

How cryptography can rescue the web

Carlos Ribeiro Carlos.Ribeiro@ist.utl.pt

- The web is free ... for all ...
 - Virus
 - back from the early 80's: first IBM PC infection
 - but knowhow from mid 60's

- The web is free ... for all ...
 - Virus
 - Worank from the early 80's: first IBM PC infection
 - Þ⊌stkwowhow from mid 60's
 - Code Red [2001] (IIE servers) (8 months < 0,5 Million)
 - Samy [2005] (MySpace) (20 hours; 1 Million)
 - Slow worms
 - Stuxnet [2010] (Windows, SCADA, PLC, Motor controls)

- The web is free ... for all ...
 - Virus
 - Worms
 - Phishsing cartitacks
 - AuthertiRediφ2001] (IIE servers) (8 months < 0,5 Million)
 - Samy [2005] (MySpace) (20 hours; 1 Million)
 - Slow worms
 - Stuxnet [2010] (Windows, SCADA, PLC, Motor controls)

- The web is free ... for all ...
 - Virus
 - Worms
 - Phishing attacks
 - Erøss-Isiteication
 - Script attacks (XSS)
 - Request Forgery attacks (CSRF)
 - Confused Deputy problem

- The web is free ... for all ...
 - Virus
 - Worms
 - Phishing attacks
 - Cross-site
 - Cosletion particles extracks
 - Requestections attacks (CSRF)
 - Sloedfluisejet Otemuty problem
 - Sql injection

- The web is free ... for all ...
 - Virus
 - Worms
 - Phishing attacks
 - Cross-site
 - Code-injection attacks
 - Stolenia redentials
 - Blass Wiorjets (izang. Dictionary attacks)
 - Sql injection

- The web is free ... for all ...
 - Virus
 - Worms
 - Phishing attacks
 - Cross-site
 - Code-injection attacks
 - Stolen credentials
 - Passwords (e.g. Dictionary attacks)
 - Cookies (e.g. firesheep)

- The web is free ... for all ...
 - Virus
 - Worms
 - Phishing attacks
 - Cross-site
 - Code-injection attacks
 - Stolen credentials
 - Passwords (e.g. Dictionary attacks)
 - Cookies (e.g. firesheep)
 - Certificates (e.g. Stuxnet)

- The web is free ... for all ...
 - Virus
 - Worms
 - Phishing attacks
 - Cross-site
 - Code-injection attacks
 - Stolen credentials
 - Spoofing
 - DDBS
 - DStron Karatinasky 2007

Why do the web needs to be Pescular hentication

- The web is free ... for all ...
 - Virus
 - Worms
 - Phishing attacks
 - Cross-site
 - Code-injection attacks
 - Stolen credentials
 - Spoofing
 - DDoS
 - Bothschia attack 2007
 - How to use the web to run a Cmd&Ctrl

Good Authentication

- Prevents several know problems
- Big dissuasion factor
- Services authentication
 - Currently PKI with root certificates in browsers
 - Future also DNSSEC

DNSSEC

DNS Security Extensions

• Provides authentication for records transmitted

between DNS resolvers

• Root servers already signed

• TLD domains being sign

• No stub resolver

DNSSEC

DNS Security Extensions

Provides authentication for records transmitted

between DNS resolvers

• Root servers already signed

- TLD domains being sign
- No stub resolver
- Global PKI
 - Authenticate service names
 - Authenticate mail addresses
 - through DKIM
 - Authenticate machines
 - IPSec and SSH

What about persons?

- Most sites manage their on registration services
 - Organizations use Single Sign On services
 - Some are federated through OpenID
- Persons are identified using passphrases and cookies
 - Some organizations require also tokens (e.g. Smartcard, RSASecurid)
- Financial institutions require two levels of authentication
- Every thing is very limited either in scope or in security strength
- Most countries already have or are deploying National eIDs

STORK: Countries involved

14 ORIGINAL PARTNERS

ENLARGEMENT:
3 ADDITIONAL MEMBERS

12 IN REFERENCE GROUP

- Secure Asser
 - Assertions
 - Protocols
 - Bindings -
 - Profiles -

- Single Sign On profile
 - XML based SAML assertions
 - Over HTTPS binding
 - The authentication process depends on the Authentication Service

Stork features

- User centric
 - Users are in control of release attributes
 - Countries may apply their regulation at Proxy level
- Privacy aware
 - An user identifier for each SP type
- Heterogeneity
 - Each Country may use it's own identity management solution

Virtual-Identity Provider

Holder of key profile Service - Self-signed certificate Provider Get http:// SAML Atr Req Proxy SAML Attribute Provider Proxy SAML SAML Resp = < Identity Provider

Holder of key profile

- Not bearer tokens
- Token may only be used by someone that proves the possession of the private key of the certificate.
- Client certificates are self-signed and generated on spot for each service to preserve privacy
 - Unfortunately browsers don't know how to do this efficiently
 - Browsers have poor computation power

Identity Selectors

- Extensions to b
 - Microsoft Care
 - Higgins
 - Several others
- Identity Metasy
 - Identity Select
 - Identity Provi
 - Relying Partne

Identity Selectors

- Manage Cards with identities
 - SAML 2.0 tokens
 - WS-* tokens
 - OpenID tokens
 - U-Prove tokens

U-prove

- Special kind of tokens
 - May be encoded in WS-* claims (CardSpace 2.0)
 - May be encoded in SAML 2.0 tokens
- SPs only have access to the user attributes allowed by the user
 - selective disclosure
- IdP cannot get together with SP to know the full identity of the user
 - Untraceability
- IdP does not need to be online to allow selectively disclosure
 - Scalability

U-prove protocols

- Issuance protocol
 - Signed token with all the user attributes
 - <Name, Age, Address><signature>
 - IdP never sees <signature>
 - Untraceability
- Selective Disclosure Protocol
 - <Name, XXX, XXX><signature>
- The user must store the token
- Proof of possession
 - Prevents token replay

U-Prove credential

- <Name, age, address> = <x₁,x₂,x₃>
- For some set of generators $g_i = g_0^{y_i}$ of $\mathbf{Z}_{\mathbf{p}}$ where \mathbf{p} is a large

Credential =
$$Cr = \langle g_1^{x_1} g_2^{x_2} g_3^{x_3} g_0^{\alpha} \rangle$$

Signed Credential = $\{Cr\}_{P_k}$
 α, g_0^{α} are private user numbers
 P_k Issuer private key

- Credential and signature can be public
 - Every one can verify the signature
 - No one can know x_i from the credential
- The private user numbers prevent dictionary and replay attacks

Selective disclosure Protocol

- If User provides x_1 , x_2 , x_3 , α every service provider can verify the validity of the attributes by computing the credential and compare it with the sign one.
 - But the SP would no every thing about the user
 - But the SP could replay the attributes and the credential and fake to be the user
- How to disclose x_1 without disclosing x_2 , x_3 , α ?
- How to prove that you are the owner of the attributes?

SP

User

$$x_1, \{Cr\}_{P_K}, B = g_2^{x_2} g_3^{x_3} g_0^{\alpha}$$

$$H = g_2^{w_2} g_3^{w_3} g_0^{\beta}$$

$$R = g_2^{cx_2 + w_2} g_3^{cx_3 + w_3} g_0^{c\alpha + \beta}$$

$$g_1^{z_1}B' = Cr$$
 $B' = Bg_1^{x_1-z_1}$

$$B' = Bg_1^{x_1 - z_1}$$

B is of the correct form User knows the private key α

$$R = B^c H$$

Issuance Protocol

• Credential of the correct form $Cr = \langle g_1^{x_1} g_2^{x_2} g_3^{x_3} g_0^{\alpha} \rangle$

$$Cr = \langle g_1^{x_1} g_2^{x_2} g_3^{x_3} g_0^{\alpha} \rangle$$

- Credential = Cr and signature = <s,r> not know to the issuer
- α not know to the issuer
- x₁, x₂, x₃ know to the issuer

$$P_k = x_0, y_1, y_2, y_3$$

$$Pu_k = g_0^{x_0}, g_0^{y_1}, g_0^{y_2}, g_0^{y_3} = h, g_1, g_2, g_3$$

Issuer

$Secretkey = \alpha$

User

$$Commit = g_0^w$$

$$s' = s + \delta$$

$$r' = s'(x_0 + x_1y_1 + x_2y_2 + x_3y_3) + w$$

$$r = r' + s\alpha + \varepsilon$$

 $Cr' = g_1^{x_1} g_2^{x_2} g_3^{x_3}$ $Cr = g_0^{\alpha} Cr'$ $s = H(Cr, f(g_0^{w}, Cr'))$

$$s = H(Cr, f'(s, r, Cr, h))$$

Cr, s, r

ServiceProvider

U-prove properties

- Scalable
- Untraceability
- Selective Disclosure
- Hardware tokens support
 - If only the hardware token knows one of the x_i the user cannot create Cr' without the token
- But how to know that what you are disclosing is what you want?
 - Is your computer with virus?
 - "What you see is what you sign"?

User centric security

- Not the principal the real user
- For very sensitive applications we may have a secret channel between the user and the service provider
- Some solutions have been implemented for specific applications but none is generic
 - E.g. MarkPledge for e-voting stuff

Conclusions

- A unsuspicious number of attacks to the web result from poor authentication
- Several solutions have been proposed
 - DNSSEC, STRUCESTIONS?
- We are still far from protecting the user from all authentication pitfalls, but we are getting closer

