
Copyright © The OWASP Foundation
Permission is granted to copy, distribute and/or modify this document
under the terms of the OWASP License.

The OWASP Foundation
http://www.owasp.org/

OWASP Top 10 - 2010 rc1

The Top 10 Most Critical Web
Application Security Risks

Fabio Cerullo
OWASP Global Education Committee
fcerullo@owasp.org

mailto:fcerullo@owasp.org

OWASP Foundation

What’s Changed?

• New title is: “The Top 10 Most Critical Web Application Security Risks”

It’s About Risks, Not Just Vulnerabilities

• Based on the OWASP Risk Rating Methodology, used to prioritize Top 10

OWASP Top 10 Risk Rating Methodology

• Added: A6 – Security Misconfiguration
• Was A10 in 2004 Top 10: Insecure Configuration Management

• Added: A8 – Unvalidated Redirects and Forwards
• Relatively common and VERY dangerous flaw that is not well known

• Removed: A3 – Malicious File Execution
• Primarily a PHP flaw that is dropping in prevalence

• Removed: A6 – Information Leakage and Improper Error Handling
• A very prevalent flaw, that does not introduce much risk (normally)

2 Risks Added, 2 Dropped

OWASP Foundation

Mapping from 2007 to 2010 Top 10

OWASP Top 10 – 2007 (Previous) OWASP Top 10 – 2010 (New)

A2 – Injection Flaws A1 – Injection

A1 – Cross Site Scripting (XSS) A2 – Cross Site Scripting (XSS)

A7 – Broken Authentication and Session Management A3 – Broken Authentication and Session Management

A4 – Insecure Direct Object Reference A4 – Insecure Direct Object References

A5 – Cross Site Request Forgery (CSRF) A5 – Cross Site Request Forgery (CSRF)

<was T10 2004 A10 – Insecure Configuration
Management>

A6 – Security Misconfiguration (NEW)

A10 – Failure to Restrict URL Access A7 – Failure to Restrict URL Access

<not in T10 2007> A8 – Unvalidated Redirects and Forwards (NEW)

A8 – Insecure Cryptographic Storage A9 – Insecure Cryptographic Storage

A9 – Insecure Communications A10 – Insufficient Transport Layer Protection

A3 – Malicious File Execution <dropped from T10 2010>

A6 – Information Leakage and Improper Error Handling <dropped from T10 2010>

+

+

-
-

=

=

OWASP Foundation

OWASP Top 10 Risk Rating Methodology

Threat
Agent

Attack
Vector

Weakness
Prevalence

Weakness
Detectability

Technical Impact
Business
Impact

?
Easy Widespread Easy Severe

?Average Common Average Moderate

Difficult Uncommon Difficult Minor

2 1 1 2

1.3 * 2

2.6 weighted risk rating

XSS Example

1

2

3

OWASP Foundation

The ‘new’ OWASP Top Ten (2010 rc1)

http://www.owasp.org/index.php/Top_10

http://www.owasp.org/index.php/Top_10

OWASP Foundation

A1 – Injection

• Tricking an application into including unintended commands in the data
sent to an interpreter

Injection means…

• Take strings and interpret them as commands

• SQL, OS Shell, LDAP, XPath, Hibernate, etc…

Interpreters…

• Many applications still susceptible (really don‟t know why)

• Even though it‟s usually very simple to avoid

SQL injection is still quite common

• Usually severe. Entire database can usually be read or modified

• May also allow full database schema, or account access, or even OS level
access

Typical Impact

OWASP Foundation

SQL Injection – Illustrated

F
ir

ew
al

l

Hardened OS

Web Server

App Server

F
ir

ew
al

l

D
at

ab
as

es

L
eg

ac
y

S
ys

te
m

s

W
eb

 S
er

v
ic

es

D
ir

ec
to

ri
es

H
u

m
an

 R
es

rc
s

B
il

li
n

g

Custom Code

APPLICATION

ATTACK

N
et

w
o
rk

 L
ay

er
A

p
p

li
ca

ti
o
n

 L
ay

er

A
cc

o
u

n
ts

F
in

an
ce

A
d

m
in

is
tr

at
io

n

T
ra

n
sa

ct
io

n
s

C
o
m

m
u

n
ic

at
io

n

K
n

o
w

le
d

g
e

M
g

m
t

E
-C

o
m

m
er

ce

B
u

s.
 F

u
n

ct
io

n
s

HTTP

request

SQL

query

DB Table

HTTP

response

"SELECT * FROM

accounts WHERE

acct=‘’ OR 1=1--

’"

1. Application presents a form to

the attacker

2. Attacker sends an attack in the

form data

3. Application forwards attack to

the database in a SQL query

Account Summary

Acct:5424-6066-2134-4334

Acct:4128-7574-3921-0192

Acct:5424-9383-2039-4029

Acct:4128-0004-1234-0293

4. Database runs query containing

attack and sends encrypted results

back to application

5. Application decrypts data as

normal and sends results to the user

Account:

SKU:

Account:

SKU:

OWASP Foundation

A1 – Avoid Injection Flaws

Recommendations

1. Avoid the interpreter entirely, or

2. Use an interface that supports bind variables (e.g., prepared
statements, or stored procedures),

 Bind variables allow the interpreter to distinguish between code and
data

3. Encode all user input before passing it to the interpreter

 Always perform „white list‟ input validation on all user supplied
input

 Always minimize database privileges to reduce the impact of a
flaw

References

 For more details, read the new
http://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet

http://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet

OWASP Foundation

A2 – Cross-Site Scripting (XSS)

• Raw data from attacker is sent to an innocent user‟s browser

Occurs any time…

• Stored in database

• Reflected from web input (form field, hidden field, URL, etc…)

• Sent directly into rich JavaScript client

Raw data…

• Try this in your browser – javascript:alert(document.cookie)

Virtually every web application has this problem

• Steal user‟s session, steal sensitive data, rewrite web page, redirect user to
phishing or malware site

• Most Severe: Install XSS proxy which allows attacker to observe and direct
all user‟s behavior on vulnerable site and force user to other sites

Typical Impact

OWASP Foundation

Cross-Site Scripting Illustrated

Application with

stored XSS

vulnerability

3

2

Attacker sets the trap – update my profile

Attacker enters a

malicious script into a

web page that stores the

data on the server

1

Victim views page – sees attacker profile

Script silently sends attacker Victim’s session cookie

Script runs inside

victim’s browser with full

access to the DOM and

cookies

Custom Code

A
cc

o
u
n

ts

F
in

an
ce

A
d

m
in

is
tr

at
io

n

T
ra

n
sa

ct
io

n
s

C
o
m

m
u
n

ic
at

io
n

K
n

o
w

le
d

g
e

M
g

m
t

E
-C

o
m

m
er

ce

B
u
s.

 F
u
n

ct
io

n
s

OWASP Foundation

(AntiSamy)

A2 – Avoiding XSS Flaws

Recommendations

Eliminate Flaw

 Don‟t include user supplied input in the output page

Defend Against the Flaw

 Primary Recommendation: Output encode all user supplied
input

(Use OWASP‟s ESAPI to output encode:

http://www.owasp.org/index.php/ESAPI

 Perform „white list‟ input validation on all user input to be
included in page

 For large chunks of user supplied HTML, use OWASP‟s
AntiSamy to sanitize this HTML to make it safe

See: http://www.owasp.org/index.php/AntiSamy

References

http://www.owasp.org/index.php/ESAPI
http://www.owasp.org/index.php/AntiSamy

OWASP Foundation

Safe Escaping Schemes in Various HTML Execution
Contexts

HTML Style Property Values
(e.g., .pdiv a:hover {color: red; text-decoration:

underline})

JavaScript Data
(e.g., <script> some javascript </script>)

HTML Attribute Values
(e.g., <input name='person' type='TEXT'

value='defaultValue'>)

HTML Element Content
(e.g., <div> some text to display </div>)

URI Attribute Values
(e.g., <a href="javascript:toggle('lesson')")

#4: All non-alphanumeric < 256 \HH

ESAPI: encodeForCSS()

#3: All non-alphanumeric < 256 \xHH

ESAPI: encodeForJavaScript()

#1: (&, <, >, ") &entity; (', /) &#xHH;

ESAPI: encodeForHTML()

#2: All non-alphanumeric < 256 &#xHH

ESAPI: encodeForHTMLAttribute()

#5: All non-alphanumeric < 256 %HH

ESAPI: encodeForURL()

ALL other contexts CANNOT include Untrusted Data
Recommendation: Only allow #1 and #2 and disallow all others

See: www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet for more

details

http://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet

OWASP Foundation

A3 – Broken Authentication and Session
Management

• Means credentials have to go with every request

• Should use SSL for everything requiring authentication

HTTP is a “stateless” protocol

• SESSION ID used to track state since HTTP doesn‟t

• and it is just as good as credentials to an attacker

• SESSION ID is typically exposed on the network, in browser, in logs, …

Session management flaws

• Change my password, remember my password, forgot my password, secret
question, logout, email address, etc…

Beware the side-doors

• User accounts compromised or user sessions hijacked

Typical Impact

OWASP Foundation

Broken Authentication Illustrated

Custom Code

A
c
c
o
u

n
ts

F
in

a
n

c
e

A
d

m
in

is
tr

a
ti

o
n

T
r
a

n
sa

c
ti

o
n

s

C
o
m

m
u

n
ic

a
ti

o
n

K
n

o
w

le
d

g
e

M
g

m
t

E
-C

o
m

m
e
r
c
e

B
u

s.
 F

u
n

c
ti

o
n

s1 User sends credentials

2
Site uses URL rewriting

(i.e., put session in URL)

3 User clicks on a link to http://www.hacker.com

in a forum

www.boi.com?JSESSIONID=9FA1DB9EA...

4

Hacker checks referer logs on www.hacker.com

and finds user’s JSESSIONID

5 Hacker uses JSESSIONID

and takes over victim’s

account

http://www.hacker.com/
http://www.hacker.com/

OWASP Foundation

A3 – Avoiding Broken Authentication and
Session Management

Verify your architecture

Authentication should be simple, centralized, and standardized

Use the standard session id provided by your container

Be sure SSL protects both credentials and session id at all times

Verify the implementation

Forget automated analysis approaches

Check your SSL certificate

Examine all the authentication-related functions

Verify that logoff actually destroys the session

Use OWASP‟s WebScarab to test the implementation

OWASP Foundation

A4 – Insecure Direct Object References

• This is part of enforcing proper “Authorization”, along with
A7 – Failure to Restrict URL Access

How do you protect access to your data?

• Only listing the „authorized‟ objects for the current user, or

• Hiding the object references in hidden fields

• … and then not enforcing these restrictions on the server side

• This is called presentation layer access control, and doesn‟t work

• Attacker simply tampers with parameter value

A common mistake …

• Users are able to access unauthorized files or data

Typical Impact

OWASP Foundation

Insecure Direct Object References
Illustrated

Attacker notices his acct
parameter is 6065

?acct=6065

He modifies it to a
nearby number

?acct=6066

Attacker views the
victim‟s account
information

https://www.onlinebank.com/user?acct=6065

OWASP Foundation

A4 – Avoiding Insecure Direct Object
References

Eliminate the direct object reference
 Replace them with a temporary mapping value (e.g. 1, 2, 3)

 ESAPI provides support for numeric & random mappings
 IntegerAccessReferenceMap & RandomAccessReferenceMap

Validate the direct object reference
Verify the parameter value is properly formatted

Verify the user is allowed to access the target object

 Query constraints work great!

Verify the requested mode of access is allowed to the target
object (e.g., read, write, delete)

http://app?file=1

Report123.xls

http://app?id=7d3J93
Acct:9182374http://app?id=9182374

http://app?file=Report123.xls
Access

Reference

Map

http://app/?file=1
http://app/?id=7d3J93

OWASP Foundation

A5 – Cross Site Request Forgery (CSRF)

• An attack where the victim‟s browser is tricked into issuing a command to
a vulnerable web application

• Vulnerability is caused by browsers automatically including user
authentication data (session ID, IP address, Windows domain credentials,
…) with each request

Cross Site Request Forgery

• What if a hacker could steer your mouse and get you to click on links in
your online banking application?

• What could they make you do?

Imagine…

• Initiate transactions (transfer funds, logout user, close account)

• Access sensitive data

• Change account details

Typical Impact

OWASP Foundation

CSRF Vulnerability Pattern

The Problem
Web browsers automatically include most credentials with each

request

 Even for requests caused by a form, script, or image on another site

All sites relying solely on automatic
credentials are vulnerable!
 (almost all sites are this way)

Automatically Provided Credentials
 Session cookie

 Basic authentication header

 IP address

 Client side SSL certificates

Windows domain authentication

OWASP Foundation

CSRF Illustrated

3

2

Attacker sets the trap on some website on the internet

(or simply via an e-mail)1

While logged into vulnerable site,

victim views attacker site

Vulnerable site sees

legitimate request from

victim and performs the

action requested

 tag loaded by

browser – sends GET

request (including

credentials) to vulnerable

site

Custom Code

A
c
c
o
u

n
ts

F
in

a
n

c
e

A
d

m
in

is
tr

a
ti

o
n

T
r
a
n

sa
c
ti

o
n

s

C
o
m

m
u

n
ic

a
ti

o
n

K
n

o
w

le
d

g
e

M
g
m

t
E

-C
o
m

m
e
r
c
e

B
u

s.
 F

u
n

c
ti

o
n

s

Hidden tag

contains attack against

vulnerable site

Application with CSRF

vulnerability

OWASP Foundation

A5 – Avoiding CSRF Flaws

 Add a secret, not automatically submitted, token to ALL sensitive requests
 This makes it impossible for the attacker to spoof the request

 (unless there‟s an XSS hole in your application)
 Tokens should be cryptographically strong or random

 Options
 Store a single token in the session and add it to all forms and links

 Hidden Field: <input name="token" value="687965fdfaew87agrde"
type="hidden"/>

 Single use URL: /accounts/687965fdfaew87agrde

 Form Token: /accounts?auth=687965fdfaew87agrde …
 Beware exposing the token in a referer header

 Hidden fields are recommended
 Can have a unique token for each function

 Use a hash of function name, session id, and a secret
 Can require secondary authentication for sensitive functions (e.g., eTrade)

 Don‟t allow attackers to store attacks on your site
 Properly encode all input on the way out
 This renders all links/requests inert in most interpreters

See the new: www.owasp.org/index.php/CSRF_Prevention_Cheat_Sheet for more details

http://www.owasp.org/index.php/CSRF_Prevention_Cheat_Sheet

OWASP Foundation

A6 – Security Misconfiguration

• All through the network and platform

• Don‟t forget the development environment

Web applications rely on a secure foundation

• Think of all the places your source code goes

• Security should not require secret source code

Is your source code a secret?

• All credentials should change in production

CM must extend to all parts of the application

• Install backdoor through missing network or server patch

• XSS flaw exploits due to missing application framework patches

• Unauthorized access to default accounts, application functionality or data,
or unused but accessible functionality due to poor server configuration

Typical Impact

OWASP Foundation

Hardened OS

Web Server

App Server

Framework

Security Misconfiguration Illustrated

App Configuration

Custom Code

A
cc

o
u

n
ts

F
in

an
ce

A
d

m
in

is
tr

a
ti

o
n

T
ra

n
sa

ct
io

n
s

C
o
m

m
u

n
ic

at
io

n

K
n

o
w

le
d

g
e

M
g

m
t

E
-C

o
m

m
er

ce

B
u

s.
 F

u
n

ct
io

n
s

Test Servers

QA Servers

Source Control

Development

Database

Insider

OWASP Foundation

A6 – Avoiding Security Misconfiguration

 Verify your system‟s configuration management

 Secure configuration “hardening” guideline

 Automation is REALLY USEFUL here

 Must cover entire platform and application

 Keep up with patches for ALL components

 This includes software libraries, not just OS and Server applications

 Analyze security effects of changes

 Can you “dump” the application configuration

 Build reporting into your process

 If you can‟t verify it, it isn‟t secure

 Verify the implementation

 Scanning finds generic configuration and missing patch problems

OWASP Foundation

A7 – Failure to Restrict URL Access

• This is part of enforcing proper “authorization”, along with
A4 – Insecure Direct Object References

How do you protect access to URLs (pages)?

• Displaying only authorized links and menu choices

• This is called presentation layer access control, and doesn‟t work

• Attacker simply forges direct access to „unauthorized‟ pages

A common mistake …

• Attackers invoke functions and services they‟re not authorized for

• Access other user‟s accounts and data

• Perform privileged actions

Typical Impact

OWASP Foundation

Failure to Restrict URL Access Illustrated

Attacker notices the URL
indicates his role

/user/getAccounts

He modifies it to another
directory (role)

/admin/getAccounts, or

/manager/getAccounts

Attacker views more
accounts than just their
own

https://www.onlinebank.com/user/getAccountshttps://www.onlinebank.com/user/getAccounts

OWASP Foundation

A7 – Avoiding URL Access Control Flaws

 For each URL, a site needs to do 3 things
 Restrict access to authenticated users (if not public)

 Enforce any user or role based permissions (if private)

 Completely disallow requests to unauthorized page types (e.g., config files, log
files, source files, etc.)

 Verify your architecture

 Use a simple, positive model at every layer

 Be sure you actually have a mechanism at every layer

 Verify the implementation

 Forget automated analysis approaches

 Verify that each URL in your application is protected by either

 An external filter, like Java EE web.xml or a commercial product

 Or internal checks in YOUR code – Use ESAPI‟s isAuthorizedForURL() method

 Verify the server configuration disallows requests to unauthorized file types

 Use WebScarab or your browser to forge unauthorized requests

OWASP Foundation

A8 – Unvalidated Redirects and Forwards

• And frequently include user supplied parameters in the destination URL

• If they aren‟t validated, attacker can send victim to a site of their
choice

Web application redirects are very common

• They internally send the request to a new page in the same application

• Sometimes parameters define the target page

• If not validated, attacker may be able to use unvalidated forward to
bypass authentication or authorization checks

Forwards (aka Transfer in .NET) are common too

• Redirect victim to phishing or malware site

• Attacker‟s request is forwarded past security checks, allowing
unauthorized function or data access

Typical Impact

OWASP Foundation

Unvalidated Redirect Illustrated

3

2

Attacker sends attack to victim via email or webpage

From: Internal Revenue Service

Subject: Your Unclaimed Tax Refund

Our records show you have an

unclaimed federal tax refund. Please

click here to initiate your claim.

1

Application redirects
victim to attacker’s site

Request sent to vulnerable

site, including attacker’s

destination site as parameter.

Redirect sends victim to

attacker site

Custom Code

A
c
c
o

u
n

ts

F
in

a
n

c
e

A
d

m
in

is
tr

a
ti

o
n

T
r
a
n

sa
c
ti

o
n

s

C
o

m
m

u
n

ic
a
ti

o
n

K
n

o
w

le
d

g
e
 M

g
m

t

E
-C

o
m

m
e
r
c
e

B
u

s.
 F

u
n

c
ti

o
n

s

4 Evil site installs malware on
victim, or phish’s for private
information

Victim clicks link containing unvalidated
parameter

Evil Site

http://www.irs.gov/taxrefund/claim.jsp?year=2006
& … &dest=www.evilsite.com

http://www.irs.gov/taxrefund/claim.jsp?year=2006&
http://www.irs.gov/taxrefund/claim.jsp?year=2006&
http://www.irs.gov/taxrefund/claim.jsp?year=2006&
http://www.irs.gov/taxrefund/claim.jsp?year=2006&

OWASP Foundation

Unvalidated Forward Illustrated

2

Attacker sends attack to vulnerable page they have access to1

Application authorizes
request, which continues
to vulnerable page

Request sent to

vulnerable page which

user does have access to.

Redirect sends user

directly to private page,

bypassing access control.

3 Forwarding page fails to validate
parameter, sending attacker to
unauthorized page, bypassing access
controlpublic void doPost(HttpServletRequest request,

HttpServletResponse response) {
try {

String target = request.getParameter("dest"));
...
request.getRequestDispatcher(target
).forward(request, response);

}
catch (...

Filter

public void sensitiveMethod(
HttpServletRequest request,
HttpServletResponse response) {

try {
// Do sensitive stuff here.
...

}
catch (...

OWASP Foundation

A8 – Avoiding Unvalidated Redirects and
Forwards
 There are a number of options

1. Avoid using redirects and forwards as much as you can

2. If used, don‟t involve user parameters in defining the target URL

3. If you „must‟ involve user parameters, then either

a) Validate each parameter to ensure its valid and authorized for the current user, or

b) (preferred) – Use server side mapping to translate choice provided to user with actual
target page

 Defense in depth: For redirects, validate the target URL after it is calculated to
make sure it goes to an authorized external site

 ESAPI can do this for you!!

 See: SecurityWrapperResponse.sendRedirect(URL)
 http://owasp-esapi-java.googlecode.com/svn/trunk_doc/org/owasp/esapi/filters/

SecurityWrapperResponse.html#sendRedirect(java.lang.String)

 Some thoughts about protecting Forwards

 Ideally, you‟d call the access controller to make sure the user is authorized before
you perform the forward (with ESAPI, this is easy)

 With an external filter, like Siteminder, this is not very practical

 Next best is to make sure that users who can access the original page are ALL
authorized to access the target page.

http://owasp-esapi-java.googlecode.com/svn/trunk_doc/org/owasp/esapi/filters/SecurityWrapperResponse.html
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/org/owasp/esapi/filters/SecurityWrapperResponse.html
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/org/owasp/esapi/filters/SecurityWrapperResponse.html
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/org/owasp/esapi/filters/SecurityWrapperResponse.html
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/org/owasp/esapi/filters/SecurityWrapperResponse.html
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/org/owasp/esapi/filters/SecurityWrapperResponse.html
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/org/owasp/esapi/filters/SecurityWrapperResponse.html

OWASP Foundation

A9 – Insecure Cryptographic Storage

• Failure to identify all sensitive data

• Failure to identify all the places that this sensitive data gets stored
• Databases, files, directories, log files, backups, etc.

• Failure to properly protect this data in every location

Storing sensitive data insecurely

• Attackers access or modify confidential or private information
• e.g, credit cards, health care records, financial data (yours or your

customers)

• Attackers extract secrets to use in additional attacks

• Company embarrassment, customer dissatisfaction, and loss of trust

• Expense of cleaning up the incident, such as forensics, sending apology
letters, reissuing thousands of credit cards, providing identity theft
insurance

• Business gets sued and/or fined

Typical Impact

OWASP Foundation

Insecure Cryptographic Storage Illustrated

Custom Code

A
c
c
o
u

n
ts

F
in

a
n

c
e

A
d

m
in

is
tr

a
ti

o
n

T
r
a
n

sa
c
ti

o
n

s

C
o
m

m
u

n
ic

a
ti

o
n

K
n

o
w

le
d

g
e

M
g
m

t
E

-C
o
m

m
e
r
c
e

B
u

s.
 F

u
n

c
ti

o
n

s

1
Victim enters credit

card number in form

2Error handler logs CC

details because merchant

gateway is unavailable

4 Malicious insider

steals 4 million credit

card numbers

Log files

3Logs are accessible to all

members of IT staff for

debugging purposes

OWASP Foundation

A9 – Avoiding Insecure Cryptographic
Storage

 Verify your architecture

 Identify all sensitive data

 Identify all the places that data is stored

 Ensure threat model accounts for possible attacks

 Use encryption to counter the threats, don‟t just „encrypt‟ the data

 Protect with appropriate mechanisms

 File encryption, database encryption, data element encryption

 Use the mechanisms correctly

 Use standard strong algorithms

 Generate, distribute, and protect keys properly

 Be prepared for key change

 Verify the implementation

 A standard strong algorithm is used, and it‟s the proper algorithm for this situation

 All keys, certificates, and passwords are properly stored and protected

 Safe key distribution and an effective plan for key change are in place

 Analyze encryption code for common flaws

OWASP Foundation

A10 – Insufficient Transport Layer
Protection

• Failure to identify all sensitive data

• Failure to identify all the places that this sensitive data is sent
• On the web, to backend databases, to business partners, internal

communications

• Failure to properly protect this data in every location

Transmitting sensitive data insecurely

• Attackers access or modify confidential or private information
• e.g, credit cards, health care records, financial data (yours or your

customers)

• Attackers extract secrets to use in additional attacks

• Company embarrassment, customer dissatisfaction, and loss of trust

• Expense of cleaning up the incident

• Business gets sued and/or fined

Typical Impact

OWASP Foundation

Insufficient Transport Layer Protection
Illustrated

Custom Code

Employees

Business Partners
External Victim

Backend Systems

External Attacker

1

External attacker

steals credentials

and data off

network

2

Internal attacker

steals credentials

and data from

internal network
Internal Attacker

http://www.swbic.org/products/clipart/images/computeruser.jpg
http://www.swbic.org/products/clipart/images/computeruser.jpg

OWASP Foundation

A10 – Avoiding Insufficient Transport Layer
Protection

Protect with appropriate mechanisms

Use TLS on all connections with sensitive data

 Individually encrypt messages before transmission

 E.g., XML-Encryption

Sign messages before transmission

 E.g., XML-Signature

Use the mechanisms correctly

Use standard strong algorithms (disable old SSL algorithms)

Manage keys/certificates properly

Verify SSL certificates before using them

Use proven mechanisms when sufficient

 E.g., SSL vs. XML-Encryption

 See: http://www.owasp.org/index.php/Transport_Layer_Protection_Cheat
_Sheet for more details

http://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet
http://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet
http://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet

OWASP Foundation

A Phased Approach to Application Security

1. Raise awareness about these issues in your development teams.

 Top 10/WebScarab/Webgoat Training

2. Provide development teams with tools/documentation.

 OWASP ESAPI

 OWASP Dev & Code Review Guides

3. Create an independent application security expert team

 OWASP ASVS

 OWASP Testing Guide

OWASP Foundation

OWASP WebGoat & WebScarab

OWASP Foundation

OWASP Foundation

OWASP ASVS

 It is intended as a
standard for how to
verify the security of
web applications

 It should be application-
independent

 It should be
development life-cycle
independent

 It should define
requirements that can
be applied across web
applications without
special interpretation

OWASP Foundation

OWASP ASVS & Top 10

OWASP Foundation

How do I get started using ASVS?

Buyer and seller: agree
how technical security
requirements will be
verified by specifying a
level from 1 to 4

Perform an initial
verification of the
application

44

Using ASVS requires planning and in that respect is just like any

other testing exercise!

This is where

ASVS can be

used

Educate and

Collect

Perform Initial

Verification

This is where the

Contract Annex can

be used to specify an

ASVS level

Here is where you find

out if your application

has vulnerabilities

such as Cross-Site

Scripting (XSS), SQL

injection, CSRF, etc.

OWASP Foundation

How do I get started using ASVS?
(continued)

Develop and execute a
remediation strategy,

Re-verify after fixes are
made (repeat as
necessary).

Develop a strategy to add
verifications into the
SDLC as regular activities.

45

Tip: don’t scare people when you present your findings! Be

specific. Propose a specific fix or a workaround, if able.

Remediate

and Plan

Develop

and Verify

During SDLC

This is where

ASVS can be

used

This is where

ESAPI can be

used to fix

vulnerabilities

Here is where you find

out if your application

still has vulnerabilities

such as Cross-Site

Scripting (XSS), SQL

injection, CSRF, etc.

OWASP Foundation 46

Integrating ASVS into your SDLC
(Outsourcing not required)

Verify against

your selected

ASVS level

Implementation
Remediate

and Reverify

Build your ESAPI by

extending ESAPI

controls, integrating

your standard

controls, and

implementing

needed custom

controls. Use it to

protect your app.

Fix

vulnerabilities

Here is where you find

out if your application

has vulnerabilities

such as Cross-Site

Scripting (XSS), SQL

injection, CSRF, etc.

Use ESAPI as

part of your

Design to

meet the

ASVS req’ts

Requirements

Definition by

Risk Level

Define your own

application risk

levels mapped to

ASVS for security

requirements

definition

Here is where you plan

how you are going to

meet all your selected

ASVS security

requirements.

App A:

Design for a

Particular Risk

Level

Perform Initial

Verification

 Iterate App Enhancements

OWASP Foundation

Summary: How do you address these
problems?

 Develop Secure Code

 Follow the best practices in OWASP‟s Guide to Building Secure Web
Applications

 http://www.owasp.org/index.php/Guide

 Use OWASP‟s Application Security Verification Standard as a guide to
what an application needs to be secure

 http://www.owasp.org/index.php/ASVS

 Use standard security components that are a fit for your organization

 Use OWASP‟s ESAPI as a basis for your standard components

 http://www.owasp.org/index.php/ESAPI

 Review Your Applications

 Have an expert team review your applications

 Review your applications yourselves following OWASP Guidelines

 OWASP Code Review Guide:
http://www.owasp.org/index.php/Code_Review_Guide

 OWASP Testing Guide:
http://www.owasp.org/index.php/Testing_Guide

http://www.owasp.org/index.php/Guide
http://www.owasp.org/index.php/ASVS
http://www.owasp.org/index.php/ESAPI
http://www.owasp.org/index.php/Code_Review_Guide
http://www.owasp.org/index.php/Testing_Guide

OWASP Foundation

THANK YOU!

