
Fuzzing in Microsoft and

FuzzGuru framework

John Neystadt

jney@microsoft.com

Lead Program Manager

Forefront Edge, Microsoft

OWASP-IL

May-2007

mailto:jney@microsoft.com

2

Agenda

• Overview
– Introduction to Fuzzing

– FuzzGuru Architecture

– Demo

• Testing
– Designing Fuzzing Test

– Preparation for Fuzz Testing

– Performing Fuzz Testing

– Completing Fuzzing Coverage

– Fuzzing in ISA

3

Introduction to Fuzzing

• Tired of Code Reviews?
– Fuzz testing is about automatic testing of

malformed input handling

– Fuzzing Target is code, not data. Its white
box testing - no need to exhaust all data
combinations, that code doesn’t
distinguish

– In the past dumb fuzzing was made to
randomly corrupt bits of data., This
penetrates only top data handling layers,
since something basic (checksum, first
fields) would be broken and inner code
paths wouldn’t be reached

– Smart is about systematic testing of all
code paths that process data. Corrupt
fields one by one, preserving general
validity of the packet (Content-Length,
Checksums, Base64 encoding, etc)

4

Case for Fuzzing

• Over 70% of security vulnerabilities Microsoft
patched in 2006 were found by fuzzing

• Many open-source tools and some commercial
products that do fuzzing of specific protocols or
formats are available

• SDL - Microsoft Security Development Lifecycle
– Internal “security” bible mandatory for all Microsoft

teams

– Mandates fuzzing for Files, RPC, DCOM, Network,
ActiveXs as part of product development lifecycle

5

What I wanted to know about

Fuzzing, but didn’t dare to ask

• Fuzzing finds Access Violations and Buffer Overruns, not
functional problems

• Fuzzing requests usually fail, since they are malformed

• Often fuzzing bugs are in clean-up code paths: leaks,
synchronization and timing issues.

• Fuzz both client and server code – simulating malicious
server has high chance of finding bugs!

• If a bug happens when two independently fields are
malformed, FuzzGuru will not find it

• Both C++ and C# (or Java) code should be fuzzed if it
processes data from untrusted source

6

FuzzGuru Architecture

Test Automation

Fuzzing Stress Framework

Data Fuzzing Framework

FuzzGuru Development Framework

+Getting Started

+SDK

+Samples

Development Guide

+Define Data Schema()

+Define Fuzzing Test Cases()

+Import XML XSDs()

Schema Editor

+Validate Schema Correctness()

+Validate Template Parsing()

+Simulate Fuzzing()

Simulator

+Define Fuzzing Experiments()

Fuzzing Experiment Configuration Editor

Custom Test Tools

Scripts or Test Harness
+Run Fuzzing Stress()

+Repro Bugs()

+Provide Traces()

+File Fuzzer (using fuzzing schema)

+XML Fuzzer (using XSD schema)

+TCP/UDP Clients/Servers

+TCP / UDP Man-in-the-middle (Redirector)

+Custom (implemented by user)

«datatype»

Fuzzing Experiments

+Run Experiment()

+Trace to DBMON()

Command Line (fgcmd.exe)

+Run in GUI()

+View Traces in GUI()

Fuzzing Experiment Runner GUI

+String (ANSI, Unicode)

+Binary Data

+Grouping Elements

+XML

+Custom (implemented by user)

«datatype»

Data Elements
+String

+Numeric

+Numeric String

+Unicode-specific

+XML

+Group Fuzzers

+Custom Fuzzers

«datatype»

Fuzzers

+Presence

+Buffer / Length

+Group / Count

+Custom (implemented by user)

«datatype»

Relations

+Unicode (UTF*) / Windows Char Set

+Base 64

+Special XML Encoder

+Custom (implemented by user)

«datatype»

Encoders

Extensibility Interfaces Fuzzing API

Test Owner

HTTP

GZIP

SMTP

FTP

DNS

SOCKS

MIME

Ready Fuzzing Schemas

9. extend the framework

1. learn 2. define schema 4. simulate

6. run manual test

use fuzzing API from test code

implement custom experiments

+Valid files

+Network captures

+Generated by test tool

Input Templates

«uses»

3. prepare templates

2.1 reuse existing schemas

5. create fuzzing experiment configuration

use as command line

7. develop automation

+Fuzzing Traces

+Code Coverage Analysis

+Update Test Coverage

Investigate the results

8. investigate the results

7

Designing Fuzzing Test

• Fuzzing a protocol - create schema or customize a ready one
– Define schema for parts of the protocol, need to be fuzzed

– More later

• Defining fuzzing Test Cases
– Fuzzing Test Cases choose a subset of schema (elements and fuzzers) to be applied for

relevant scenario

– FuzzGuru command line tool gets test case id as parameter

– FuzzGuru API requires test case id to generate malformed packets

– Test Case can be used for focused fuzzing to test specific fixes

• Create fuzzing Templates
– Obtain real world data captures or generated by test programmatically

– Templates are “equivalence classes”, choose minimum number to cover all your scenarios

– Template must adhere to schema, you can use placeholder elements in schema to skip
irrelevant parts

• Use FuzzGuru GUI Simulator to verify test cases and templates
– Verify template is parsed correctly

– See which fuzzers are chosen (simulator trace)

– Inspect output to inspect malformed requests

8

Manual or Automated

Fuzz Testing

• FuzzGuru Experiments – ready tools for common fuzzing scenarios
– Gets schema, mutation template and test case name

– Ready tcp/udp server/client, man-in-the middle redirector, file, xml modes

– Extensive - can develop custom experiments

– Generates “stress” of upto 500 tcp cps or 11,000 udp packets

– Supports recording/playback of repro buffer

– Generates perf counters

– Writes fuzzing traces to dbmon

• Manual Test Running (GUI)
– Define Experiment Configuration (FuzzGuru GUI, Tools | Experiment Configuration Editor)

– Run experiments interactively (FuzzGuru GUI, Tools | Experiment Runner)

• Scriptable Automation
– Define Experiment Configuration (FuzzGuru GUI, Tools | Experiment Configuration Editor)

– Call experiments from command line interface (fgcmd.exe)

• Integrate into your own test tools
– Call DataFuzzer APIs from your own test tool, providing it schema, mutation template and

test case name

9

Demo

• Run BinUrt2\DemoApp.exe

• Run HTTP Server Attack Demo

– See Demo\Readme.mhtml => Part2 for instructions

• Results (5 minutes each run):

Scenario Iterations Bugs found Test Cases

coverage

Dumb Fuzzing without template 6500 0 out of 4 24%

Dumb Fuzzing with template 11000 2 from 4

(hits: 0, 0, 2, 10)

56%

Fuzzing with HTTP Demo

Schema without template
700 (slow) 2 from 4

(hits: 0, 0, 4, 8)

80%

Fuzzing with HTTP Demo

Schema with one template (valid)

10200 4 from 4

(hits: 1, 7, 64, 143)

100%

10

Completing Fuzzing Coverage

(Code Coverage)

• After running a fuzzing test for a first round it is important to inspect whether all code
paths were covered

• Magellan Code Coverage tool set is recommended

• You should not hunt the numbers, rather review all uncovered code paths
– Fuzzing should traverse to all branches that depend on untrusted data

– All parsing code should be covered

– All error handling and cleanup code should be covered

• Note: If there is no code to handle malformed data exist, Code Coverage will not help
you!

• To add coverage, you may need:
– Extend test matrix and fuzzing tests additional configurations of the feature

– Add additional fuzzing templates

– Extend FuzzGuru with custom fuzzers or elements

• Metrics
– Expected to reach 75-85% code coverage of parsers code blocks

– Per fuzzed DLL: fuzzing usually adds 3%-6% blocks and 3%-8% arcs additional coverage to
compared to stress

– Per fuzzed source file: fuzzing usually significantly adds the coverage of ~13%.

– Per fuzzed function: fuzzing usually significantly adds the coverage of over 17%.

