
Watch What You Write: Preventing Cross-Site

Scripting by Observing Program Output

Matias Madou, Edward Lee, Jacob West and Brian Chess

Fortify Software
2215 Bridgepointe Pkwy, Suite 400

San Mateo, CA, 94404
{mmadou, elee, jacob, brian}@fortify.com

Abstract. We introduce a dynamic technique for defending web appli-
cations that would otherwise be vulnerable to cross-site scripting attacks.
Our method is comprised of two phases: an attack-free training period
where we capture the normal behavior of the application in the form of a
set of likely program invariants, and an indefinite period of time spent in
a potentially hostile environment where we check to make sure the appli-
cation does not deviate from the normal behavior. We demonstrate that
our approach is both effective at protecting vulnerable applications and
capable of doing so without introducing a prohibitive amount of over-
head. Our experiments suggest that this invariant-based technique is the
most powerful and accurate automated mechanism for identifying and
protecting against the widest range of cross-site scripting vulnerabilities.

1 Introduction

Cross-site scripting (XSS) is the most wide-spread vulnerability in web applica-
tions today. The 2007 update to the OWASP Top 10 ranks XSS as the #1 web
application security vulnerability [5] and data from the MITRE Common Vul-
nerability Enumeration (CVE) project show that the rate of publicly disclosed
XSS vulnerabilities is increasing [2]. These data support the idea that XSS vul-
nerabilities are both easy for programmers to introduce and easy for attackers
to find, which suggests that a technique for defending vulnerable applications at
runtime would be a boon to web security.

An XSS vulnerability permits attackers to include malicious code in the con-
tent a web site sends to a victim’s browser. The malicious code is typically
written in JavaScript, but it can also include HTML, Flash or any other type
of code that will be interpreted by the browser. Attackers can exploit an XSS
vulnerability in a number of different ways. They can steal authentication cre-
dentials, discover session identifiers, capture keyboard input, or redirect users to
other attacker-controlled content [4].

The best approach to preventing XSS vulnerabilities is a programmatic com-
bination of input and output filtering: validate all input using a whitelist to
ensure it contains only expected values and validate output bound for the web
browser to ensure that it does not contain malicious code [1]. However effective,

such a solution requires a concerted commitment to preventing XSS vulnera-
bilities and is often difficult to implement consistently, particularly in legacy
programs that were developed without security in mind. Some Web Application
Firewalls (WAFs) implement less effective protections for XSS vulnerabilities
that often focus on identifying possible attacks using input filtering at the net-
work or web server layer. These solutions suffer from wide-spread false negatives
(missed attacks) and false positives (warnings raised during normal behavior)
because they lack the necessary application context to determine which data
represent a feasible attack and which do not [6, 13].

This paper introduces a method for defending web applications against XSS
vulnerabilities at runtime using fine-grained dynamic output inspection. The
primary difference between our approach and other automated techniques for
mitigating the danger posed by XSS vulnerabilities at runtime is that we identify
dangerous values as they are written into the HTTP response rather than as
they enter the program. This enables us to defend against attacks that cannot
be witnessed at the HTTP request level, such as attacks that rely on data that
are batch loaded into a database, arrive via web services or another non-HTTP
entry point, or that appear in an encoded form when they enter the program.
Inspecting output rather than input also enables us to implement more fine-
grained protections that better model real-world programming scenarios where
certain dynamic behavior is acceptable in some situations but not in others.
Finally, inspecting output as it is sent to the user means that not only do we
identify attacks, but when a likely invariant is violated we are able report a true
XSS vulnerability in the application because the malicious data have reached
the user.

The remainder of the paper is organized as follows. Section 2 introduces our
approach. Section 3 provides experimental results that compare the effectiveness
of our approach with a popular web application firewall. Section 3.4 discusses
the challenges and limitations that face our approach. Section 4 discusses related
work, Section 5 mentions ideas for future work, and Section 6 summarizes our
conclusions.

2 Method

An XSS vulnerability can take one of three forms. Reflected XSS occurs when a
vulnerable application accepts malicious code as part of an HTTP request and
immediately includes it as part of the HTTP response. Persistent XSS occurs
when a vulnerable application accepts malicious code, stores it, and later dis-
tributes it in response to a separate HTTP request. DOM-based XSS occurs when
the malicious payload never reaches the server–it is only seen by the client [7].

Our approach defends web applications against reflected and persistent XSS
attacks. It works in two phases. In the first phase we monitor the target appli-
cation during an attack-free training period with a finite duration and generate
likely invariants on normal program behavior. The likely invariants are condi-
tions that always hold during the training period. They are all related to the

types of output the program writes to the HTTP response. We expect this phase
could be carried out in conjunction with typical functional testing, which is in-
tended to exercise a wide range of normal program behavior. The likely invariants
we derive are guaranteed to hold only for the program behavior observed dur-
ing the training period, but if the program is well exercised during the training
period, the invariants we derive are likely to be ones that programmers believe
will always hold. Once we have developed a set of likely invariants, we monitor
the application when it is deployed in a production environment. We report a
problem when we identify program behavior that violates one or more likely
invariants.

In this section we give an example of the kind of vulnerability we aim to
defend against and detail the two phases of our approach.

2.1 Example

Imagine a simple blogging application. The blog contains a page that allows a
user to submit the title and body of a new blog entry. An HTTP request to add
a new entry is handled by the application server, which dispatches the request
to the preview page named newblog.jsp. The source for newblog.jsp includes the
following code:

<tr>

<td class=newsCell><%= element.getTitle() %></td>

<td class=newsCell><%= element.getBody() %></td>

</tr>

The URL portion of a typical HTTP request for this page might look like
this:

http://example.com/preview.do?title=First&body=I+got+here+first.

in which case the page will generate the following HTML output as part of the
HTTP response:

<tr>

<td class=newsCell>First</td>

<td class=newsCell>I got here first.</td>

</tr>

Another typical URL might look like this:

http://example.com/preview.do?title=Me&body=

My+photo%3A+%3Cimg+src%3D%22me.png%22%2F%3E

which will generate the following output:

<tr>

<td class=newsCell>Me</td>

<td class=newsCell>My photo: </td>

</tr>

This page is vulnerable to reflected XSS. For example, if an attacker requests
the the URL

http://example.com/preview?title=XSS&body=

%3Cscript%3Ealert(’vuln+to+xss’)%3C%2Fscript%3E

the page will generate the following response:

<tr>

<td class=newsCell>XSS</td>

<td class=newsCell><script>alert(’vuln to xss’)</script></td>

</tr>

When a browser renders this HTML, it will execute the JavaScript within the
script tag.

2.2 Likely Invariant Generation

An invariant is a property that always holds at a certain point in a program.
Programmers sometimes check important invariants with assert statements or
other forms of sanity checking logic. In order to determine likely invariants re-
lated to XSS, we insert monitors into the program that record values included
in content written to the HTTP response.

We define an observation point to be a method call that writes directly to
the HTTP response. These are the locations we will characterize and monitor
for XSS attacks.

The JSP code from newblog.jsp in Section 2.1 could be translated into the
following Java code:

20: out.write("<td class=newsCell>");

21: out.print(element.getTitle());

22: out.write("</td>\t\r\n <td class=newsCell>");

23: out.print(element.getBody());

24: out.write("</td>");

It contains five observation points. Before the training period we re-write the
program’s bytecode to insert monitors around these method calls. We use a
simple static analysis of the program to avoid monitoring method calls that
can only write static content to the HTTP response because they are trivially
immune to XSS vulnerabilities. For the code above, the relevant observation
points are the calls to javax.servlet.jsp.JspWriter.print(String s) on lines 21 and
23, because they are the only two methods that write dynamic content to the
HTTP response.

We define an observation context to be the state of the program when an
observation point is invoked. We represent the observation context with the
URL from the HTTP request and the current call stack. Although we only track
the URL and call stack, it is possible to track other state information such as
HTTP request parameters, HTTP request headers, or user roles. In general, the

more dimensions there are to the observation context, the more fine-grained and
robust the likely invariants and detection algorithm will be. By keeping track of
contexts rather than just observation points, we can develop a different set of
likely invariants for each context in which an observation point is used.

When an observation point executes, we examine what we know about the
associated context. If we have not seen the context before, we use the argument
to the observation point method to establish a set of likely invariants. If the
context already has likely invariants associated with it, we check to see if any
of the likely invariants are violated by the current method argument. If a likely
invariant is violated, we update the likely invariant to make it consistent with
the new behavior.

In our current implementation, all likely invariants are of the form The sub-

string S always occurs X times at this observation point. We choose substrings
which consist of patterns that could be part of an XSS attack, such as <script,
<img and javascript:. Our collection of patterns comes from the XSS attacks we
have studied. Counting the number of occurrences of each pattern allows us to es-
tablish a baseline of expected behavior. After the training period, any deviation
from the expected behavior is considered a violation of the likely invariant.

Consider the application of this technique to the two normal requests for
newblog.jsp given earlier. Although our implementation considers a wide range
of relevant substrings, for simplicity sake consider only the following values for
this example:

<script

<img

javascript:

If the two requests are the extent of the training data, we will establish the
following likely invariants:

line 21: The substring "<script" always occurs 0 times

line 21: The substring "<img" always occurs 0 times

line 21: The substring "javascript:" always occurs 0 times

line 23: The substring "<script" always occurs 0 times

line 23: The substring "javascript:" always occurs 0 times

The invariants for line 23 will allow an image tag but will not allow an at-
tribute that contains the string javascript:. This preserves the intended function-
ality of the application while preventing a popular form of XSS attack. (Other
patterns are required in order to prevent other XSS varieties.)

For ease of understanding, we have labeled each invariant as corresponding
to either line 21 or line 23, but the observation context also includes the URL
and a call stack. This distinction has not been important in the examples given
thus-far, but it is critically important for establishing likely invariants when the
same method call can be invoked from more than one place in the program.
Consider the following modified version of the JSP code from newblog.jsp that

uses the <logic:iterate> and <bean:write> tags to output the title and body
values:

<logic:iterate id="element" name="profiles" scope="request"

type="com.blog.postnew" >

<tr>

<td class=newsCell>

<bean:write name="element" property="title"/></td>

<td class=newsCell>

<bean:write name="element" property="body"/></td>

</tr>

</logic:iterate>

This JSP code will be transformed into the following Java code:

20: WriteTag jsp_beanwrite_title;

21: jsp_beanwrite_title.setName("element");

22: jsp_beanwrite_title.setProperty("title");

23: jsp_beanwrite_title.doStartTag();

...

30: WriteTag jsp_beanwrite_body;

31: jsp_beanwrite_body.setName("element");

32: jsp_beanwrite_body.setProperty("body");

33: jsp_beanwrite_body.doStartTag();

Notice that the code does not directly invoke the methods responsible for
writing the dynamic output to the HTTP response. The call to
javax.servlet.jsp.JspWriter.print() is hidden within the implementation of doStart-
Tag(), which is invoked from two distinct program points at line 23 and line 33.
In order to establish different sets of likely invariants for the two calls, we must
take the call stack into account.

2.3 Runtime Monitoring

When the program runs in a production environment, we insert monitors at
method calls used to write values to the HTTP response and use static analysis
to avoid monitoring method calls that only write static content. This time the
monitors check observed behavior against the likely invariants derived during
the training period. When a likely invariant is violated, the monitor takes one
of several actions, which include logging the attack or raising an exception. The
program’s owner can configure the monitors to take an action appropriate for
the program and execution environment in question.

When a monitor executes in production, we identify the likely invariants
to apply by matching the current program state with the observation contexts
witnessed during the training period. Comparing the entire call stack is costly
in terms of overhead. To avoid doing so, we compute a minimal set of call stack
nodes during the training period that uniquely describe a group of contexts that

share the same likely invariants. To compute this minimal set, we first group
contexts that shared the same likely invariants. Then, for each call stack in each
of the group, we compare the last node before the observation point with the
node in the corresponding position in call stacks for other groups. If the node is
unique, then we continue comparing the remaining contexts in the current group.
If the node is not unique, then we begin a breadth first search to find a node or
set of nodes that are unique. If no single node position uniquely differentiates
the call stacks in one group from all others, then we expand our scope to two
nodes and so on until this requirement is met.

Checking likely invariants independently is conceptually simple but compu-
tationally expensive. We speed up the checking at runtime by building regular
expressions out of the likely invariants for each observation point, which reduces
the overall number of comparisons performed. A set of special substrings can
be combined into a single regular expression if the likely invariants associated
with them all require zero occurrences of the substrings. Given a training pe-
riod comprised of the normal request given in Section 2.2, the invariants can be
combined without loss of accuracy as follows:

line 21: The regular expression

"(<((img)|(script))|(javascript:)" matches 0 times

line 23: The regular expression

"(<script)|(javascript:)" matches 0 times

3 Experimental Results

In order to measure the effectiveness of our approach, we conducted an exper-
iment to compare our approach against ModSecurity 1 (v2.5.1), a popular web
application firewall, with only the latest rules (v1.6.0) related to XSS enabled. In
this section we outline the details of the experiment and show the results of our
comparison between the two tools in terms of their effectiveness at protection a
vulnerable application and the overhead they introduce.

3.1 The Setup

For our experiment, we selected Pebble (v2.0.2), which is a lightweight, open
source blogging application implemented in Java that we feel is representative
of the kind of software that stands the benefit from our technique. The appli-
cation contains multiple XSS vulnerabilities, which we reported to the project’s
maintainers. Specifically, our experiment focused on an XSS vulnerability caused
by insufficient validation of the name parameter, which stores the name of the
current user and is included in various pages.

The environment for our experiment consists of client machine running Mi-
crosoft Internet Explorer (v6.0) that interacts with a server running Apache

1 http://www.modsecurity.org/

httpd (v2.2.8) in front of Apache Tomcat (v5.5.25). We selected Internet Ex-
plorer 6.0 for our client browser because it is known to be extremely vulnerable
to XSS. Although IE6.0 is an old browser, in March 2008 30% of users still
rely on IE6.0 2. Pebble does not require Apache httpd, however, we chose this
setup because ModSecurity installs as an Apache httpd module and because
this corresponds with real-world deployment scenarios. This setup is illustrated
in Figure 1.

Fig. 1. Experimental Setup

3.2 Security

To evaluate the effectiveness of the two tools at preventing attacks against the
vulnerable use of the name parameter, we consider the following four attack
strings:

1. <script>alert(’vulnerable to XSS’)</script>
2.
3.
4.

where the spaces in the last two attack strings are tab (HT) characters.
With only the vulnerable version of Pebble running, all four attacks above

trigger a pop-up in IE6.0 that contains the string ’vulnerable to XSS’ on each
page that displays the name parameter, thus exploiting the XSS vulnerability.

To evaluate our approach, we first developed an automated series of requests
that exercises the normal behavior of Pebble and provide an attack-free training
period. Specifically, during the training phase we modified user details, added
two static pages, two blog entries and visited a handful of additional pages. From
this interaction, we formed a set of likely invariants.

Next we tested Pebble with each of the attack strings; once with ModSecurity
installed on the Apache httpd server and once with our likely invariants applied
to the application. ModSecurity successfully protected the application against
three out of the four attacks. However, it failed to catch the fourth attack pattern
and allowed us to successfully exploit the XSS vulnerability. Using the likely

2 http://www.w3schools.com/browsers/browsers stats.asp

invariants we developed during the training period, our approach was able to
block all four attacks.

Next we asked ourselves whether ModSecurity could be customized to capture
the fourth attack. One approach is to add a rule that blocks <img. However, with
this rule in place ModSecurity would prevent users from posting images to blogs,
which violates the design requirements of the application. A second approach is
to add a rule that blocks variants of alert. However, this is likely to introduce
false positives on content that contains the word alert. Our technique does not
suffer these limitations because it restricts attackers from inserting malicious
values in the name parameter without impacting the functionality of the rest of
the application.

3.3 Overhead

To measure the overhead introduced by ModSecurity and our technique, we have
setup three distinct scenarios for Pebble: (1) unprotected, (2) protected with
ModSecurity (only XSS rules enabled) and (3) protected with our invariant-
based approach. To conduct the test, we made an attack free reference set con-
taining 6469 requests, of which 104 were POST and 6365 were GET. We executed
this series of requests five times for each of the three test scenarios and took the
middle three timings to compute an average overhead. ModSecurity introduced
an average overhead of 0.5%, while our technique contributed an average over-
head of 2.11%. We feel that both tools introduced an acceptable level of overhead
for use in many production environments.

3.4 Discussion

Beyond the attacks mentioned in our experiment, we would like to describe two
additional classes of attacks that distinguish our approach from WAFs, such as
ModSecurity. First, consider an attack against the persistent XSS vulnerability
described in Pebble that relies on the attackers ability to insert malicious values
directly into the database. An attacker might accomplish this by inserting the
value before the WAF is put in place, by including the attack string in data
that are batch loaded into the database, or using another vulnerability, such as
SQL injection. Once the attack string is in the database, a WAF will offer no
protection because it does have access to the malicious value. In contrast, our
approach performs equally well regardless of the attack vector selected because
we identify and prevent the attack as it leaves the application.

Another scenario where our approach has a significant advantage over WAFs
is in programs where input arrives in an encoded format and is later decoded
by the application. If, for example, the name value in Pebble were expected
in an encoded form, the WAF would not identify the attacks described above,
despite the fact that the application would subsequently decode them, rendering
them dangerous once again. Because our technique is applied at the last possible
moment before potentially dangerous values exit the application, our view of the
data most closely matches what the user, or victim in this case, receives.

Finally, when a likely invariant is violated, not only have we identified an
attack, but we have also found an application vulnerability because the mali-
cious data was allowed to pass through the application to the point where it
is rendered to the user. Therefore, the results produced from our technique not
only represent real attacks that have been thwarted, but also provide details of
security vulnerabilities that can be passed back to the development team for
remediation. In contrast, results produced by a WAF represent only attempted
attacks, and do not relate to real vulnerabilities or provide any help in identifying
any real vulnerabilities that might exist in the application.

The accuracy of likely invariants depends on the extent of normal program
behavior exercised during the training period; normal program behavior that
violates a likely invariant but is not witnessed during the training period will
result in false positives when the invariant is later enforced. Conversely, the
presence of attack data or normal program behavior that we cannot distinguish
from attack data will introduce false negatives because we are unable to derive
a likely invariant.

We are aware that it is unlikely that a given training period will exercise
all possible permutations of normal program behavior, however, our research
indicates that a training period that is sufficiently broad to avoid false positives
is achievable in practice. With respect to false negatives, in a controlled envi-
ronment it should be possible to ensure that no attack data are included in the
training period.

One might argue that the proposed technique can also be used to protect
against other types of attacks, such as SQL or command injection. In some cases
we believe our approach is applicable. We recommend that programmers avoid
SQL injection vulnerabilities by using prepared statements and bind variables
instead. By using prepared statements, the control is separated from the data,
and as such an attack is no longer possible. The XSS problem is fundamentally
different from SQL injection because the XSS cannot be prevented by separat-
ing control from data. The proposed technique is suitable to protect against
command injection attacks because, as with XSS, programming interfaces for
executing system commands do not allow the programmer to separate control
from data.

Unlike network based input filtering technology, our method only needs to ac-
count for variations of XSS patterns that will be interpreted directly by browsers
rather than accounting for packet fragmentation attacks or server specific encod-
ing and decoding. The variations that we currently account for include: open-
ing tags, closing tags, null characters, JavaScript event handlers, variations of
javascript:, CSS (Cascading Style Sheets) import and CSS expression directives3.
However, if a new attack pattern is discovered for a popular browser, our patterns
will need to be updated.

Currently, our implementation is limited to monitoring observation points
that take string arguments. Methods that output characters or byte arrays will
not be analyzed. This is not a limitation of our methodology, but rather a short-

3 http://ha.ckers.org/xss.html

coming of our implementation. Enhancing our implementation to support non-
string based output is planned in future work.

4 Related Work

Daikon uses dynamic analysis to identify likely invariants, such as a given vari-
able always holding a constant value or being non-zero [3]. Daikon has been
used to perform various tasks, including generating test cases, predicting incom-
patibilities in component integration, automating theorem proving, repairing
inconsistent data structures, and checking the validity of data streams. We took
inspiration from the Daikon work to produce our likely invariants.

Automatic discovery of XSS is often performed at runtime by penetration
testing tools. However, these tools are dependent on their ability to effectively
crawl the application under test and can have difficulty scanning applications
where navigational links and content are controlled dynamically with JavaScript.
Static source code analysis tools are effective at discovering XSS vulnerabilities
and have the advantage of providing full code coverage, but also have difficulty
with dynamically generated content. We believe a combination of runtime and
static analysis techniques is the most effective solution for identifying XSS vul-
nerabilities [12].

While both runtime and static analysis tools provide effective detection of
XSS vulnerabilities, both techniques rely on the programmer to remediate the
issues. Our solution, which is designed to both identify and correct XSS vul-
nerabilities in software, is built on the foundation set forth in the presentation
Countering The Faults of Web Scanners Through Byte-code Injection [10] and
an associated paper [11]. This work outlines a method for using aspect-oriented
programming to insert code to passively monitor and actively protect web ap-
plications.

ModSecurity is a web application firewall that monitors inbound and out-
bound traffic to actively identify XSS attacks, as well as attacks against against
SQL injection, file injection and other vulnerabilities. Because ModSecurity and
other web application firewalls inspect traffic in and out of web applications at
the HTTP-layer, they report attacks instead of vulnerabilities and often lack the
necessary application context to differentiate malicious activity from expected
behavior.

Similarly, Snort [14] is an open source network-based intrusion prevention
and detection system that can detect XSS attacks. Snort attempts to model
normal program behavior in some situations, but does not apply this technique
to the detection of XSS. LibAnomaly is a research project for anomaly detection
developed by the Computer Security Group at UCSB [8, 9]. The anomaly detec-
tion system in this library analyzes web-based attacks by taking web server log
files as input and produces an anomaly score for each request.

5 Future Work

The invariants we currently create are akin to a blacklist: they specify particu-
lar patterns that should not appear in the output when the program runs. We
plan to add whitelist invariants too. Whitelist invariants are of the form The ar-

gument string always matches the regular expression R. We will choose regular
expressions that match textual representations of common data types that are
inert when rendered by a web browser. For example, we will have regular expres-
sions for integers, email addresses, and phone numbers. A whitelist mechanism
is particularly useful in accurately protecting against XSS vulnerabilities where
an application includes attacker-controlled input in existing JavaScript content
because none of the usual malicious strings are necessary to cause the code to
be executed in this case.

A significant portion of the overhead introduced by our technique comes from
pattern matching. Currently, our implementation uses the default java.util.regex

with basic optimizations for the patterns itself. We would like to investigate
single pattern matching algorithms and the multi-pattern matching algorithms
that build upon these. Also, by using the previously mentioned whitelist, we
might kill two birds with one stone. First, whitelisting is generally known to be
better for protection than blacklisting. Second, it might reduce the overhead.
It takes much longer for the engine to declare that a regular expression did
not match an input string (blacklisting) than it does to find a successful match
(whitelisting).

In order to make our technique more resilient to evolving program behavior
and incomplete training data, we will investigate a mode where we can also
derive and update invariants in production. This is challenging both because
we can make no guarantees that the program behavior we observe will be free
from attacks and because the performance constraints of a production system
are very different from one in a testing environment, however, we feel optimistic
that by targeting specific behavioral idioms we can make meaningful progress in
this area.

Finally, the task of modeling normal program behavior would be simplified
if we could accurately differentiate user input from application-controlled values
in production systems. To this end, we will explore integrating dynamic taint
propagation techniques, which has been used to identify security vulnerabilities
related to the misuse of user input in applications under test, into our approach.
With these capabilities, we could apply the techniques described in this paper
selectively in situations where the data in question are user controlled, and avoid
unnecessary effort on data that are under the application’s control.

6 Conclusions

The best way to prevent XSS is for programmers to write code that makes
successful attacks impossible. However, it is easy to introduce XSS vulnerabil-
ities, and that makes it worthwhile to have an additional layer of defense. We

have described an automatic, dynamic XSS protection that works by taking a
fine-grained approach to observing program output.

Our technique provides good protection with a minimal amount of overhead.
In order to keep the overhead to a minimum, we explored a number of opti-
mizations. For example, it is important to monitor only dynamically generated
content and not static content. At the moment, our implementation monitors
nearly all writes to the response. Only very specific cases are filtered out. A
more sophisticated algorithm that better distinguishes between static and dy-
namic content might further improve performance.

Our experimental results indicate that our approach provides the most com-
plete automated protection against XSS vulnerabilities to-date. We protect against
a wider range of attacks than previous techniques that have been applied to this
problem. Furthermore we do so with the added benefit of reporting real ap-
plication vulnerabilities rather than just attempted attacks, which makes our
technique an effective component of an iterative feedback loop designed to im-
prove the overall security of the software in question.

Acknowledgments

This paper is licensed under the Creative Commons Attribution-ShareAlike 2.5
License.

References

1. Brian Chess and Jacob West. Secure Programming with Static Analysis. Addison-
Wesley, 2007.

2. Steve Christey and Robert A. Martin. Vulnerability type distributions in cve, v1.1,
May 2007. http://cwe.mitre.org/documents/vuln-trends/index.html.

3. Michael D. Ernst, Jeff H. Perkins, Philip J. Guo, Stephen McCamant, Carlos
Pacheco, Matthew S. Tschantz, and Chen Xiao. The daikon system for dynamic
detection of likely invariants. In Science of Computer Programming, pages 35–45,
Dec 2007.

4. Seth Fogie, Jeremiah Grossman, Robert Hansen, and Anton Rager. XSS Exploits:
Cross Site Scripting Attacks and Defense. Syngress, 2007.

5. OWASP Foundation. The ten most critical web application security vulnerabilities:
2007 update, 2007.

6. Mark Handley, Vern Paxson, and Christian Kreibich. Network intrusion detec-
tion: evasion, traffic normalization, and end-to-end protocol semantics. In 10th
conference on USENIX Security Symposium, Berkeley, CA, USA, 2001. USENIX
Association.

7. Amit Klein. Dom based cross site scripting or xss of the third kind, Jul 2005.
8. C. Kruegel, D. Mutz, F. Valeur, and G. Vigna. On the detection of anomalous

system call arguments. In Proceedings of ESORICS, Oct 2003.
9. C. Kruegel and G. Vigna. Anomaly Detection of Web-based Attacks. In Proceedings

of the 10th ACM Conference on Computer and Communication Security (CCS ’03),
pages 251–261, Washington, DC, October 2003. ACM Press.

10. Toshi Kureha. Countering the faults of web scanners through byte-code injection.
In BlackHat Europe, Apr 2007.

11. Toshi Kureha and Brian Chess. Countering the faults of web scanners through byte-
code injection, Apr 2007. https://www.blackhat.com/presentations/bh-europe-
07/Kureha/Whitepaper/bh-eu-07-chess-kureha-WP.pdf.

12. Edward Lee. Comparing application security tools. In Defcon, Aug 2007.
http://www.defcon.org/images/defcon-15/dc15-presentations/dc-15-lee.pdf.

13. Thomas H. Ptacek and Timothy N. Newsham. Insertion, evasion, and denial of
service: Eluding network intrusion detection. In Secure Networks, Inc., Jan 1998.

14. Martin Roesch. Snort - lightweight intrusion detection for networks. In LISA
’99: Proceedings of the 13th USENIX conference on System administration, pages
229–238, Berkeley, CA, USA, 1999. USENIX Association.

