
"The Core Rule Set":
Generic detection of application layer
attacks

Ofer Shezaf

OWASP IL Chapter leader

CTO, Breach Security

Breach & the Community

� ModSecurity – open source WAF
� Recently purchased and kept as open source

� Most popular Web Application Firewall on the globe

� Ivan Ristic who wrote it and Ryan Barnett community leader
joined us

� Web Application Security Consortium:
� Web Application Firewall Evaluation Criteria - Ivan

� Web Attacks Honeypot Project - Ryan

� Web Hacking incidents Database – Ofer

� Member of the board of directors - Ofer

� OWASP IL chapter leadership

Breach Security
ModSecurity Community

ModSecurity 2.0
� Long awaited update to ModSecurity

� Significantly enhanced analysis engine

� XML parsing

ModSecurity Console
� Provides GUI event viewing

� Consolidation from multiple ModSecurity sensors

ModSecurity Core Rules
� Package of signatures certified to be efficient and accurate by Breach Labs

� Coverage for most common web application threats

Web Application Firewalls
vs.

Intrusion Prevention Systems

Deployment - Network-level device

Does not require network re-configuration.

Deployment - Embedded

Does not require network re-configuration.

Three Protection Strategies for WAFs

1. External patching
� Also known as "just-in-time patching" or "virtual patching".

2. Positive security model
� An independent input validation envelope.

� Rules must be adjusted to the application.

� Automated and continuous learning (to adjust for changes) is the key.

3. Negative security model
� Looking for bad stuff,

� Mostly signatures based.

� Generic but requires some tweaking for each application.

IPS?

Virtual Patching

� Testing reveals that the login field is vulnerable to SQL
injection.

� Login names cannot include characters beside
alphanumerical characters.

� The following rule will help:

<LocationMatch "^/app/login.asp$">
SecRule ARGS:username "!^\w+$" "deny,log"

</LocationMatch>

Positive security

� The same, but for every field in every application

� Very hard to create, requires learning by:
� Monitoring outbound traffic (match input to web server request)

► Caveats: JavaScript, Web Services

� Monitoring inbound traffic (normal behavior):
► Caveats: Statistics, attacks in learning period.

<LocationMatch "^/exchweb/bin/auth/owaauth.dll$">
 SecRule REQUEST_METHOD !POST "log,deny"

SecRule ARGS:destination " URL" "log,deny,t:urlDecode,t:lowercase"
SecRule ARGS:flags "[0-9]{1,2}"
SecRule ARGS:username "[0-9a-zA-Z].{256,}"
SecRule ARGS:password ".{256,}"
SecRule ARGS:SubmitCreds "!Log.On"
SecRule ARGS:trusted "!(0|4)"

</LocationMatch>

Site

Positive Security

Site Map

Site Status

URLs

Parameters

Parameter
Types

Negative Security

An IPS, but:

� Full parsing & validation of HTTP:
� Request, Headers, Content

� Validation to individual fields (field content, length, field count,
etc).

� both request and response.

� Uploaded files.

� Anti Evasion features:
� Decoding

� Path canonizations

� Robust parsing (apache request line delimiters…)

Rules instead of signatures

� Signatures
� Simple text strings or regular expression patterns matched

against input data.

� Not very flexible.

� Rules
� Flexible.

� Multiple operators.

� Rule groups.

� Anti-evasion functions.

� Logical expressions.

� Custom variables.

The Core Rule Set

Detection of generic app layer attacks

� Core Rule Set available for ModSecurity at:
� http://www.modsecurity.org/projects/rules/index.html
� Probably translatable to any App Firewall

� Benefits from ModSecurity features:
� Anti Evasion
� Granular Parsing

� Detection Mechanisms:
� Protocol Violations
� Protocol Policy

� Generic Attack Signatures

� Known Vulnerabilities
� Bad Robots

� Trojans & Anti-Virus

� Error conditions

Protocol Violations

� Headers:
� All required headers are there: Host, Accept, User-Agent
� Host is not an IP address
� Content length a must for none GET/HEAD methods

� Characters:
� Valid encoding
� Only printable for headers
� Printable and formatting for parameters
� Only NULL not allowed in international applications

� Requires minimal tweaking
� Exceptions for automated software used by the application

Protocol Policy

� Allowed and blocked:
� HTTP versions
� Methods
� File extensions
� Content-Types (request AND reply)

� Global limitations:
� Request size, Upload size,
� # of parameters, length of parameter.

� Requires setting, but easy to set:
� We offer tailored settings for common development

environments.

� An easy (not generic) addition: envelope on valid URLs.

Signatures for generic attacks

� Signatures require knowing the attack vectors and
therefore are usually used for known vulnerabilities.

� Web applications are custom, and attacks may be
targeted.

� Variations on attack vectors are very easy

� Hence, normal signatures are not suitable for application
layer protection.

� In many cases few exceptions can make signatures vary
effective:
� substring

Case study: 1=1

� Classic example of an SQL injection attacks.

� Used many times as a signature.

� But, can be avoided easily using:
� Encoding: 1%3D1

� White Space: 1 =%091

� Comments 1 /* This is a comment */ = 1

� All of the above

“1=1” continued

� And is actually not required at all. Any true expression
would work:
� 2 > 1

� An not necessarily a comparison or even an expression.
In MS-Access all the following are true: 1, “1”, “a89”, 4-4

Rules instead of signatures

� All these are attack indicators:
� xp_cmdshell

� “<“ valid but stinks

� select, union, delete, drop & script are valid English words

� Single quote is very much needed to type O'Brien

� “1”

� The following rules can help:
� Sequence: union …. Select,

� Amount: script, cookie and document appear in the same input field

� Learning: select and a single quote (‘) in a field it never appeared in.

� Amount & learning: three triangular brackets (< or >) appear in a field
leaned as free text.

Known Vulnerabilities

Snort Rule:
alert tcp
$EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS
(

msg: "BLEEDING-EDGE WEB Athena Web Registration Rem ote
Command Execution Attempt";

flow: to_server,established;
uricontent:"/athenareg.php?pass=%20\;"; nocase;
reference:cve,CAN-2004-1782;
reference:bugtraq,9349;
classtype: web-application-attack;
sid: 2001949; rev:4;

)

A recent snort rule - bugtraq 9349

Exploit: http://www.example.com/athenareg.php?pass=%20;whoam i

The Core Rule Set: generic detection

Command injection
SecRule REQUEST_FILENAME|ARGS|ARGS_NAMES|REQUEST_HEADERS
"(?:(?:[\;\|]\W*?\b(?:c(?:h(?:grp|mod|own|sh)|md|pp |c)|p(?:
asswd|ython|erl|ing|s)|n(?:asm|map|c)|f(?:inger|tp) |(?:kil|
mai)l|g(?:\+\+|cc)|(?:xte)?rm|ls(?:of)?|telnet|unam e|echo|i
d)|\/(?:c(?:h(?:grp|mod|own|sh)|pp|c)|p(?:asswd|yth on|erl|i
ng|s)|n(?:asm|map|c)|f(?:inger|tp)|(?:kil|mai)l|g(? :\+\+|cc
)|(?:xte)?rm|ls(?:of)?|telnet|uname|echo|id))\b|\b(?:(?:n(?
:et(?:\b\W*?\blocalgroup|\.exe)|(?:map|c)\.exe)|t(? :racer(?
:oute|t)|elnet\.exe|clsh8?|ftp)|w(?:g(?:uest\.exe|e t)|sh\.e
xe)|(?:rcmd|ftp)\.exe|echo\b\W*?\by+)\b|c(?:md(?:(? :32)?\.e
xe\b|\b\W*?\\\/c)|hmod\b\.{1,100}?\+.{1,3}x|d\b(?:\ W*?\\\/|
\W*\b..))))" \

"deny,log,id:950006,severity:2,msg:'System Command
Injection'"

The Core Rule Set: Virtual Patching

<LocationMatch :"/athenareg.php$">
SecRule ARGS:pass " \;" \
"deny,log,t:urlDecodeUni,t:htmlEntityDecode, \
t:lowercase,t:removeWhitespace,t:removeComments"

</LocationMatch>

<LocationMatch :"/athenareg.php$">
SecRule ARGS:pass "!\w+" \
"deny,log,t:urlDecodeUni,t:htmlEntityDecode, \
t:lowercase,t:removeWhitespace,t:removeComments"

</LocationMatch>

Or:

Bad robots

� Based on modifiable elements of the request:
� User-Agent header

� URL

� Generic headers

� Therefore:
� Not a real security measurement

� Offloads a lot of cyberspace junk & noise

� Effective against comment spam

� Can use RBL:
� Potential for FPs.

Trojans and Anti-Virus

� Check uploaded for Trojans:

� Check for access to Trojans:
� Known signatures (x_key header)

� Generic file management output (gid, uid, drwx, c:\)

� Major problem at hosting environments
� Uploading is allowed.

Error conditions

� If all else fails

� Important for customer experience

� Makes life for the hacker harder

Thank You!

Ofer Shezaf

ofers@breach.com

