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Good Authentication 

  Prevents several know problems 

  Big dissuasion factor 

  Services authentication 
  Currently PKI with root certificates in browsers 
  Future also DNSSEC 



DNSSEC 
  DNS Security Extensions 
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What about persons? 

  Most sites manage their on registration services 
  Organizations use Single Sign On services 
  Some are federated through OpenID 

  Persons are identified using passphrases and cookies 
  Some organizations require also tokens (e.g. Smartcard, 

RSASecurid) 

  Financial institutions require two levels of authentication 

  Every thing is very limited either in scope or in security 
strength 

  Most countries already have or are deploying National eIDs 

 



CENTRAL GOVERNMENT 
ONLINE SERVICES 

National online services today with eID 
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All Nations have their own eID infrastructure 
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STORK: Countries involved 

14 ORIGINAL PARTNERS 

 ENLARGEMENT:  
3 ADDITIONAL MEMBERS 

12 IN REFERENCE GROUP 



  Secure Assertion Markup Language 
  Assertions – Signed statements about something 
  Protocols – How to ask and send assertions 
  Bindings – Over which network protocol 
  Profiles – Sequences of protocol instances 

  Single Sign On profile 
  XML based SAML assertions 
  Over HTTPS binding 
  The authentication process depends on the Authentication 

Service 

WebApp 

Authentication 
Service 

SAML 2 



STORK Communication 
Architecture 

Get http:// 
SAML Req SAML Req 

SAML Req 

SAML Req 

SAML Resp SAML Resp 

SAML Resp 

SAML Atr Req 

Service 
Provider 

Proxy SAML 

Attribute 
Provider 

Proxy SAML 
Identity 
Provider 



Stork features 

  User centric 
  Users are in control of release attributes 
  Countries may apply their regulation at Proxy level 

  Privacy aware 
  An user identifier for each SP type 

  Heterogeneity  
  Each Country may use it’s own identity management 

solution 
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Single Sign On problem 
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Holder of key profile 
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Holder of key profile 

  Not bearer tokens 

  Token may only be used by someone that proves the 
possession of the private key of the certificate. 

  Client certificates are self-signed and generated on spot 
for each service to preserve privacy 
  Unfortunately browsers don’t know how to do this 

efficiently 
  Browsers have poor computation power 



Identity Selectors 

  Extensions to browsers 
  Microsoft CardSpace 
  Higgins 
  Several others 

  Identity Metasystem interoperability (OASIS) 
  Identity Selector 
  Identity Provider 
  Relying Partner 



Identity Selectors 

  Manage Cards with identities 
  SAML 2.0 tokens 
  WS-* tokens 
  OpenID tokens 
  U-Prove tokens 



U-prove 

  Special kind of tokens 
  May be encoded in WS-* claims (CardSpace 2.0) 
  May be encoded in SAML 2.0 tokens 

  SPs only have access to the user attributes allowed by the 
user  
  selective disclosure 

  IdP cannot get together with SP to know the full identity of 
the user 
  Untraceability 

  IdP does not need to be online to allow selectively disclosure 
  Scalability 



U-prove protocols 

  Issuance protocol 
  Signed token with all the user 

attributes 
  <Name, Age, Address><signature> 
  IdP never sees <signature> 
  Untraceability 

  Selective Disclosure Protocol 
  <Name, XXX, XXX><signature> 

  The user must store the token 

  Proof of possession 
  Prevents token replay 

Issuance Protocol 

Selective Disclosure 
Protocol 

Identity Provider 

Service Provider 



U-Prove credential 
  <Name, age, address> = <x1,x2,x3> 

  For some set of generators                  of Zp where p is a large 
prime 

  Credential and signature can be public 
  Every one can verify the signature 
  No one can know xi from the credential 

  The private user numbers prevent dictionary and replay attacks 

 

Credential =Cr =< g1
x1g2

x2g3
x3g0

! >

Signed Credential = Cr{ }Pk
!,g0

!are private user numbers
Pk Issuer private key

gi = g0
yi



Selective disclosure Protocol 

  If User provides x1, x2, x3, α every service provider can 
verify the validity of the attributes by computing the 
credential and compare it with the sign one. 
  But the SP would no every thing about the user 
  But the SP could replay the attributes and the credential 

and fake to be the user 

  How to disclose x1 without disclosing x2, x3, α ? 

  How to prove that you are the owner of the attributes ?  



x1, Cr{ }PK ,B = g2
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Issuance Protocol 

  Credential of the correct form  

  Credential = Cr and signature = <s,r> not know to the 
issuer 

  α not know to the issuer 

  x1, x2, x3 know to the issuer 

Cr =< g1
x1g2

x2g3
x3g0

! >



Pk = x0, y1, y2, y3
Puk = g0

x0 ,g0
y1, g0

y2,g0
y3 = h,g1,g2,g3 Secretkey =!

Commit = g0
w

Cr ' = g1
x1g2

x2g3
x3

Cr = g0
!Cr '

s = H (Cr, f (g0
w,Cr '))s ' = s+!

r ' = s '(x0 + x1y1 + x2y2 + x3y3)+w

r = r '+ s! +"

Cr, s, rs=
?
H (Cr, f '(s, r,Cr,h))

Issuer User 

ServiceProvider 



U-prove properties 

  Scalable 

  Untraceability 

  Selective Disclosure 

  Hardware tokens support 
  If only the hardware token knows one of the xi the user cannot 

create Cr’ without the token 

  But how to know that what you are disclosing is what you 
want? 
  Is your computer with virus? 
  “What you see is what you sign” ? 



User centric security 

  Not the principal the real user 

  For very sensitive applications we may have a secret 
channel between the user and the service provider 

  Some solutions have been implemented for specific 
applications but none is generic 
  E.g. MarkPledge for e-voting stuff 



Conclusions 

  A unsuspicious number of attacks to the web result from 
poor authentication 

  Several solutions have been proposed 
  DNSSEC, STORK, U-Prove 

  We are still far from protecting the user from all 
authentication pitfalls, but we are getting closer 




