
Copyright © 2008 - The OWASP Foundation
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License.

The OWASP Foundation

OWASP-Italy Day IV
Milan
6th, November 2009

http://www.owasp.org

NoScript, CSP and ABE:
When The Browser Is Not

Your Enemy
Giorgio Maone

CTO, NoScript lead developer
InformAction

OWASP-Italy Day IV – 6th, Nov 09 OWASP

Software developer

Hacker

Firefox contributor

Member of the Mozilla Security Group

Author of the NoScript browser add-on

NoScript user ;)

Who Am I?

OWASP-Italy Day IV – 6th, Nov 09 OWASP

Before NoScript
No, it cannot: they’re server-side issues.

We can only wait for web devs to fix them.

Can Browser Tech Mitigate WebApp Vulns?

OWASP-Italy Day IV – 6th, Nov 09 OWASP

Before NoScript
No, it cannot: they’re server-side issues.

We can only wait for web devs to fix them.

Can Browser Tech Mitigate WebApp Vulns?

After NoScript
Well, it might... It can... It should!
Web developers still need to fix bugs
and develop safely, but browser
technology can and should help users to
stay safer.

OWASP-Italy Day IV – 6th, Nov 09 OWASP

Timeline of Proactive Browser Security

Dec 1995 Same origin policy (Netscape 2)

Jun 1997 Security Zones (MSIE 4)

May 2005 Easy whitelisting (NoScript 1.0)

Feb 2007 Site specific preferences (Opera 9)

Mar 2007 Client-side anti-XSS protection (NoScript 1.4)

Jul 2008 Mainstream in-browser XSS filter (MSIE 8)

Oct 2008 Client-side anti-Clickjacking (NoScript 1.8)

Jan 2009 Server-driven anti-Clickjacking (MSIE 8)

Jun 2009 Client-side anti-CSRF (NoScript’s ABE)

Sep 2009 More XSS in-browser protection (Chrome 4)

Oct 2009 1st CSP-enabled experimental Firefox build

OWASP-Italy Day IV – 6th, Nov 09 OWASP

Beyond the Same Origin Policy

Guarding Cookies and JavaScript since 1995
The only universal active content restriction for
one decade
Circumvented through:

Browser bugs
Plugin bugs
Web application flaws (XSS, CSRF, Clickjacking...)

Easily compromised by careless mashups

OWASP-Italy Day IV – 6th, Nov 09 OWASP

Disabling Active Content

Pros:
Default mitigation for most unpatched
vulnerabilities in browsers & plugins
Narrows the attack surface
Prevents casual browsing surprises

OWASP-Italy Day IV – 6th, Nov 09 OWASP

Disabling Active Content

Pros:
Default mitigation for most unpatched
vulnerabilities in browsers & plugins
Narrows the attack surface
Prevents casual browsing surprises

Cons:
Many modern websites don’t work properly
Some web application security features are
disabled as well (e.g. frame busting)
Users will work against this policy

OWASP-Italy Day IV – 6th, Nov 09 OWASP

Enters NoScript...

Default deny, easy allow
Never blocks users with modal prompts
Does not encourage “allowing everything”
Makes mixed origins explicit
Emulated JavaScript navigation
Scriptless frame-busting
Surrogate scripts
One-click activation for embeddings

OWASP-Italy Day IV – 6th, Nov 09 OWASP

NoScript’s Main UI

OWASP-Italy Day IV – 6th, Nov 09 OWASP

NoScript and Embedded Content (UI)

Blocked objects can be activated
by clicking their placeholder

OWASP-Italy Day IV – 6th, Nov 09 OWASP

NoScript and Embedded Content (Options)

OWASP-Italy Day IV – 6th, Nov 09 OWASP

NoScript’s Anti-XSS Protection
Filters suspect requests (both JavaScript and HTML
injections)
UI is not modal and neutralization is not blocking
Allows users to override (“Unsafe Reload”)
Works against all kinds of non-persistent XSS attacks
(including DOM-based ones) and HTML injections

OWASP-Italy Day IV – 6th, Nov 09 OWASP

MSIE 8’s XSS Filter
Patches suspect responses (may add vulnerabilities)
UI is not modal and neutralization is not blocking
(impressively resembling NoScript, albeit with less rich UI)
Allows server to override
Does not work against DOM-based attacks and scriptless
HTML injections

OWASP-Italy Day IV – 6th, Nov 09 OWASP

Chrome 4’s XSS Filter
Checks scripts in response against request fragments
No UI
Disables JavaScript on suspect pages (blocking
neutralization, may be exploited to force a scriptless page)
Allows server to override (same mechanism as MSIE 8)
Does not work against DOM-based attacks and scriptless
HTML injections
Many bypasses found so far

OWASP-Italy Day IV – 6th, Nov 09 OWASP

Client-side XSS Protection Matrix

NoScript MSIE Chrome

Type 0 Yes No No

Type 1 Yes Yes Yes

Type 2 No No No

HTML Yes No No

UI Yes Yes No

Non-blocking Yes Yes No

Server override No Yes Yes

User override Yes No No

OWASP-Italy Day IV – 6th, Nov 09 OWASP

Content Security Policy (CSP)

Overview

Declarative server-driven anti-XSS framework

May require massive website changes

Policies are pushed through HTTP headers

Idea by RSnake, Design & Implementation by Mozilla (G.
Markham, B. Sterne, S. Stamm)

Just an experimental build so far, but interest from
Microsoft and other parties

Partially overlapping with other proposals (e.g. X-Frame-
Options and Strict-Transport-Security)

OWASP-Italy Day IV – 6th, Nov 09 OWASP

Content Security Policy (CSP)

Features

Effective against Persistent and Non-Persistent XSS
(except DOM-based)

Allows site admins and developers to:
Restrict JavaScript execution on the page, either totally or by
disabling inline scripts and runtime evals
Specify script, stylesheet, media and embedding sources which
are allowed for inclusion (whitelist)
Restrict frame hierarchies (like X-Frame-Options)
Force HTTPS (like Strict-Security-Transport)

Reports violations to a configurable URL

OWASP-Italy Day IV – 6th, Nov 09 OWASP

Content Security Policy (CSP)

Deployment

Each HTTP response must include one or more
X-Content-Security-Policy headers

The following restrictions are enforced (possibly requiring
scattered page code changes):

No inline script block or event handler attribute
No runtime string evaluation (eval(), new Function(),
setTimeout()/setInterval()...)
No javascript: / data: URIs

Scripts from whitelisted sources must be served with
content-type application/(javascript|json)

OWASP-Italy Day IV – 6th, Nov 09 OWASP

Content Security Policy (CSP)

Directives
allow (defines default for all types)
options (inline-scripts/eval-scripts)
img-src

media-src

script-src

object-src

frame-src

font-src

xhr-src

frame-ancestors

style-src

report-uri

policy-uri

Multiple headers/directives intersection
X-Content-Security-Policy-Report-Only
HTTPS enforcement (superseded by STS)

OWASP-Italy Day IV – 6th, Nov 09 OWASP

Content Security Policy (CSP)

Policy samples
Example 1: Site wants all content to come from its own domain:

Example 2: Auction site wants to allow images from anywhere, plugin
content from a list of trusted media providers, and scripts only from its server:

Example 3: Admins want to deny all 3rd-party scripts for the site, and a
project group also wants to disallow media from other sites:

Example 4: Online payments site wants to force all of the content in
its pages to be loaded over SSL (should be much better using STS):

X-Content-Security-Policy: allow 'self'

X-Content-Security-Policy: allow 'self'; img-src *; object-src media1.com
media2.com *.cdn.com; script-src trustedscripts.example.com

X-Content-Security-Policy: allow *; script-src 'self‘
X-Content-Security-Policy: allow *; script-src 'self'; media-src 'self';

X-Content-Security-Policy: allow https://*:443

OWASP-Italy Day IV – 6th, Nov 09 OWASP

Strict Transport Security (STS)

W3C draft proposed by Paypal

Implemented by NoScript, soon by Chrome, interest from
other browser vendors (Microsoft, Mozilla)

Both Paypal and Ali Baba are deploying it

Very simple yet effective

Strict-Transport-Security: max-age=31536000; includeSubDomains

NoScript can also force HTTPS on user-choosen sites

OWASP-Italy Day IV – 6th, Nov 09 OWASP

Application Boundary Enforcer (ABE)

Overview

Declarative anti-CSRF mechanism

Both user-driven and server-driven

Rules priority: SYSTEM, USER, Subscriptions, Site

https://domain.com/rules.abe

Simple firewall-like rules definition syntax

Open source specification and reference implementation

Currently available as a NoScript component, it can be
implemented as a proxy or a server-side component as
soon as CORS is finalized and adopted by browsers

OWASP-Italy Day IV – 6th, Nov 09 OWASP

Application Boundary Enforcer (ABE)

Rules definition syntax
Site <resource> [<resource> ...]
<action> [<method>...] [from <resource> [<resource>...]]
[<action> [<method>...] [from <resource> [<resource>...]]
...]

Resource: either an URL pattern (glob, regexp), LOCAL,
SELF, or ALL (*)

Action: either Accept, Deny, Anon(ymize), or Sandbox

Method: either a “real” HTTP method, or SUB, or ALL
(default)

OWASP-Italy Day IV – 6th, Nov 09 OWASP

Application Boundary Enforcer (ABE)

Ruleset example
This one guards the LAN, like LocalRodeo (a SYSTEM rule in NoScript)
Site LOCAL
Accept from LOCAL
Deny
This rule defines normal application behavior, allowing hyperlinking
but not cross-site framing and POST requests altering app status
Site *.somesite.com
Accept POST SUB from SELF https://secure.somesite.com
Accept GET
Deny
This one guards logout, which is foolish enough to accept GET and
therefore we need to guard against trivial CSRF (e.g.)
Site www.somesite.com/logout
Accept GET POST from SELF
Deny
This one strips off any authentication data (Auth and Cookie headers)
from requests outside the application domains, like RequestRodeo
Site *.webapp.net
Accept ALL from *.webapp.net
Anonymize

OWASP-Italy Day IV – 6th, Nov 09 OWASP

Application Boundary Enforcer (ABE)

Deployment

SYSTEM ruleset, built-in (currently containing just
the LocalRodeo replacement rule)

USER ruleset, customizable by users

Subscription rulesets, updated daily from remote
trusted sources

Site rulesets (rules.abe), loaded before first HTTPS
request and cached for one day (at least) or more (if
cache-affecting headers say so)

Why a file (log spam) rather than headers? CSRF
needs to be blocked before the request reaches the
server: we just can’t wait for a response header...

OWASP-Italy Day IV – 6th, Nov 09 OWASP

Application Boundary Enforcer (ABE)

Processing

Processing order: SYSTEM, USER, Subscriptions, Site

Each ruleset is processed top to bottom until first match
(permissive exceptions should go higher than restrictions)

On permissive or non-fatal outcome (Accept, Anon,
Sandbox) processing resumes with next ruleset

On restrictive fatal outcome (Deny) request is cancelled
and processing aborted

OWASP-Italy Day IV – 6th, Nov 09 OWASP

Clickjacking protection
ClearClick (NoScript)

OWASP-Italy Day IV – 6th, Nov 09 OWASP

Clickjacking Protection
X-Frame-Options (MSIE)

OWASP-Italy Day IV – 6th, Nov 09 OWASP

Clickjacking Protection
X-Frame-Options (Chrome)

OWASP-Italy Day IV – 6th, Nov 09 OWASP

Clickjacking Protection
X-Frame-Options (NoScript)

OWASP-Italy Day IV – 6th, Nov 09 OWASP

Clickjacking Protection

Other

CSP’s frame-ancestors directive (next Firefox)

ABE’s SUB action (NoScript)

JavaScript framebusting

Developer?

Deploy X-Frame-Options + JavaScript framebusting (caveat)

User?

Use NoScript

OWASP-Italy Day IV – 6th, Nov 09 OWASP

References

NoScript, http://noscript.net
CSP, https://wiki.mozilla.org/Security/CSP/Spec
ABE, http://noscript.net/abe

InformAction, http://www.informaction.com
Giorgio Maone, http://maone.net

http://noscript.net/
https://wiki.mozilla.org/Security/CSP/Spec
http://noscript.net/abe
http://www.informaction.com/
http://maone.net/

	NoScript, CSP and ABE: When The Browser Is Not Your Enemy
	
	
	
	Timeline of Proactive Browser Security
	Beyond the Same Origin Policy
	Disabling Active Content
	Disabling Active Content
	Enters NoScript...
	NoScript’s Main UI
	NoScript and Embedded Content (UI)
	NoScript and Embedded Content (Options)
	NoScript’s Anti-XSS Protection
	MSIE 8’s XSS Filter
	Chrome 4’s XSS Filter
	Client-side XSS Protection Matrix
	Content Security Policy (CSP)
	Content Security Policy (CSP)
	Content Security Policy (CSP)
	Content Security Policy (CSP)
	Content Security Policy (CSP)
	Strict Transport Security (STS)
	Application Boundary Enforcer (ABE)
	Application Boundary Enforcer (ABE)
	Application Boundary Enforcer (ABE)
	Application Boundary Enforcer (ABE)
	Application Boundary Enforcer (ABE)
	Clickjacking protection
	Clickjacking Protection
	Clickjacking Protection
	Clickjacking Protection
	Clickjacking Protection
	References

