.com/2008/11/html-form-controls-reviewed.html

[30] (2011, March) New in JavaScript 1.8.5 - MDC Doc Center. Mozilla Developer Network. [Online].
Available: https://developer.mozilla.org/en/JavaScript/New_in_JavaScript/1.8.5

[31] (2011, March) Browser compatibility - defineProperty - MDC Doc Center. Mozilla Developer
Network. [Online]. Available: https://developer.mozilla.org/en/JavaScript/Reference/Global_
Objects/Object/defineProperty#Browser_compatibility

[32] (2011, March) Configurable attribute - defineProperty - MDC Doc Center. Mozilla Developer
Network. [Online]. Available: https://developer.mozilla.org/en/JavaScript/Reference/Global_
Objects/Object/defineProperty#Configurable_attribute

[33] (2011, March) Claude Shannon. Soylent Communications. [Online]. Available: http://www.nndb.
com/people/934/000023865/

[34] Jack P. Hailman, Coding and Redundancy: Man-Made and Animal-Evolved Signals. Harvard
Univ Pr, 2008, ch. Redundancy, p. 165.

[35] (2011, March) jQuery: The Write Less, Do More, JavaScript Library. [Online]. Available:
http://jquery.com

[36] (2011, March) README.textile at master from chrisisbeef/jquery-encoder - GitHub. [Online].
Available: https://github.com/chrisisbeef/jquery-encoder/blob/master/README.textile

[37] Chris Schmidt. (2011, March) chrisisbeef’s Profile - GitHub. [Online]. Available: https:

http://owasptop10.googlecode.com/files/OWASP%20Top%2010%20-%202010.pdf
http://owasptop10.googlecode.com/files/OWASP%20Top%2010%20-%202010.pdf
http://arxiv.org/pdf/cond-mat/0305079v2
http://arxiv.org/pdf/cond-mat/0305079v2
http://www.jvoegele.com/software/langcomp.html
http://code.google.com/p/owasp-esapi-js/
http://www.owasp.org/index.php/Threat_Risk_Modeling
http://www.owasp.org/index.php/Threat_Risk_Modeling
http://www.php.net/
http://www.php.net/
http://maliciousmarkup.blogspot.com/2008/11/html-form-controls-reviewed.html
https://developer.mozilla.org/en/JavaScript/New_in_JavaScript/1.8.5
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Object/defineProperty#Browser_compatibility
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Object/defineProperty#Browser_compatibility
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Object/defineProperty#Configurable_attribute
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Object/defineProperty#Configurable_attribute
http://www.nndb.com/people/934/000023865/
http://www.nndb.com/people/934/000023865/
http://jquery.com
https://github.com/chrisisbeef/jquery-encoder/blob/master/README.textile
https://github.com/chrisisbeef
https://github.com/chrisisbeef

Bibliography 26

//github.com/chrisisbeef

[38] ——. (2011, Feb) Yet Another Developer’s Blog: jQuery-Encoder updated. [Online]. Available:
http://yet-another-dev.blogspot.com/2011/02/jquery-encoder-updated.html

[39] OWASP. (2011, March) ClickjackFilter (ESAPI 2.0 rc10 2.0_rc10 API). [Online].
Available: http://owasp-esapi-java.googlecode.com/svn/trunk_doc/latest/org/owasp/esapi/filters/
ClickjackFilter.html

[40] Marcus Niemietz, “UI Redressing: Attacks and Countermeasures Revisited,” Jan 2011, p. 8.
[Online]. Available: http://ui-redressing.mniemietz.de/uiRedressing.pdf

[41] Sophos. (2010) Facebook Worm - Likejacking. [Online]. Available: http://nakedsecurity.sophos.
com/2010/05/31/facebook-likejacking-worm/

[42] Marcus Niemietz, “UI Redressing: Attacks and Countermeasures Revisited,” Jan 2011, p. 11.
[Online]. Available: http://ui-redressing.mniemietz.de/uiRedressing.pdf

[43] Eddy Bordi. (2010, August) Proof of Concept - CursorJacking (noScript). [Online]. Available:
http://static.vulnerability.fr/noscript-cursorjacking.html

[44] Marcus Niemietz, “UI Redressing: Attacks and Countermeasures Revisited,” Jan 2011, p. 7.
[Online]. Available: http://ui-redressing.mniemietz.de/uiRedressing.pdf

[45] M. Corporation. (2010) The X-Frame-Options response header. [Online]. Available: https:
//developer.mozilla.org/en/the_x-frame-options_response_header

[46] (2011, March) Validator - JavaDoc - org.owasp.esapi Interface Validator. OWASP. [Online]. Avail-
able: http://owasp-esapi-java.googlecode.com/svn/trunk_doc/1.4.4/org/owasp/esapi/Validator.html

[47] (2011, March) EuropeBanks.Info - IBAN Account Numbers and Payments in Europe. [Online].
Available: http://www.europebanks.info/ibanguide.htm

[48] D. Bundesbank. (2011, March) Bundesbank - Zahlungsverkehr - Single Euro Payments Area
(SEPA). [Online]. Available: http://www.bundesbank.de/zahlungsverkehr/zahlungsverkehr_sepa.
en.php#sepa3

[49] (2011, March) IBANdocs - International Bank Account Number (IBAN). TBG 5 Finance.
[Online]. Available: http://www.tbg5-finance.org/ibandocs.shtml/

[50] (2011, March) International Bank Account Number - Wikipedia, the free encyclopedia. Wikipedia.
[Online]. Available: http://en.wikipedia.org/wiki/International_Bank_Account_Number#List_of_
valid_IBANs_by_country

[51] (2011, March) Identity document - Wikipedia, the free encyclopedia. Wikipedia. [Online].
Available: http://en.wikipedia.org/wiki/Identity_document

[52] New ID card. Bundesdruckerei. [Online]. Available: http://www.bundesdruckerei.de/en/products/
products_idSystem/idSystem_documents/documents_idcard/index.html

[53] (2007, June) File:MustermannPA.jpg - Wikimedia Commons. Wikimedia. [Online]. Available:
http://commons.wikimedia.org/wiki/File:MustermannPA.jpg

[54] (2011, March) Prüfziffern: Deutscher Personalausweis. [Online]. Available: http://www.
pruefziffernberechnung.de/P/Personalausweis-DE.shtml

[55] (2008, December) ISO 2108:2005 - Information and documentation – International standard
book number (ISBN). International Organization for Standardization. [Online]. Available:
http://www.iso.org/iso/catalogue_detail?csnumber=36563

https://github.com/chrisisbeef
https://github.com/chrisisbeef
http://yet-another-dev.blogspot.com/2011/02/jquery-encoder-updated.html
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/latest/org/owasp/esapi/filters/ClickjackFilter.html
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/latest/org/owasp/esapi/filters/ClickjackFilter.html
http://ui-redressing.mniemietz.de/uiRedressing.pdf
http://nakedsecurity.sophos.com/2010/05/31/facebook-likejacking-worm/
http://nakedsecurity.sophos.com/2010/05/31/facebook-likejacking-worm/
http://ui-redressing.mniemietz.de/uiRedressing.pdf
http://static.vulnerability.fr/noscript-cursorjacking.html
http://ui-redressing.mniemietz.de/uiRedressing.pdf
https://developer.mozilla.org/en/the_x-frame-options_response_header
https://developer.mozilla.org/en/the_x-frame-options_response_header
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/1.4.4/org/owasp/esapi/Validator.html
http://www.europebanks.info/ibanguide.htm
http://www.bundesbank.de/zahlungsverkehr/zahlungsverkehr_sepa.en.php#sepa3
http://www.bundesbank.de/zahlungsverkehr/zahlungsverkehr_sepa.en.php#sepa3
http://www.tbg5-finance.org/ibandocs.shtml/
http://en.wikipedia.org/wiki/International_Bank_Account_Number#List_of_valid_IBANs_by_country
http://en.wikipedia.org/wiki/International_Bank_Account_Number#List_of_valid_IBANs_by_country
http://en.wikipedia.org/wiki/Identity_document
http://www.bundesdruckerei.de/en/products/products_idSystem/idSystem_documents/documents_idcard/index.html
http://www.bundesdruckerei.de/en/products/products_idSystem/idSystem_documents/documents_idcard/index.html
http://commons.wikimedia.org/wiki/File:MustermannPA.jpg
http://www.pruefziffernberechnung.de/P/Personalausweis-DE.shtml
http://www.pruefziffernberechnung.de/P/Personalausweis-DE.shtml
http://www.iso.org/iso/catalogue_detail?csnumber=36563

Bibliography 27

[56] Hartmut Walravens, ISBN - International Standard Book Number. Bibliography: Literature on the
ISBN and ISMN (International Standard Music Number) from all over the world. Simon Verlag
für Bibliothekswissen, 2010, ch. Preface, p. 9.

[57] (2011, March) Sichere Webanwendungen. Das Praxisbuch - Das Buch von Galileo Computing.
Galileo Computing. [Online]. Available: http://www.galileocomputing.de/katalog/buecher/titel/gp/
titelID-1784

[58] (2011, March) International Standard Book Number - Wikipedia, the free encyclopedia. Wikipedia.
[Online]. Available: http://en.wikipedia.org/wiki/International_Standard_Book_Number#ISBN-13

[59] (2011, March) EUROPA site - Validation. European Commission’s Taxation and Customs Union
Directorate-General. [Online]. Available: http://ec.europa.eu/taxation_customs/vies/faqvies.do

[60] (2011, March) UPC Bar Code - Universal Product Code. The New York Times Company. [Online].
Available: http://sbinfocanada.about.com/od/insurancelegalissues/g/upc.htm

[61] Chris Schmidt. (2010, January) Roadmap - owasp-esapi-js - OWASP ESAPI4JS Roadmap - Project
Hosting on Google Code. OWASP. [Online]. Available: http://code.google.com/p/owasp-esapi-js/
wiki/Roadmap

http://www.galileocomputing.de/katalog/buecher/titel/gp/titelID-1784
http://www.galileocomputing.de/katalog/buecher/titel/gp/titelID-1784
http://en.wikipedia.org/wiki/International_Standard_Book_Number#ISBN-13
http://ec.europa.eu/taxation_customs/vies/faqvies.do
http://sbinfocanada.about.com/od/insurancelegalissues/g/upc.htm
http://code.google.com/p/owasp-esapi-js/wiki/Roadmap
http://code.google.com/p/owasp-esapi-js/wiki/Roadmap

	List of Figures and Listings
	Introduction
	ESAPI
	General information
	Installation
	Usage
	Countermeasures against DOM-based XSS

	Assurance criteria
	OWASP Top 10
	Performance vs. security
	Training and experience of developers
	Using tools
	Unauthorised alterations
	Understanding the code
	Threat level analyses

	Improvements
	General objectives
	Retrofit security
	Same basic design

	Modification of objects
	Overwriting DOM properties in IE
	defineProperty for objects

	Redundancy
	Empty methods
	Duplicates
	Unnecessary methods
	jQuery-Encoder

	Methods
	Analysis of existing methods
	Encoder interface
	Clickjacking

	Creating new methods
	International Bank Account Number
	Identity card
	International Standard Book Number

	Conclusion and outlook
	Appendix
	ESAPI
	Improvements

