
How cryptography can
rescue the web

Carlos Ribeiro
Carlos.Ribeiro@ist.utl.pt

Why do the web needs to be
rescued?
  The web is free … for all …

  Virus
  back from the early 80’s: first IBM PC infection

  but knowhow from mid 60’s

Why do the web needs to be
rescued?
  The web is free … for all …

  Virus
  Worms

  Fast worms

  Code Red [2001] (IIE servers) (8 months <0,5 Million)
  Samy [2005] (MySpace) (20 hours; 1 Million)

  Slow worms
  Stuxnet [2010] (Windows, SCADA, PLC, Motor controls)

  back from the early 80’s: first IBM PC infection
  but knowhow from mid 60’s

Why do the web needs to be
rescued?
  The web is free … for all …

  Virus
  Worms
  Phishing attacks

  Authentication

  Fast worms
  Code Red [2001] (IIE servers) (8 months <0,5 Million)

  Samy [2005] (MySpace) (20 hours; 1 Million)
  Slow worms

  Stuxnet [2010] (Windows, SCADA, PLC, Motor controls)

Why do the web needs to be
rescued?
  The web is free … for all …

  Virus
  Worms
  Phishing attacks
  Cross-site

  Script attacks (XSS)

  Request Forgery attacks (CSRF)
  Confused Deputy problem

  Authentication

Why do the web needs to be
rescued?
  The web is free … for all …

  Virus
  Worms
  Phishing attacks
  Cross-site
  Code-injection attacks

  php injection

  Shell injection
  Sql injection

  Script attacks (XSS)
  Request Forgery attacks (CSRF)

  Confused Deputy problem

Why do the web needs to be
rescued?
  The web is free … for all …

  Virus
  Worms
  Phishing attacks
  Cross-site
  Code-injection attacks
  Stolen credentials

  Passwords (e.g. Dictionary attacks)
  php injection
  Shell injection

  Sql injection

Why do the web needs to be
rescued?
  The web is free … for all …

  Virus
  Worms
  Phishing attacks
  Cross-site
  Code-injection attacks
  Stolen credentials

  Passwords (e.g. Dictionary attacks)

  Cookies (e.g. firesheep)

Why do the web needs to be
rescued?
  The web is free … for all …

  Virus
  Worms
  Phishing attacks
  Cross-site
  Code-injection attacks
  Stolen credentials

  Passwords (e.g. Dictionary attacks)

  Cookies (e.g. firesheep)
  Certificates (e.g. Stuxnet)

Why do the web needs to be
rescued?
  The web is free … for all …

  Virus
  Worms
  Phishing attacks
  Cross-site
  Code-injection attacks
  Stolen credentials

  Passwords (e.g. Dictionary attacks)

  Cookies (e.g. firesheep)
  Certificates (e.g. Stuxnet)

  Smartcards (e.g. Pin&Chip authentication broken [R. Anderson
2010])

Card Authentication

Ask for signature on T

Signed<AuthOK,T> PIN, Signed <Auth OK,T>

Authorization done

Send PIN

PIN OK

NO

Send PIN

PIN OK

Why do the web needs to be
rescued?
  The web is free … for all …

  Virus
  Worms
  Phishing attacks
  Cross-site
  Code-injection attacks
  Stolen credentials

  Passwords (e.g. Dictionary attacks)

  Cookies (e.g. firesheep)
  Certificates (e.g. Stuxnet)

  Smartcards (e.g. Pin&Chip authentication broken [R. Anderson
2010])

Card Authentication

Ask for signature on T

Signed<AuthOK,T> PIN, Signed <Auth OK,T>

Authorization done

Send PIN

PIN OK

  Spoofing
  IP
  DSN (Kaminsky)

Why do the web needs to be
rescued?
  The web is free … for all …

  Virus
  Worms
  Phishing attacks
  Cross-site
  Code-injection attacks
  Stolen credentials
  Spoofing
  DDoS

  Estonia attack 2007

  IP
  DSN (Kaminsky)

Why do the web needs to be
rescued?
  The web is free … for all …

  Virus
  Worms
  Phishing attacks
  Cross-site
  Code-injection attacks
  Stolen credentials
  Spoofing
  DDoS
  BotNet

  How to use the web to run a Cmd&Ctrl

Poor Authentication

  Estonia attack 2007

Good Authentication

  Prevents several know problems

  Big dissuasion factor

  Services authentication
  Currently PKI with root certificates in browsers
  Future also DNSSEC

DNSSEC
  DNS Security Extensions

  Provides authentication for records transmitted
between DNS resolvers
  Root servers already signed
  TLD domains being sign
  No stub resolver

Recursive
Resolver

Stub Resolver

①

②
③

F.ROOT-SERVERS.NET

.pt

.utl.pt

DNSSEC
  DNS Security Extensions

  Provides authentication for records transmitted
between DNS resolvers
  Root servers already signed
  TLD domains being sign
  No stub resolver

  Global PKI
  Authenticate service names
  Authenticate mail addresses

  through DKIM

  Authenticate machines
  IPSec and SSH

Recursive
Resolver

Stub Resolver

①

②
③

F.ROOT-SERVERS.NET

.pt

.utl.pt

What about persons?

  Most sites manage their on registration services
  Organizations use Single Sign On services
  Some are federated through OpenID

  Persons are identified using passphrases and cookies
  Some organizations require also tokens (e.g. Smartcard,

RSASecurid)

  Financial institutions require two levels of authentication

  Every thing is very limited either in scope or in security
strength

  Most countries already have or are deploying National eIDs

CENTRAL GOVERNMENT
ONLINE SERVICES

National online services today with eID

LOCAL GOVERNMENT
ONLINE SERVICES

BUSINESS
ONLINE SERVICES

NON PROFIT
ORGANISATION

ONLINE SERVICES

CITIZEN

All Nations have their own eID infrastructure

CITIZEN

CITIZEN

CITIZEN CITIZEN

CITIZEN

STORK: Countries involved

14 ORIGINAL PARTNERS

 ENLARGEMENT:
3 ADDITIONAL MEMBERS

12 IN REFERENCE GROUP

  Secure Assertion Markup Language
  Assertions – Signed statements about something
  Protocols – How to ask and send assertions
  Bindings – Over which network protocol
  Profiles – Sequences of protocol instances

  Single Sign On profile
  XML based SAML assertions
  Over HTTPS binding
  The authentication process depends on the Authentication

Service

WebApp

Authentication
Service

SAML 2

STORK Communication
Architecture

Get http://
SAML Req SAML Req

SAML Req

SAML Req

SAML Resp SAML Resp

SAML Resp

SAML Atr Req

Service
Provider

Proxy SAML

Attribute
Provider

Proxy SAML
Identity
Provider

Stork features

  User centric
  Users are in control of release attributes
  Countries may apply their regulation at Proxy level

  Privacy aware
  An user identifier for each SP type

  Heterogeneity
  Each Country may use it’s own identity management

solution

Virtual-Identity Provider

Get http://

SAML Req

Service
Provider

Proxy SAML

V-IdP
Client V-IdP

TCP/IP

Single Sign On problem

Get http://

SAML Atr Req

Service
Provider

Proxy SAML

Attribute
Provider

SAML Req

Proxy SAML
Identity
Provider

Holder of key profile

Get http://

SAML Atr Req

Service
Provider

Proxy SAML

Attribute
Provider

SAML Req

Proxy SAML
Identity
Provider

SAML Resp = < >

- Self-signed certificate

Holder of key profile

  Not bearer tokens

  Token may only be used by someone that proves the
possession of the private key of the certificate.

  Client certificates are self-signed and generated on spot
for each service to preserve privacy
  Unfortunately browsers don’t know how to do this

efficiently
  Browsers have poor computation power

Identity Selectors

  Extensions to browsers
  Microsoft CardSpace
  Higgins
  Several others

  Identity Metasystem interoperability (OASIS)
  Identity Selector
  Identity Provider
  Relying Partner

Identity Selectors

  Manage Cards with identities
  SAML 2.0 tokens
  WS-* tokens
  OpenID tokens
  U-Prove tokens

U-prove

  Special kind of tokens
  May be encoded in WS-* claims (CardSpace 2.0)
  May be encoded in SAML 2.0 tokens

  SPs only have access to the user attributes allowed by the
user
  selective disclosure

  IdP cannot get together with SP to know the full identity of
the user
  Untraceability

  IdP does not need to be online to allow selectively disclosure
  Scalability

U-prove protocols

  Issuance protocol
  Signed token with all the user

attributes
  <Name, Age, Address><signature>
  IdP never sees <signature>
  Untraceability

  Selective Disclosure Protocol
  <Name, XXX, XXX><signature>

  The user must store the token

  Proof of possession
  Prevents token replay

Issuance Protocol

Selective Disclosure
Protocol

Identity Provider

Service Provider

U-Prove credential
  <Name, age, address> = <x1,x2,x3>

  For some set of generators of Zp where p is a large
prime

  Credential and signature can be public
  Every one can verify the signature
  No one can know xi from the credential

  The private user numbers prevent dictionary and replay attacks

Credential =Cr =< g1
x1g2

x2g3
x3g0

! >

Signed Credential = Cr{ }Pk
!,g0

!are private user numbers
Pk Issuer private key

gi = g0
yi

Selective disclosure Protocol

  If User provides x1, x2, x3, α every service provider can
verify the validity of the attributes by computing the
credential and compare it with the sign one.
  But the SP would no every thing about the user
  But the SP could replay the attributes and the credential

and fake to be the user

  How to disclose x1 without disclosing x2, x3, α ?

  How to prove that you are the owner of the attributes ?

x1, Cr{ }PK ,B = g2
x2g3

x3g0
!

g1
x1B =

?
Cr

g1
z1B ' =

?
Cr

B ' = Bg1
x1!z1

H = g2
w2g3

w3g0
!

c

R = g2
cx2+w2g3

cx3+w3g0
c!+"

R=
?
BcH

SP User

B is of the
correct form

User knows the
private key α

Issuance Protocol

  Credential of the correct form

  Credential = Cr and signature = <s,r> not know to the
issuer

  α not know to the issuer

  x1, x2, x3 know to the issuer

Cr =< g1
x1g2

x2g3
x3g0

! >

Pk = x0, y1, y2, y3
Puk = g0

x0 ,g0
y1, g0

y2,g0
y3 = h,g1,g2,g3 Secretkey =!

Commit = g0
w

Cr ' = g1
x1g2

x2g3
x3

Cr = g0
!Cr '

s = H (Cr, f (g0
w,Cr '))s ' = s+!

r ' = s '(x0 + x1y1 + x2y2 + x3y3)+w

r = r '+ s! +"

Cr, s, rs=
?
H (Cr, f '(s, r,Cr,h))

Issuer User

ServiceProvider

U-prove properties

  Scalable

  Untraceability

  Selective Disclosure

  Hardware tokens support
  If only the hardware token knows one of the xi the user cannot

create Cr’ without the token

  But how to know that what you are disclosing is what you
want?
  Is your computer with virus?
  “What you see is what you sign” ?

User centric security

  Not the principal the real user

  For very sensitive applications we may have a secret
channel between the user and the service provider

  Some solutions have been implemented for specific
applications but none is generic
  E.g. MarkPledge for e-voting stuff

Conclusions

  A unsuspicious number of attacks to the web result from
poor authentication

  Several solutions have been proposed
  DNSSEC, STORK, U-Prove

  We are still far from protecting the user from all
authentication pitfalls, but we are getting closer

