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recommendations on how to respond to such attacks. 
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1.   Introduction 
 
There is an inverse relationship between the prevalence of cross-site scripting (XSS) 
vulnerabilities in web applications today and an overall awareness of XSS among web 
application developers. These circumstances have led researchers to discover 
empirically that 84.57% [21] percent of web sites suffer at least some form of XSS 
vulnerability.  
     XSS protections (input validation, canonicalization, and output encoding) 
generally cannot be applied globally across all application data without breaking 
much of the UI layer. This means inbound data and outbound data must be secured on 
a case-by-case basis, which is a condition that generally leads to failure as there are 
many reasons a developer may “miss” validating an input field or “forget” to output 
encode a field. This speaks nothing to the fact that most developers are not aware of 
most security issues and most managers do not budget security as part of their project 
expenditure. 
    The situation is compounded by the fact that attackers are always finding financial 
reasons to trick users into executing JavaScript inside their browser, so attacker 
motivation for discovering and exploiting these vulnerabilities is fairly high. 
    Web applications will always be exposing XSS vulnerabilities in their code and 
attackers will always want to exploit those vulnerabilities. The advent of Web 2.0 
makes things worse as one of the fundamental characteristics of the paradigm is 
movement of code off of the server and onto the client or “into the cloud”. Hastily 
arranged trust boundaries, “improved” client side technology and traditional attacker 
cleverness can combine to create a situation where the shortcomings of current XSS 
worms are going to become quickly antiquated. 
    The paper will begin by briefly establishing what is presently going on in the world 
of XSS worms (also called “Web worms”), including the strategies used to infect and 
re-populate, and also the strategies used to “remove” a XSS worm from an infected 
application. 
    The paper then makes predictions about the future of XSS worms, based on 
experiments demonstrating that all the individual components of a “next-generation” 
worm can be built today. 
    Finally, the paper will conclude with a summary of the predicted traits and 
experiments to show that all it will take to make the next infamous event in web 
application security is for an attacker with the right motivation to find an opportune 
vulnerability. 
 

2.   The Present 
 
There have been a handful of large-scale XSS worms worthy of analysis in depth, and 
we will briefly analyze those worms here in deference to the excellent analysis of 
those worms in [11] and [12]. 
 
2.1   MySpace: Samy Worm 
 
Samy Kamkar, a then-19 year old prankster from Los Angeles, USA created the first 



known XSS worm after exploiting MySpace’s blacklist-based validation mechanism. 
Samy’s worm was fairly important for two reasons. The first reason is that it 
demonstrated the capability for a XSS vulnerability to become self-propagating, and 
the second is that it illuminated the inability of negative validation mechanisms, even 
good ones, to work with high assurance when permitting rich user data.  
 Samy infected his own user profile with a stored XSS attack that caused viewers 
of his profile to execute several XmlHttpRequest calls to bypass MySpace’s CSRF 
protection, add Samy to their friends list, add his name to their list of heroes, and copy 
the infection code into their profile. Within 18 hours, Samy had attained 1 million 
friends and MySpace responded by bringing the site down and cleaning the infection. 
 
2.2   Yahoo! Yamanner Worm 

The Yahoo! Yamanner worm was an XSS worm that infected Yahoo!’s webmail 
application. The attack bypassed the XSS filtering system Yahoo! mail utilized to 
prevent XSS attacks from being stored in email messages. The author used the XSS 
vulnerability to propagate the XSS message by sending the exploit message to the 
contact addresses of a victim. 
    The worm author attempted to use the worm to profit, which was a first at the time. 
Aside from propagation, the exploit code attempted to pop up a window to the 
author’s click-through site and forwarded the harvested email addresses of the victims 
to a remote site, where the author would presumably sell the list to spammers. 
 
2.3   Orkut Worm 
 
Google’s social networking platform, Orkut, was hit by another extremely fast-
spreading XSS worm in mid-December 2007. The worm propagated by viewing a 
malicious message on the victim’s “scrapbook” which added the propagation code 
and joined the user to an “infected users” group. 
    The worm quickly grew, infecting between 300,000 and 600,000 victims before 
being removed. 
 
2.4   Other Worms 
 
There have been a handful of other notable worms, including the MySpace 
Zango/QuickTime and Nduja worms, and each is worthy of its own lengthy analysis. 
Although these worms were researched for the paper, an analysis of them would not 
help clarify any issues regarding XSS worms. 
 
2.5   Traits of Current Worms 
 
An analysis of past worms show that there are a number of traits common to the 
current wave of XSS worms. 
 
2.5.1 Static Payloads 
 



Contemporary Internet worms at all layers use static payloads. Static payloads are 
payloads that are constant, literal values. Most traditional exploits contain static 
payloads. This is a major shortcoming as payloads can be easily signatured for IDS, 
IPS, and removal purposes which are discussed more in depth later. 
     Polymorphic payloads have been used to bypass character restrictions in shellcode 
development, but not for the purposes of having shifting payloads. In effect, these 
“polymorphic” payloads only morph once after during payload execution, and are still 
essentially static. 
 
2.5.2 Uncontrolled Growth 
 
Contemporary worms have uncontrolled growth. Closely related to the fact that all 
XSS worm payloads are static is the fact that all contemporary worms have no 
method of growth control. This is a fatal flaw for worms in general as it ultimately 
guarantees their destruction. As the worm grows and grows exponentially, it will 
quickly and inevitably reach an infection rate that can’t help but be detected and dealt 
with in an emergency-type fashion. 
     This is similar to Slammer and other traditional Internet viruses that congest the 
bandwidth of infected networks so much that it disrupts normal network use and 
demands response [3]. 
 
2.5.3 Passive Infection Models 
 
All contemporary XSS worms have a passive infection model. The victim of the 
worm attack must perform some action to be infected. In the case of Samy, a new 
victim must choose to view the profile of a previous victim to become infected. In the 
case of the Yamanner worm, a new victim must open an email delivered by a 
previous victim. It is not likely that this will change because of the nature of web 
applications. Traditional viruses such as [26] can infect users without any requisite 
action on the part of the victim. As long as their computer is plugged into the Internet, 
they can be infected and start to pass on the virus because the injected cargo code 
(shellcode/machine code) has access to perform any system calls and thus perform 
any operation on the computer. 
     JavaScript, on the other hand, when executing in a non-local zone, is heavily 
sandboxed by the browser and will not allow the user to access local files, start 
programs or execute arbitrary system code. The language itself is not meant to heavily 
interact with the operating system, so much of the desired attacker capability is just 
not there to use maliciously. 
 
2.5.4 No Cross-application Infections 
 
All contemporary XSS worms stay on the same web application on which they were 
pre-programmed to exploit. Although an exploit for one web application is not 
necessarily very different from an exploit for another web application (i.e., “userid=’ 
or 1=1—“ vs. “acctNo=’ or 1=1—“), the steps required to get to the stage where the 
exploit can be delivered are normally quite different and complex. For a worm to 
jump to another application, the worm would require an understanding or learning 



capability of how to register, login, find the vulnerability and perform the necessary 
exploit. This is no small task, especially for a JavaScript scanner which is hampered 
by the browser’s same origin policy. 
     Although there is the opportunity for unauthenticated XSS in many applications 
(blog comments, message boards, etc.), the sites with opportunities for large 
propagation will mostly require authentication. 
    The Njuda worm did cross domains, but it was pre-programmed to attack the sites 
it did attack [23]. 
 
2.6   Removing Current XSS Worms 
 
What led to the lines of research in this paper was the initial question: How can one 
effectively remove a XSS worm from a fully-infested application? The options are 
quite limited, but they could be effective against the current wave of XSS worms. 
 
2.6.1 Manual Purging 
 
The first option is to shut down the application and manually purge the tainted 
records. Obviously this would result in downtime losses and does not scale. Also, it is 
unlikely that a non-security person would be able to recognize a properly obfuscated 
XSS payload with a high rate of accuracy. 
 
2.6.2 Database Snapshot Restore 
 
The second option is to restore the database to previous state which was snapped 
before the infection began. While effective in removing all the worm code from the 
tainted columns, it also causes all other application data changes since the infection to 
be lost.  
 
2.6.3 Search and Destroy 
 
The last option is to halt column updates momentarily to perform a search-and-
destroy operation on the payload an attacker uses. This option seems the only viable 
solution now, but its effectiveness against a smart payload is dissected later in the 
paper. 

3   The Future 

What follows is an analysis and set of predictions on how future attackers (worm 
authors) can improve the functionality, stealth, infection rate and operational stability 
of their worms in the world of Web 2.0. Also, an analysis and set of predictions 
regarding next generation defense mechanisms for developers and browser vendors 
will be discussed. 
 



3.1   Traits of Next-Generation Attacks 
 
In this section we will discuss a number of ways in which future XSS worms will 
increase in capability, stealth and growth. 
 
3.1.1 Payloads will use command and control channels 
 
The most obvious mechanism that contemporary XSS worms don’t utilize is 
command-and-control channels (C&C). A C&C channel is either a one-way or two-
way information line that an infected client uses to send messages to and/or receive 
information from a malicious server. C&C is a vital piece of malware because it 
allows the worm operator to give infected hosts arbitrary data, e.g. new instructions or 
targets for DoS attacks, etc. 

The same origin policy does not prevent a hijacked browser from communicating 
with a host that is in collusion with the client for many reasons. Remote scripting, 
remote stylesheets, image dimensions, and other half-blind techniques can be used as 
covert channels between an infected browser and an evil web server. 

A simple and effective use of worms would be to limit virus density. As discussed 
previously, worms would want to control density to increase the stealth and 
predictability of the infected network. 

Having a static C&C channel introduces a single point of failure into the worm’s 
design. If a worm uses a C&C remote script at http://www.evil.com/payload.js, in one 
sense it is advantageous to the attacker because the web application can’t enforce a 
policy change on the server to prevent the user’s browser from referencing the 
malicious site. However, the developers/defenders (hereto referred to simply as 
defenders) may be able to remove the channel (malicious site) either by contacting the 
ISP or registrar for evil.com as discussed in [8]. 

Therefore, it’s optimal to have a worm that uses a dynamic or distributed 
command-and-control channel, which is difficult to implement when considering 
Kerchoff’s principle [16]. The principle would state that the defenders have access to 
the client side worm code so nothing in the worm code can be considered secret. The 
defenders would then know what the C&C host is or how the worm would deduce it. 
Given that, how could the worm author keep the dynamic C&C hosts anonymous? 

Another challenge to C&C is poisoning. If a worm is taking its commands from a 
malicious host, it is usually possible to poison or disrupt the infected client’s channel 
to the malicious host. This technique has been used against the Storm worm and other 
viruses in the past [25]. 
 
3.1.2 Future worms will contain more subtle payloads 
 
The payloads seen in previous worms were extremely noisy. The Samy worm altered 
the profile and “Heroes” list of every user it infected. Obviously, leaving visible cues 
to users that their profile has been altered is going to dramatically reduce the time-to-
discovery of malicious code, and evading detection was not one of Samy’s concerns. 

A more subtle payload would have been instructions that added the infection code 
to the user’s profile page and left everything else alone. A more subtle payload in the 



Yamanner worm would have created an invisible <iframe> that pointed to the 
click-through adware. This would have allowed the worm to operate without obvious 
signs of abnormal behavior. 
 
3.1.3 Polymorphic payloads will dramatically increase the longevity and stealth 

of a worm 
 
There has been a lot of research into polymorphic JavaScript code. The idea of 
polymorphic attack code in general is very old. For our purposes, it would be useful to 
have JavaScript that is so different from one victim to the next that it would be 
difficult to create a pattern-based signature to identify the instances of the worm. This 
functionality implies the use of a non-deterministic JavaScript obfuscator, which most 
closely maps to the research in Gareth Heyes’ Hackvertor [10]. 

Although Heyes’ work on Hackvertor clearly demonstrates the ability to highly 
obfuscate JavaScript, it suffers from two main weaknesses. The first weakness is that 
keywords still appear in a Hackvertor payload. A keyword scanner looking for 
document.cookie in user-supplied code could still “detect an attack” that’s been 
obfuscated. 

Also, the Hackvertor function is deterministic. What is needed for a polymorphic 
payload to be truly difficult to signature is an algorithm that is not possible to de-
obfuscate. By combining random encoding, expression types, string fragmenting and 
ordering, a payload can be made invisible by most signaturing techniques. These 
techniques are discussed in more detail in [2].  

It is obviously possible that a polymorphic algorithm could perform these 
techniques. At this point the issue is an exercise in tough engineering to implement 
them, and naturally the best place to start would be with the already strong Hackvertor 
engine. 

However, assuming that a human would always be the best candidate to create a 
small set of similarly-acting-but-differently-looking JavaScript infection codes, it 
would be effective to manually create a dozen or so “seeding” payloads which serve 
as the “roots” of the worm. That way, even if the application does a 100% successful 
search-and-destroy operation on the payload and its morphed copies, they will still not 
find the hand-crafted dozen “seeding” payloads which can continue infecting (if just 
to distribute malware once the XSS vulnerability is closed). 
 
3.1.4 Victim browsers become distributed vulnerability scanners 
 
One of the major limitations of XSS worms today is the fact that they are limited to 
the site on which they are born. Because of the same origin policy and the complexity 
involved in delivering complex attacks to other sites that involve reading responses 
(nonces, CAPTCHAs, etc.), a domain crossing worm has not yet been seen. Same-
domain worms have a hard maximum number of infections: the number of users of 
the target application.  

This is obviously not ideal for attackers who would like a continuously, outwardly 
spreading worm that is not trying to attain coverage over a certain site’s user base, but 
is trying instead to penetrate and infect multiple user bases (sites). 



Web application vulnerability scanners have been written in JavaScript by Billy 
Hoffman and others independently [13]. Although the effectiveness of these tools is 
hampered by the limitations of the browser, they both demonstrate a basic capability 
of scanning remote web applications using intermediary sources. 

In order for a cross-domain worm to propagate, the scanning code must either 
execute on the client or the server. Forcing the server to execute the code is not 
possible since XSS is an attack that affects the client, although PHP remote file 
includes or similar exploits may allow this kind of server-side propagation to happen. 

The fundamental problem in Web 1.0 with trying to make a JavaScript scanner 
execute in the clients browser: running time. The JavaScript will only execute as long 
as the user is on the page and allowing the script to run. If a script is running for too 
long the browser will prompt the user to stop the script or allow execution to 
continue, which will immediately trigger the user into navigating away from the page. 
Even if timers are implemented to avoid the script message from the browser, the 
JavaScript will run until the user closes their browser or navigates to a new page. One 
could lure the user into staying while reading content or playing a Flash game, but 
user response to the “bait” will be varied and is generally unpredictable. 

GoogleGears WorkerPool allows JavaScript to spawn “worker threads” that 
execute asynchronously in the “background” of a web page. These threads live past 
when the browser navigates to the next page and only die when the browser closes. 
Therefore the time that a compromised browser can scan is the lifetime of the browser 
instance rather than the length of time that the browser remains on the page that’s 
been injected.  

Unfortunately, this type of client-side scanning tool is mostly academic because 
malware installed on the operating system could perform the same vulnerability 
scanning without any browser limitations. Therefore, vulnerability scanning malware 
in combination with XSS-based delivery is the key to cross-domain propagation. 
However, it should be noted that no browser vulnerability is required to use 
GoogleGears WorkerPool or any other RIA functionality. 

With all the new RIA frameworks coming to market, each new browser capability 
will probably introduce some security implication that the framework authors did not 
intend. Because of this, a close eye should be kept on the direction of rich 
functionality that the frameworks produce as each one will have security implications. 
 
3.1.5 Future worms will remain dormant during propagation 
 
The widespread propagation of an XSS worm by itself is not what’s likely to lead to 
its discovery. The payload and the resulting effects on the user experience are what 
usually prompt attack discovery. 

Therefore, it would make sense for a slow moving worm to quietly propagate until 
its desired virus density or infection total reach a desired goal before activating its 
payload. Cross-domain worms, as mentioned before, are likely to be slow moving due 
to the difficulty in finding stored XSS through which to propagate, and a dormancy 
period only makes sense. Dormancy has been seen in previous Internet worms [19], 
but not around XSS. 

It should be noted, however, that propagation in XSS worms is extremely quick 
when compared to traditional Internet worms. Therefore, the worm author of the 



future may choose to write a worm that utilizes no dormancy, opting to spread as 
deliver attacks as quickly as possible in order to decrease the window of time when 
the payload can be noticed casually. 
 
3.1.6 Targets will change 
 
The most sought after targets of layer 7 attackers in Web 2.0 will be content 
distribution channels. Content distribution channels were available and valuable in 
Web 1.0, but amount and type of these channels has increased dramatically in Web 
2.0, and the capability of those channels has also been greatly enhanced. 

Most websites that are compromised are compromised through network layer 
attacks, such as attacks against their ftp, mail, or ssh servers. These are traditionally 
C-based exploits that give the attacker shell access on the system, which the attacker 
then uses to either deface the website, attack the website’s intranet, or retain as a 
zombie host for spamming or denial of service attacks. However, the profit that could 
be gained from compromising a website is becoming known among attackers as it has 
been known in the spamming community for a long time- as has been demonstrated 
by the recent hack of Al Gore’s “Inconvenient Truth” website. 

The Yamanner worm opened up a new window on the client’s browser to a static 
click-through site and harvested the victim’s email addresses to a remote site. 

Search engine optimization is extremely important to spammers, as spam-filtering 
tools look at the relevance of links in emails as a way of detecting spam. By having a 
legitimate site, i.e., Al Gore’s documentary website, have links to the spammer’s site, 
it lends legitimacy to the link the spammers send out in their emails according to the 
spam filters because the spam filters rely on search engines to decide the legitimacy 
of a link [6]. 

Advertising channels have long been target of attackers, and have also themselves 
been attackers to client browsers with malware and adware installations. The value of 
the advertising channels will remain fairly high because of the level of control over 
browsers they can exert, even without attacking them with traditional browser 
exploits. 

RSS and aggregator feeds in general are excellent content distribution channels. 
RSS channels are usually insecure (not over SSL) and are thus vulnerable to 
tampering, but no such attacks have been seen in the wild. If an attacker near the RSS 
source were able to hijack the communication channel, an attacker could deliver their 
malicious payload to a massive number of subscribing users.  

Mashup data feeds are also traditionally not over SSL. The feature SSL is reserved 
for the most is confidentiality, and mashup data is usually not sensitive, so no use of 
SSL is generally warranted. Also, speed is a key factor in delivering a successful 
mashup, and SSL does introduce speed issues. However, an attacker could as easily 
hijack an RSS delivery as they could hijack a mashup data feed. Alternatively, the 
attackers could attempt to infiltrate the mashup data feed’s application and attempt to 
alter the channel’s messages from inside using CSRF, XSS or some other 
vulnerability as was tried in the attack against Robert Hansen’s blog [20]. 



3.2   The Next Great XSS Worm: A Case Study 

What follows is a proposed dynamic C&C channel design which provides poison-
resistance, stealth, anonymity using Google, remote scripting and code signing. 

Let assume that there are a number of users on a social networking site, 
www.myfacenovel.com. An attacker has found a persistent XSS vulnerability on the 
profile submission which would force other users to execute the attacker’s arbitrary 
JavaScript when viewing the attacker’s page. The JavaScript would then perform the 
following steps: 
 
1. Import the Google Ajax JSON API 
2. Generate a token based on the current date and some pre-defined string (i.e., var 

msg = Base64Encode(“arshan_worm@<Today’s Date>”)) 
3. Invoke the Google Ajax JSON API with remote scripting to find pages on the 

Internet that have that token on them 
4. Iterate through results until one is found that finds a correctly tokenized message 
5. If none is found, then simply copy the infection code to your own profile (like the 

Samy worm) 
6. If one is found, tokenize the message into 3 parts: payload code, infection code, 

and digital signature 
7. If the digital signature is valid according to the public key stored in the client’s 

JavaScript, then execute the payload and store the new infection code in the 
user’s profile 

This technique is resistant to poisoning for a few reasons. Defenders can’t prevent 
access to the sites which host the worm operator’s message because the sites are 
distributed over the Internet, and the sites the worm goes after will change every day. 
Working with a real person to remove access to a malicious page does not scale when 
the attacker can store thousands or even millions of copies of the message on the web. 

Also, defenders cannot forge messages from the author because they do not have 
the private key of the worm author so the worm will not execute their message when 
it fails the digital signature. 

If Google was willing to take part in defending a high profile worm, it could 
signature the queries the infected hosts send in and not return results, but the attacker 
could get the same information from any search engine that had remote scripting 
libraries. 

Also, the lag time between indexes both helps and hurts attackers. It hinders 
attackers because it forces them to deploy the distributed payloads well before the 
actual deployment of the worm to allow Google time to index the sites where they’re 
hosted. 

The lag time also helps attackers, though. Defenders attempting to interfere with 
the results of Google queries would have to wait until their sites were indexed as well, 
although it is likely that they would have the SEO ranking to speed up indexing. 

Regardless, it seems possible that an attacker could cloak their malicious lookup 
queries inside “normal looking” queries using some language tricks and 
steganography. 



In summary, the C&C method described previously exhibits the following 
qualities: 
• The payload can’t be stopped on the client side without NoScript [17] or an 

equivalent protection because the server can’t enforce any client side policies in 
respect to remote scripting. This is compounded by the fact that the host they are 
on is likely to be whitelisted 

• The C&C messages are distributed throughout the Internet, so removing access to 
one copy will not prevent the infection code from retrieving it 

• The C&C channel can’t be poisoned because the infected hosts only execute code 
that has been signed by the worm operator  

 
3.3   Next Generation Defense Mechanisms 
 
The good news is that there is a lot of room for improvement as far as defensive 
techniques in Web 2.0. This means better defensive techniques in our application 
security on the server side, smarter browser security and better response techniques 
when dealing with an already infected application. 
 
3.3.1 Web 2.0 Isolationism  
 
A major pitfall in the understanding of Web 2.0 security is the fact that it is the 
browser’s support of Web 2.0 capabilities that makes the situation worse – 
isolationism from Web 2.0 is not a security solution. Simply not implementing any 
server side Web 2.0 features does not protect an application against a Web 1.0 exploit 
that leverages the victim’s browser’s Web 2.0 functionality. If I can execute XSS 
against a victim, I can use that victim’s browser to execute a Web 2.0 payload. In this 
sense, Web 2.0 browser improvements make security “worse”. 
 
3.3.2 Effective Rich Input Validation 
 
A major piece of the Web 2.0 defensive puzzle is rich input validation. The rising 
prevalence of mobile rich input leads to the need for stronger rich input validation. 
The OWASP AntiSamy project attempts to solve the problem of validating rich input 
by using transformation, policy-based validation and reliable serialization. This API 
allows users to safely upload rich content without exposing the application to 
phishing or XSS attacks. 
 
3.3.3 Content Restrictions 
 
The browser vendors can help developers prevent XSS and phishing attacks by 
implementing content restrictions, an idea proposed by Robert Hansen [9]. Content 
restrictions are essentially a sandbox that allows developers to specify policies that 
prevent any user-supplied markup from executing any unauthorized code. Exactly 
how content restrictions could be implemented has been debated.  



It been proposed that content restrictions be implemented as an HTTP header 
delivered by the server to the client browser, informing it of what capabilities the 
client browser will need to use the resulting page in the way the application intended.  

This approach is not prone to success because it most web pages, especially in 
Web 2.0, use all the same capabilities an attacker would use in a realistic exploit. The 
policy dictating what functionality is allowed to be invoked for the whole page would 
end up being far too permissive. If a page uses XmlHttpRequest and the use of the 
innerHTML  property, the policy referenced by the header would have to allow the 
usage of those capabilities. This analysis leads us to conclude that any content 
restriction implementation that forces the developer to apply policy across a whole 
page is prone to failure, regardless of how that policy is communicated to the user (in 
a header or in the page somewhere). 

In a more simple form, content restrictions could be implemented as a tag-based 
jail that prevents any JavaScript from being fired. The simplest content restriction 
would be something found in Figure 1. 

 
  

 
 
 
 
 

Fig. 1. A very naïve approach to tag-based content restrictions. 
 
 
    Unfortunately, the user input could contain the end tag of the jail itself, telling the 
browser that the jailed section is finished. This effectively terminates the jail and 
allows the user to supply unhindered code after the end tag. An example exploit could 
be seen in Figure 2. 
 

  
 

 
Fig. 2. An example attack that would prematurely close the jail tag an insert a 

malicious script. 
 

To prevent this, the jail needs some “secret” to prevent the attacker from being able 
to finish the jail tag prematurely. A suggestion previously made was to contain the 
secret in both the opening and closing tags as seen in Figure 3. 

 
 
 
 
 
 
 

 

<jail> 
 
<!-- dangerous JavaScript here --> 

 
</jail>  

</jail> 
<script>alert(‘hi’)</script><jail> 

<jail secret=”ZXcOQW#iht*”> 
 
<!-- dangerous script here --> 
 
</jail secret=”ZXcOQW#iht”>  



Fig. 3. A content-restricting jail with the secret in the open tag and close tag. 
 

    This solution would work, but is not optimal because it violates SGML standards, 
although Internet Explorer has honored some attributes in end tags in the past. In this 
paper I am proposing an alternative to the jail tag idea that requires much less work 
than the jail just discussed. An example of the jail can be found in Figure 4. 

 
  
 
 
 
 
 
 
Fig. 4. A content-restricting jail (with secret) consisting of differing open start and 

end elements. 
 
This approach, which I’m calling “jail pairs”, has two advantages over previous jail 

ideas because it does not require browsers to honor non-standard code, and it is valid 
markup according to most parsers. Unfortunately, its usage is counter-intuitive to 
normal SGML markup, but what it lacks in this concern it makes up for in ease of 
implementation as it does not require the browsers or parsers to honor attributes in 
end tags.  

It’s worth noting that none of the content restriction implementations right now 
address presentation layer attacks. Presentation layer attacks are code injection attacks 
that involve altering the UI without invoking JavaScript, at least directly. Given the 
XSS pandemic seen in the wild right now, the prevention of XSS (through the 
prevention of unauthorized JavaScript) is a good start. For more information on 
presentation layer attacks, see [12] [1]. 

Preventing presentation layer attackers is a challenging issue for browsers because 
it would involve teaching the content restricting code some visual context. The 
validation code would have to recognize that the user-supplied code is attempting to 
clobber a div that is located outside the user’s jail, or that the dimensions and z-
index  on the user-introduced <div>  would end up overlaying other sections of the 
page. Given these challenges, it is extremely unlikely that the first implementation of 
content restrictions will even attempt to solve this problem. 

 
3.3.4 Technology Switch 
 
An expensive alternative in avoiding most of the Web 2.0 issues is migrating to a 
client side technology that does not haphazardly mix up code and data. Although it’s 
not a realistic solution for everyone because of compatibility and user expectation 
reasons, it should be noted for comprehensiveness that a subset of the web-related 
vulnerabilities made worse in Web 2.0 can be sidestepped entirely by using an 
alternative client side technology. For example, Java applets are delivered as 
bytecode, which is not injectable and is therefore less susceptible to cross-user 
attacks.   

<start-jail 
secret=”zxQ#W0rwef8H”/> 
 
<!-- dangerous JavaScript here --> 

 
<end-jail secret=”zxQ#W0rwef8H”/>  



Although all the traditional client-to-server attacks would still exist, most peer-to-
peer attacks involve tricking peers into executing/viewing rich content.  However, 
there are generic, peer-to-peer application security threats such as cookie sniffing that 
would still exist. 
 
3.3.5 Utilizing cross-domain workflows 
 
Web applications can host user content in off-domain pages to prevent cross-domain 
pollution.  Web applications can host un-trusted user content on their application’s UI 
in an <iframe>  that is hosted on a separate sub-domain than the rest of the 
application (e.g., utnrusted.socialnet.com). If a user were able to store attacks in their 
profile, the attacks would be hampered by the same origin policy which would limit 
the user from interacting with the only domain that application data is accessible from 
(www.socialnet.com). This technique prevents loss of application data, but it will still 
be vulnerable to XSS, which can lead to remote browser takeover or malware 
installation, phishing, and most other attacks. 

However, there are many negative consequences to running an off-domain 
<iframe>  in a page. Search engines punish pages that use <iframe>  because they 
typically represent less reputable web sites. Also <iframe>  usage in general is slow 
and tends to promote accessibility issues. Robert Hansen and has spent a lot of time 
researching this particular issue and found that the business cost of this solution in 
loss of accessibility, functionality and search engine optimization is too great to 
implement [18]. 

Hansen’s has described a solution that is a slight departure from this technique, but 
affords the application protection from negative search engines policies, and it can be 
found in [7]. 
 
3.3.6 Character frequency analysis 
 
Character frequency analysis could easily be used to detect most payloads. Although 
typical user data may content rich content and thus have a different distribution of 
characters on average than plain language, some “normal” baseline of characters 
could be used to detect anomalous data among users’ rich input, infected or otherwise. 
However, a worm that has been designed to morph while still retaining the character 
frequencies of normal data could be developed in response. 
 
3.4   Techniques for worm removal 
 
Thinking about how to remove a worm discussed in the paper leads to interesting 
avenues of research in preventing malicious code already in an application from 
functioning according to the author’s intent. 
 
3.4.1 Signaturing Polymorphic JavaScript 
 



Coming up with reliable signatures for polymorphic JavaScript payload come will be 
important for performing search-and-destroy operations on a worm that has fully 
infected an application.  

Without effective search-and-destroy, a worm that can’t propagate may still be able 
to deliver malware, perform phishing attacks or execute other nefarious operations. 
 
3.4.2 C&C channel poisoning 
 
C&C channel poisoning is an effective way of dealing with distributed malicious 
agents. Although this paper has shown that a piece of JavaScript can communicate 
through an intermediary in a way that is resistant to C&C channel poisoning, no XSS 
worms have implemented this type of functionality yet. 
 
3.4.3 Exploit Egress Filter 
 
An infected site can quickly stop the propagation of an XSS worm without fixing the 
XSS vulnerability that is used to deliver the payload by implementing an exploit 
egress filter. If an XSS worm with a static payload has infected a site, the site can 
setup an egress filter (outbound response filter) that prevents the malicious payload 
from being delivered to users. 

The good news is that this can be done in a relatively transparent way to the 
user. Because of JavaScript’s asynchronous nature, there are many places where 
execution flow is transferred based on some event taking place. Consider an example 
of some payload code in Figure 5. 
 
 
 

Fig. 5. A code snippet from an XHR call inside an attack payload. 
 
 

In this snippet, the attacker is telling the JavaScript VM that when the state of the 
XmlHttpRequest communication changes, it should invoke the handleIt()  
function that was part of their payload. If for some reason the handleIt()  method 
never gets called, the rest of the payload will simply never execute.  

In this case, an effective egress filter would simply prepend the string “//” before 
any place the filter finds the exploit, as shown in Figure 6. 

 
  

 
Fig. 6. The attack code snippet modified by an HTTP egress filter.  

 
 
This type of mechanism requires no source code update and can be hot deployed in 

an HTTP filter or web application firewall. 

xhr.onreadystatechange=handleIt;  

//xhr.onreadystatechange=handleIt;  



3.4.4 JIT Anomaly-Based Profiling 

One option for browser protection in the future could be JIT JavaScript profiling to 
prevent anomalous behavior. More simply, if the browser detects that 
AspectSecurity.com doing something that AspectSecurity.com doesn’t normally do, it 
could simply refuse to perform the operation. 

Such anomaly-based execution prevention has been deployed in host-based IPS 
systems in the past [4]. Unfortunately, such a solution may not be realistic as most 
sites use the functionality that attackers would leverage when using XSS attacks, 
making profiling a legitimate application very hard to do effectively. 

 

4.   Conclusions 
 
It has been shown that the individual pieces of a truly subtle, highly evasive and far-
reaching XSS worm can be created with the increased client side capability available 
to attackers in Web 2.0 capable browsers. The effects of a worm that implements the 
functionality discussed will undoubtedly serve as a wake-up call for web developers 
and managers who still do not consider security seriously. Unfortunately, billions of 
dollars in damages will result as companies will ineffectually pressure anti-virus 
vendors to quickly learn layer-7 security to deal with the issue.  Unfortunately, this is 
not the domain of expertise for anti-virus vendors, so response will be slower than 
traditional Internet worms.  

In next generation worms, the attacker can now use the Internet as an API thanks to 
the accessibility and ease-of-publishing of distribution channels in Web 2.0.  

Tangentially, a trend that is already developing in attacks is the push towards 
compromise of content distribution channels for search engine optimization, malware 
distribution or XSS delivery. This trend should continue as attackers realize the profit 
to be made from their skill is easily made in infecting end-users en masse. 

However, it has been shown that using agile defense techniques, a XSS worm that 
has already been deployed may be able to be stopped on a single infected application 
with an egress filter that is deployed quickly, or by poisoning the C&C channel by 
which the worm is controlled.  

Web application developers can help secure their own application by utilizing user 
input workflows that cross domains and use nonces to prevent XSS propagation. 
Also, peer-reviewed rich input validation mechanisms like OWASP’s AntiSamy 
project can be used to filter HTML/CSS according to some business policy in order to 
prevent any XSS vulnerability in the first place. 

Browsers can also improve the state of security by implementing content 
restrictions that are easy to use by developers, optional to implement in an 
application, and does not require major changes to the HTTP response. 
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