
Building and Stopping Next Generation XSS Worms

Arshan Dabirsiaghi

3rd International OWASP Symposium on Web Application Security
Refereed Papers Track at OWASP AppSec Conference Europe 2008

Abstract. There has been much analysis of the recent MySpace and Yahoo!
cross-site scripting worms. While the web development world slowly comes to
recognize this method of attack, attackers are in the wild, presumably
improving on the work of their predecessors.

In this paper we will analyze the design choices made by past worm authors and
hopefully illuminate how future attackers will improve on the current paradigm
when building the next generation of cross-site scripting worms. Also, the paper
will highlight some new defense mechanisms in both preventing current and
next generation cross-site scripting worms, and include some original
recommendations on how to respond to such attacks.

Keywords: security, web application security, webappsec, xss, worms, viruses,
owasp.

License: This work is licensed under the Creative Commons Attribution-
ShareAlike 2.5 License.

1. Introduction

There is an inverse relationship between the prevalence of cross-site scripting (XSS)
vulnerabilities in web applications today and an overall awareness of XSS among web
application developers. These circumstances have led researchers to discover
empirically that 84.57% [21] percent of web sites suffer at least some form of XSS
vulnerability.
 XSS protections (input validation, canonicalization, and output encoding)
generally cannot be applied globally across all application data without breaking
much of the UI layer. This means inbound data and outbound data must be secured on
a case-by-case basis, which is a condition that generally leads to failure as there are
many reasons a developer may “miss” validating an input field or “forget” to output
encode a field. This speaks nothing to the fact that most developers are not aware of
most security issues and most managers do not budget security as part of their project
expenditure.
 The situation is compounded by the fact that attackers are always finding financial
reasons to trick users into executing JavaScript inside their browser, so attacker
motivation for discovering and exploiting these vulnerabilities is fairly high.
 Web applications will always be exposing XSS vulnerabilities in their code and
attackers will always want to exploit those vulnerabilities. The advent of Web 2.0
makes things worse as one of the fundamental characteristics of the paradigm is
movement of code off of the server and onto the client or “into the cloud”. Hastily
arranged trust boundaries, “improved” client side technology and traditional attacker
cleverness can combine to create a situation where the shortcomings of current XSS
worms are going to become quickly antiquated.
 The paper will begin by briefly establishing what is presently going on in the world
of XSS worms (also called “Web worms”), including the strategies used to infect and
re-populate, and also the strategies used to “remove” a XSS worm from an infected
application.
 The paper then makes predictions about the future of XSS worms, based on
experiments demonstrating that all the individual components of a “next-generation”
worm can be built today.
 Finally, the paper will conclude with a summary of the predicted traits and
experiments to show that all it will take to make the next infamous event in web
application security is for an attacker with the right motivation to find an opportune
vulnerability.

2. The Present

There have been a handful of large-scale XSS worms worthy of analysis in depth, and
we will briefly analyze those worms here in deference to the excellent analysis of
those worms in [11] and [12].

2.1 MySpace: Samy Worm

Samy Kamkar, a then-19 year old prankster from Los Angeles, USA created the first

known XSS worm after exploiting MySpace’s blacklist-based validation mechanism.
Samy’s worm was fairly important for two reasons. The first reason is that it
demonstrated the capability for a XSS vulnerability to become self-propagating, and
the second is that it illuminated the inability of negative validation mechanisms, even
good ones, to work with high assurance when permitting rich user data.
 Samy infected his own user profile with a stored XSS attack that caused viewers
of his profile to execute several XmlHttpRequest calls to bypass MySpace’s CSRF
protection, add Samy to their friends list, add his name to their list of heroes, and copy
the infection code into their profile. Within 18 hours, Samy had attained 1 million
friends and MySpace responded by bringing the site down and cleaning the infection.

2.2 Yahoo! Yamanner Worm

The Yahoo! Yamanner worm was an XSS worm that infected Yahoo!’s webmail
application. The attack bypassed the XSS filtering system Yahoo! mail utilized to
prevent XSS attacks from being stored in email messages. The author used the XSS
vulnerability to propagate the XSS message by sending the exploit message to the
contact addresses of a victim.
 The worm author attempted to use the worm to profit, which was a first at the time.
Aside from propagation, the exploit code attempted to pop up a window to the
author’s click-through site and forwarded the harvested email addresses of the victims
to a remote site, where the author would presumably sell the list to spammers.

2.3 Orkut Worm

Google’s social networking platform, Orkut, was hit by another extremely fast-
spreading XSS worm in mid-December 2007. The worm propagated by viewing a
malicious message on the victim’s “scrapbook” which added the propagation code
and joined the user to an “infected users” group.
 The worm quickly grew, infecting between 300,000 and 600,000 victims before
being removed.

2.4 Other Worms

There have been a handful of other notable worms, including the MySpace
Zango/QuickTime and Nduja worms, and each is worthy of its own lengthy analysis.
Although these worms were researched for the paper, an analysis of them would not
help clarify any issues regarding XSS worms.

2.5 Traits of Current Worms

An analysis of past worms show that there are a number of traits common to the
current wave of XSS worms.

2.5.1 Static Payloads

Contemporary Internet worms at all layers use static payloads. Static payloads are
payloads that are constant, literal values. Most traditional exploits contain static
payloads. This is a major shortcoming as payloads can be easily signatured for IDS,
IPS, and removal purposes which are discussed more in depth later.
 Polymorphic payloads have been used to bypass character restrictions in shellcode
development, but not for the purposes of having shifting payloads. In effect, these
“polymorphic” payloads only morph once after during payload execution, and are still
essentially static.

2.5.2 Uncontrolled Growth

Contemporary worms have uncontrolled growth. Closely related to the fact that all
XSS worm payloads are static is the fact that all contemporary worms have no
method of growth control. This is a fatal flaw for worms in general as it ultimately
guarantees their destruction. As the worm grows and grows exponentially, it will
quickly and inevitably reach an infection rate that can’t help but be detected and dealt
with in an emergency-type fashion.
 This is similar to Slammer and other traditional Internet viruses that congest the
bandwidth of infected networks so much that it disrupts normal network use and
demands response [3].

2.5.3 Passive Infection Models

All contemporary XSS worms have a passive infection model. The victim of the
worm attack must perform some action to be infected. In the case of Samy, a new
victim must choose to view the profile of a previous victim to become infected. In the
case of the Yamanner worm, a new victim must open an email delivered by a
previous victim. It is not likely that this will change because of the nature of web
applications. Traditional viruses such as [26] can infect users without any requisite
action on the part of the victim. As long as their computer is plugged into the Internet,
they can be infected and start to pass on the virus because the injected cargo code
(shellcode/machine code) has access to perform any system calls and thus perform
any operation on the computer.
 JavaScript, on the other hand, when executing in a non-local zone, is heavily
sandboxed by the browser and will not allow the user to access local files, start
programs or execute arbitrary system code. The language itself is not meant to heavily
interact with the operating system, so much of the desired attacker capability is just
not there to use maliciously.

2.5.4 No Cross-application Infections

All contemporary XSS worms stay on the same web application on which they were
pre-programmed to exploit. Although an exploit for one web application is not
necessarily very different from an exploit for another web application (i.e., “userid=’
or 1=1—“ vs. “acctNo=’ or 1=1—“), the steps required to get to the stage where the
exploit can be delivered are normally quite different and complex. For a worm to
jump to another application, the worm would require an understanding or learning

capability of how to register, login, find the vulnerability and perform the necessary
exploit. This is no small task, especially for a JavaScript scanner which is hampered
by the browser’s same origin policy.
 Although there is the opportunity for unauthenticated XSS in many applications
(blog comments, message boards, etc.), the sites with opportunities for large
propagation will mostly require authentication.
 The Njuda worm did cross domains, but it was pre-programmed to attack the sites
it did attack [23].

2.6 Removing Current XSS Worms

What led to the lines of research in this paper was the initial question: How can one
effectively remove a XSS worm from a fully-infested application? The options are
quite limited, but they could be effective against the current wave of XSS worms.

2.6.1 Manual Purging

The first option is to shut down the application and manually purge the tainted
records. Obviously this would result in downtime losses and does not scale. Also, it is
unlikely that a non-security person would be able to recognize a properly obfuscated
XSS payload with a high rate of accuracy.

2.6.2 Database Snapshot Restore

The second option is to restore the database to previous state which was snapped
before the infection began. While effective in removing all the worm code from the
tainted columns, it also causes all other application data changes since the infection to
be lost.

2.6.3 Search and Destroy

The last option is to halt column updates momentarily to perform a search-and-
destroy operation on the payload an attacker uses. This option seems the only viable
solution now, but its effectiveness against a smart payload is dissected later in the
paper.

3 The Future

What follows is an analysis and set of predictions on how future attackers (worm
authors) can improve the functionality, stealth, infection rate and operational stability
of their worms in the world of Web 2.0. Also, an analysis and set of predictions
regarding next generation defense mechanisms for developers and browser vendors
will be discussed.

3.1 Traits of Next-Generation Attacks

In this section we will discuss a number of ways in which future XSS worms will
increase in capability, stealth and growth.

3.1.1 Payloads will use command and control channels

The most obvious mechanism that contemporary XSS worms don’t utilize is
command-and-control channels (C&C). A C&C channel is either a one-way or two-
way information line that an infected client uses to send messages to and/or receive
information from a malicious server. C&C is a vital piece of malware because it
allows the worm operator to give infected hosts arbitrary data, e.g. new instructions or
targets for DoS attacks, etc.

The same origin policy does not prevent a hijacked browser from communicating
with a host that is in collusion with the client for many reasons. Remote scripting,
remote stylesheets, image dimensions, and other half-blind techniques can be used as
covert channels between an infected browser and an evil web server.

A simple and effective use of worms would be to limit virus density. As discussed
previously, worms would want to control density to increase the stealth and
predictability of the infected network.

Having a static C&C channel introduces a single point of failure into the worm’s
design. If a worm uses a C&C remote script at http://www.evil.com/payload.js, in one
sense it is advantageous to the attacker because the web application can’t enforce a
policy change on the server to prevent the user’s browser from referencing the
malicious site. However, the developers/defenders (hereto referred to simply as
defenders) may be able to remove the channel (malicious site) either by contacting the
ISP or registrar for evil.com as discussed in [8].

Therefore, it’s optimal to have a worm that uses a dynamic or distributed
command-and-control channel, which is difficult to implement when considering
Kerchoff’s principle [16]. The principle would state that the defenders have access to
the client side worm code so nothing in the worm code can be considered secret. The
defenders would then know what the C&C host is or how the worm would deduce it.
Given that, how could the worm author keep the dynamic C&C hosts anonymous?

Another challenge to C&C is poisoning. If a worm is taking its commands from a
malicious host, it is usually possible to poison or disrupt the infected client’s channel
to the malicious host. This technique has been used against the Storm worm and other
viruses in the past [25].

3.1.2 Future worms will contain more subtle payloads

The payloads seen in previous worms were extremely noisy. The Samy worm altered
the profile and “Heroes” list of every user it infected. Obviously, leaving visible cues
to users that their profile has been altered is going to dramatically reduce the time-to-
discovery of malicious code, and evading detection was not one of Samy’s concerns.

A more subtle payload would have been instructions that added the infection code
to the user’s profile page and left everything else alone. A more subtle payload in the

Yamanner worm would have created an invisible <iframe> that pointed to the
click-through adware. This would have allowed the worm to operate without obvious
signs of abnormal behavior.

3.1.3 Polymorphic payloads will dramatically increase the longevity and stealth

of a worm

There has been a lot of research into polymorphic JavaScript code. The idea of
polymorphic attack code in general is very old. For our purposes, it would be useful to
have JavaScript that is so different from one victim to the next that it would be
difficult to create a pattern-based signature to identify the instances of the worm. This
functionality implies the use of a non-deterministic JavaScript obfuscator, which most
closely maps to the research in Gareth Heyes’ Hackvertor [10].

Although Heyes’ work on Hackvertor clearly demonstrates the ability to highly
obfuscate JavaScript, it suffers from two main weaknesses. The first weakness is that
keywords still appear in a Hackvertor payload. A keyword scanner looking for
document.cookie in user-supplied code could still “detect an attack” that’s been
obfuscated.

Also, the Hackvertor function is deterministic. What is needed for a polymorphic
payload to be truly difficult to signature is an algorithm that is not possible to de-
obfuscate. By combining random encoding, expression types, string fragmenting and
ordering, a payload can be made invisible by most signaturing techniques. These
techniques are discussed in more detail in [2].

It is obviously possible that a polymorphic algorithm could perform these
techniques. At this point the issue is an exercise in tough engineering to implement
them, and naturally the best place to start would be with the already strong Hackvertor
engine.

However, assuming that a human would always be the best candidate to create a
small set of similarly-acting-but-differently-looking JavaScript infection codes, it
would be effective to manually create a dozen or so “seeding” payloads which serve
as the “roots” of the worm. That way, even if the application does a 100% successful
search-and-destroy operation on the payload and its morphed copies, they will still not
find the hand-crafted dozen “seeding” payloads which can continue infecting (if just
to distribute malware once the XSS vulnerability is closed).

3.1.4 Victim browsers become distributed vulnerability scanners

One of the major limitations of XSS worms today is the fact that they are limited to
the site on which they are born. Because of the same origin policy and the complexity
involved in delivering complex attacks to other sites that involve reading responses
(nonces, CAPTCHAs, etc.), a domain crossing worm has not yet been seen. Same-
domain worms have a hard maximum number of infections: the number of users of
the target application.

This is obviously not ideal for attackers who would like a continuously, outwardly
spreading worm that is not trying to attain coverage over a certain site’s user base, but
is trying instead to penetrate and infect multiple user bases (sites).

Web application vulnerability scanners have been written in JavaScript by Billy
Hoffman and others independently [13]. Although the effectiveness of these tools is
hampered by the limitations of the browser, they both demonstrate a basic capability
of scanning remote web applications using intermediary sources.

In order for a cross-domain worm to propagate, the scanning code must either
execute on the client or the server. Forcing the server to execute the code is not
possible since XSS is an attack that affects the client, although PHP remote file
includes or similar exploits may allow this kind of server-side propagation to happen.

The fundamental problem in Web 1.0 with trying to make a JavaScript scanner
execute in the clients browser: running time. The JavaScript will only execute as long
as the user is on the page and allowing the script to run. If a script is running for too
long the browser will prompt the user to stop the script or allow execution to
continue, which will immediately trigger the user into navigating away from the page.
Even if timers are implemented to avoid the script message from the browser, the
JavaScript will run until the user closes their browser or navigates to a new page. One
could lure the user into staying while reading content or playing a Flash game, but
user response to the “bait” will be varied and is generally unpredictable.

GoogleGears WorkerPool allows JavaScript to spawn “worker threads” that
execute asynchronously in the “background” of a web page. These threads live past
when the browser navigates to the next page and only die when the browser closes.
Therefore the time that a compromised browser can scan is the lifetime of the browser
instance rather than the length of time that the browser remains on the page that’s
been injected.

Unfortunately, this type of client-side scanning tool is mostly academic because
malware installed on the operating system could perform the same vulnerability
scanning without any browser limitations. Therefore, vulnerability scanning malware
in combination with XSS-based delivery is the key to cross-domain propagation.
However, it should be noted that no browser vulnerability is required to use
GoogleGears WorkerPool or any other RIA functionality.

With all the new RIA frameworks coming to market, each new browser capability
will probably introduce some security implication that the framework authors did not
intend. Because of this, a close eye should be kept on the direction of rich
functionality that the frameworks produce as each one will have security implications.

3.1.5 Future worms will remain dormant during propagation

The widespread propagation of an XSS worm by itself is not what’s likely to lead to
its discovery. The payload and the resulting effects on the user experience are what
usually prompt attack discovery.

Therefore, it would make sense for a slow moving worm to quietly propagate until
its desired virus density or infection total reach a desired goal before activating its
payload. Cross-domain worms, as mentioned before, are likely to be slow moving due
to the difficulty in finding stored XSS through which to propagate, and a dormancy
period only makes sense. Dormancy has been seen in previous Internet worms [19],
but not around XSS.

It should be noted, however, that propagation in XSS worms is extremely quick
when compared to traditional Internet worms. Therefore, the worm author of the

future may choose to write a worm that utilizes no dormancy, opting to spread as
deliver attacks as quickly as possible in order to decrease the window of time when
the payload can be noticed casually.

3.1.6 Targets will change

The most sought after targets of layer 7 attackers in Web 2.0 will be content
distribution channels. Content distribution channels were available and valuable in
Web 1.0, but amount and type of these channels has increased dramatically in Web
2.0, and the capability of those channels has also been greatly enhanced.

Most websites that are compromised are compromised through network layer
attacks, such as attacks against their ftp, mail, or ssh servers. These are traditionally
C-based exploits that give the attacker shell access on the system, which the attacker
then uses to either deface the website, attack the website’s intranet, or retain as a
zombie host for spamming or denial of service attacks. However, the profit that could
be gained from compromising a website is becoming known among attackers as it has
been known in the spamming community for a long time- as has been demonstrated
by the recent hack of Al Gore’s “Inconvenient Truth” website.

The Yamanner worm opened up a new window on the client’s browser to a static
click-through site and harvested the victim’s email addresses to a remote site.

Search engine optimization is extremely important to spammers, as spam-filtering
tools look at the relevance of links in emails as a way of detecting spam. By having a
legitimate site, i.e., Al Gore’s documentary website, have links to the spammer’s site,
it lends legitimacy to the link the spammers send out in their emails according to the
spam filters because the spam filters rely on search engines to decide the legitimacy
of a link [6].

Advertising channels have long been target of attackers, and have also themselves
been attackers to client browsers with malware and adware installations. The value of
the advertising channels will remain fairly high because of the level of control over
browsers they can exert, even without attacking them with traditional browser
exploits.

RSS and aggregator feeds in general are excellent content distribution channels.
RSS channels are usually insecure (not over SSL) and are thus vulnerable to
tampering, but no such attacks have been seen in the wild. If an attacker near the RSS
source were able to hijack the communication channel, an attacker could deliver their
malicious payload to a massive number of subscribing users.

Mashup data feeds are also traditionally not over SSL. The feature SSL is reserved
for the most is confidentiality, and mashup data is usually not sensitive, so no use of
SSL is generally warranted. Also, speed is a key factor in delivering a successful
mashup, and SSL does introduce speed issues. However, an attacker could as easily
hijack an RSS delivery as they could hijack a mashup data feed. Alternatively, the
attackers could attempt to infiltrate the mashup data feed’s application and attempt to
alter the channel’s messages from inside using CSRF, XSS or some other
vulnerability as was tried in the attack against Robert Hansen’s blog [20].

3.2 The Next Great XSS Worm: A Case Study

What follows is a proposed dynamic C&C channel design which provides poison-
resistance, stealth, anonymity using Google, remote scripting and code signing.

Let assume that there are a number of users on a social networking site,
www.myfacenovel.com. An attacker has found a persistent XSS vulnerability on the
profile submission which would force other users to execute the attacker’s arbitrary
JavaScript when viewing the attacker’s page. The JavaScript would then perform the
following steps:

1. Import the Google Ajax JSON API
2. Generate a token based on the current date and some pre-defined string (i.e., var

msg = Base64Encode(“arshan_worm@<Today’s Date>”))
3. Invoke the Google Ajax JSON API with remote scripting to find pages on the

Internet that have that token on them
4. Iterate through results until one is found that finds a correctly tokenized message
5. If none is found, then simply copy the infection code to your own profile (like the

Samy worm)
6. If one is found, tokenize the message into 3 parts: payload code, infection code,

and digital signature
7. If the digital signature is valid according to the public key stored in the client’s

JavaScript, then execute the payload and store the new infection code in the
user’s profile

This technique is resistant to poisoning for a few reasons. Defenders can’t prevent
access to the sites which host the worm operator’s message because the sites are
distributed over the Internet, and the sites the worm goes after will change every day.
Working with a real person to remove access to a malicious page does not scale when
the attacker can store thousands or even millions of copies of the message on the web.

Also, defenders cannot forge messages from the author because they do not have
the private key of the worm author so the worm will not execute their message when
it fails the digital signature.

If Google was willing to take part in defending a high profile worm, it could
signature the queries the infected hosts send in and not return results, but the attacker
could get the same information from any search engine that had remote scripting
libraries.

Also, the lag time between indexes both helps and hurts attackers. It hinders
attackers because it forces them to deploy the distributed payloads well before the
actual deployment of the worm to allow Google time to index the sites where they’re
hosted.

The lag time also helps attackers, though. Defenders attempting to interfere with
the results of Google queries would have to wait until their sites were indexed as well,
although it is likely that they would have the SEO ranking to speed up indexing.

Regardless, it seems possible that an attacker could cloak their malicious lookup
queries inside “normal looking” queries using some language tricks and
steganography.

In summary, the C&C method described previously exhibits the following
qualities:
• The payload can’t be stopped on the client side without NoScript [17] or an

equivalent protection because the server can’t enforce any client side policies in
respect to remote scripting. This is compounded by the fact that the host they are
on is likely to be whitelisted

• The C&C messages are distributed throughout the Internet, so removing access to
one copy will not prevent the infection code from retrieving it

• The C&C channel can’t be poisoned because the infected hosts only execute code
that has been signed by the worm operator

3.3 Next Generation Defense Mechanisms

The good news is that there is a lot of room for improvement as far as defensive
techniques in Web 2.0. This means better defensive techniques in our application
security on the server side, smarter browser security and better response techniques
when dealing with an already infected application.

3.3.1 Web 2.0 Isolationism

A major pitfall in the understanding of Web 2.0 security is the fact that it is the
browser’s support of Web 2.0 capabilities that makes the situation worse –
isolationism from Web 2.0 is not a security solution. Simply not implementing any
server side Web 2.0 features does not protect an application against a Web 1.0 exploit
that leverages the victim’s browser’s Web 2.0 functionality. If I can execute XSS
against a victim, I can use that victim’s browser to execute a Web 2.0 payload. In this
sense, Web 2.0 browser improvements make security “worse”.

3.3.2 Effective Rich Input Validation

A major piece of the Web 2.0 defensive puzzle is rich input validation. The rising
prevalence of mobile rich input leads to the need for stronger rich input validation.
The OWASP AntiSamy project attempts to solve the problem of validating rich input
by using transformation, policy-based validation and reliable serialization. This API
allows users to safely upload rich content without exposing the application to
phishing or XSS attacks.

3.3.3 Content Restrictions

The browser vendors can help developers prevent XSS and phishing attacks by
implementing content restrictions, an idea proposed by Robert Hansen [9]. Content
restrictions are essentially a sandbox that allows developers to specify policies that
prevent any user-supplied markup from executing any unauthorized code. Exactly
how content restrictions could be implemented has been debated.

It been proposed that content restrictions be implemented as an HTTP header
delivered by the server to the client browser, informing it of what capabilities the
client browser will need to use the resulting page in the way the application intended.

This approach is not prone to success because it most web pages, especially in
Web 2.0, use all the same capabilities an attacker would use in a realistic exploit. The
policy dictating what functionality is allowed to be invoked for the whole page would
end up being far too permissive. If a page uses XmlHttpRequest and the use of the
innerHTML property, the policy referenced by the header would have to allow the
usage of those capabilities. This analysis leads us to conclude that any content
restriction implementation that forces the developer to apply policy across a whole
page is prone to failure, regardless of how that policy is communicated to the user (in
a header or in the page somewhere).

In a more simple form, content restrictions could be implemented as a tag-based
jail that prevents any JavaScript from being fired. The simplest content restriction
would be something found in Figure 1.

Fig. 1. A very naïve approach to tag-based content restrictions.

 Unfortunately, the user input could contain the end tag of the jail itself, telling the
browser that the jailed section is finished. This effectively terminates the jail and
allows the user to supply unhindered code after the end tag. An example exploit could
be seen in Figure 2.

Fig. 2. An example attack that would prematurely close the jail tag an insert a

malicious script.

To prevent this, the jail needs some “secret” to prevent the attacker from being able
to finish the jail tag prematurely. A suggestion previously made was to contain the
secret in both the opening and closing tags as seen in Figure 3.

<jail>

<!-- dangerous JavaScript here -->

</jail>

</jail>
<script>alert(‘hi’)</script><jail>

<jail secret=”ZXcOQW#iht*”>

<!-- dangerous script here -->

</jail secret=”ZXcOQW#iht”>

Fig. 3. A content-restricting jail with the secret in the open tag and close tag.

 This solution would work, but is not optimal because it violates SGML standards,
although Internet Explorer has honored some attributes in end tags in the past. In this
paper I am proposing an alternative to the jail tag idea that requires much less work
than the jail just discussed. An example of the jail can be found in Figure 4.

Fig. 4. A content-restricting jail (with secret) consisting of differing open start and

end elements.

This approach, which I’m calling “jail pairs”, has two advantages over previous jail

ideas because it does not require browsers to honor non-standard code, and it is valid
markup according to most parsers. Unfortunately, its usage is counter-intuitive to
normal SGML markup, but what it lacks in this concern it makes up for in ease of
implementation as it does not require the browsers or parsers to honor attributes in
end tags.

It’s worth noting that none of the content restriction implementations right now
address presentation layer attacks. Presentation layer attacks are code injection attacks
that involve altering the UI without invoking JavaScript, at least directly. Given the
XSS pandemic seen in the wild right now, the prevention of XSS (through the
prevention of unauthorized JavaScript) is a good start. For more information on
presentation layer attacks, see [12] [1].

Preventing presentation layer attackers is a challenging issue for browsers because
it would involve teaching the content restricting code some visual context. The
validation code would have to recognize that the user-supplied code is attempting to
clobber a div that is located outside the user’s jail, or that the dimensions and z-
index on the user-introduced <div> would end up overlaying other sections of the
page. Given these challenges, it is extremely unlikely that the first implementation of
content restrictions will even attempt to solve this problem.

3.3.4 Technology Switch

An expensive alternative in avoiding most of the Web 2.0 issues is migrating to a
client side technology that does not haphazardly mix up code and data. Although it’s
not a realistic solution for everyone because of compatibility and user expectation
reasons, it should be noted for comprehensiveness that a subset of the web-related
vulnerabilities made worse in Web 2.0 can be sidestepped entirely by using an
alternative client side technology. For example, Java applets are delivered as
bytecode, which is not injectable and is therefore less susceptible to cross-user
attacks.

<start-jail
secret=”zxQ#W0rwef8H”/>

<!-- dangerous JavaScript here -->

<end-jail secret=”zxQ#W0rwef8H”/>

Although all the traditional client-to-server attacks would still exist, most peer-to-
peer attacks involve tricking peers into executing/viewing rich content. However,
there are generic, peer-to-peer application security threats such as cookie sniffing that
would still exist.

3.3.5 Utilizing cross-domain workflows

Web applications can host user content in off-domain pages to prevent cross-domain
pollution. Web applications can host un-trusted user content on their application’s UI
in an <iframe> that is hosted on a separate sub-domain than the rest of the
application (e.g., utnrusted.socialnet.com). If a user were able to store attacks in their
profile, the attacks would be hampered by the same origin policy which would limit
the user from interacting with the only domain that application data is accessible from
(www.socialnet.com). This technique prevents loss of application data, but it will still
be vulnerable to XSS, which can lead to remote browser takeover or malware
installation, phishing, and most other attacks.

However, there are many negative consequences to running an off-domain
<iframe> in a page. Search engines punish pages that use <iframe> because they
typically represent less reputable web sites. Also <iframe> usage in general is slow
and tends to promote accessibility issues. Robert Hansen and has spent a lot of time
researching this particular issue and found that the business cost of this solution in
loss of accessibility, functionality and search engine optimization is too great to
implement [18].

Hansen’s has described a solution that is a slight departure from this technique, but
affords the application protection from negative search engines policies, and it can be
found in [7].

3.3.6 Character frequency analysis

Character frequency analysis could easily be used to detect most payloads. Although
typical user data may content rich content and thus have a different distribution of
characters on average than plain language, some “normal” baseline of characters
could be used to detect anomalous data among users’ rich input, infected or otherwise.
However, a worm that has been designed to morph while still retaining the character
frequencies of normal data could be developed in response.

3.4 Techniques for worm removal

Thinking about how to remove a worm discussed in the paper leads to interesting
avenues of research in preventing malicious code already in an application from
functioning according to the author’s intent.

3.4.1 Signaturing Polymorphic JavaScript

Coming up with reliable signatures for polymorphic JavaScript payload come will be
important for performing search-and-destroy operations on a worm that has fully
infected an application.

Without effective search-and-destroy, a worm that can’t propagate may still be able
to deliver malware, perform phishing attacks or execute other nefarious operations.

3.4.2 C&C channel poisoning

C&C channel poisoning is an effective way of dealing with distributed malicious
agents. Although this paper has shown that a piece of JavaScript can communicate
through an intermediary in a way that is resistant to C&C channel poisoning, no XSS
worms have implemented this type of functionality yet.

3.4.3 Exploit Egress Filter

An infected site can quickly stop the propagation of an XSS worm without fixing the
XSS vulnerability that is used to deliver the payload by implementing an exploit
egress filter. If an XSS worm with a static payload has infected a site, the site can
setup an egress filter (outbound response filter) that prevents the malicious payload
from being delivered to users.

The good news is that this can be done in a relatively transparent way to the
user. Because of JavaScript’s asynchronous nature, there are many places where
execution flow is transferred based on some event taking place. Consider an example
of some payload code in Figure 5.

Fig. 5. A code snippet from an XHR call inside an attack payload.

In this snippet, the attacker is telling the JavaScript VM that when the state of the
XmlHttpRequest communication changes, it should invoke the handleIt()
function that was part of their payload. If for some reason the handleIt() method
never gets called, the rest of the payload will simply never execute.

In this case, an effective egress filter would simply prepend the string “//” before
any place the filter finds the exploit, as shown in Figure 6.

Fig. 6. The attack code snippet modified by an HTTP egress filter.

This type of mechanism requires no source code update and can be hot deployed in

an HTTP filter or web application firewall.

xhr.onreadystatechange=handleIt;

//xhr.onreadystatechange=handleIt;

3.4.4 JIT Anomaly-Based Profiling

One option for browser protection in the future could be JIT JavaScript profiling to
prevent anomalous behavior. More simply, if the browser detects that
AspectSecurity.com doing something that AspectSecurity.com doesn’t normally do, it
could simply refuse to perform the operation.

Such anomaly-based execution prevention has been deployed in host-based IPS
systems in the past [4]. Unfortunately, such a solution may not be realistic as most
sites use the functionality that attackers would leverage when using XSS attacks,
making profiling a legitimate application very hard to do effectively.

4. Conclusions

It has been shown that the individual pieces of a truly subtle, highly evasive and far-
reaching XSS worm can be created with the increased client side capability available
to attackers in Web 2.0 capable browsers. The effects of a worm that implements the
functionality discussed will undoubtedly serve as a wake-up call for web developers
and managers who still do not consider security seriously. Unfortunately, billions of
dollars in damages will result as companies will ineffectually pressure anti-virus
vendors to quickly learn layer-7 security to deal with the issue. Unfortunately, this is
not the domain of expertise for anti-virus vendors, so response will be slower than
traditional Internet worms.

In next generation worms, the attacker can now use the Internet as an API thanks to
the accessibility and ease-of-publishing of distribution channels in Web 2.0.

Tangentially, a trend that is already developing in attacks is the push towards
compromise of content distribution channels for search engine optimization, malware
distribution or XSS delivery. This trend should continue as attackers realize the profit
to be made from their skill is easily made in infecting end-users en masse.

However, it has been shown that using agile defense techniques, a XSS worm that
has already been deployed may be able to be stopped on a single infected application
with an egress filter that is deployed quickly, or by poisoning the C&C channel by
which the worm is controlled.

Web application developers can help secure their own application by utilizing user
input workflows that cross domains and use nonces to prevent XSS propagation.
Also, peer-reviewed rich input validation mechanisms like OWASP’s AntiSamy
project can be used to filter HTML/CSS according to some business policy in order to
prevent any XSS vulnerability in the first place.

Browsers can also improve the state of security by implementing content
restrictions that are easy to use by developers, optional to implement in an
application, and does not require major changes to the HTTP response.

References

1. Dabirsiaghi, A. January 5, 2008. HTML/CSS Injections – Primitive Malicious
Code. omg.wtf.bbq. Retrieved February 25, 2008 from http://i8jesus.com/?p=10.

2. Dabirsiaghi, A. February 25, 2008. Improving Hackvertor: Polymorphic
JavaScript Payloads. omg.wtf.bbq. Retrieved February 26, 2008 from
http://i8jesus.com/?p=15.

3. F-Secure Corporation, December, 2003. F-Secure Corporation's Data Security
Summary for 2003. Retrieved February 25, 2008 from http://www.f-
secure.com/2003/.

4. Gong, F. March, 2003. Deciphering Detection Techniques. Anomaly-Based
Intrusion Detection. Retrieved February 25, 2008 from
http://www.mcafee.com/us/local_content/white_papers/wp_ddt_anomaly.pdf.

5. Grossman, J. April, 2006. Cross-Site Scripting Worms and Viruses. WhiteHat.
Retrieved February 25, 2008, from http://www.net-
security.org/dl/articles/WHXSSThreats.pdf.

6. Grossman, J. November 27, 2007. Inconvenient Truth blog, SE0wN3d!!1.
Retrieved February 27, 2008 from
http://jeremiahgrossman.blogspot.com/2007/11/inconvenient-truth-blog-
se0wn3d1.html.

7. Hansen, R. XSS Worm Analysis and Defense. ha.ckers.org. Retrieved February
25, 2008, from http://ha.ckers.org/xss-worms/.

8. Hansen, R. et. al. Creating and Combating the Ultimate XSS Worm.
sla.ckers.org. Retrieved February 25, 2008 from
http://sla.ckers.org/forum/read.php?2,19143.

9. Hansen, R. June 1, 2006. Content restrictions and XSS. ha.ckers.org. Retrieved
February 29, 2008 from http://ha.ckers.org/blog/20060601/content-restrictions-
and-xss/.

10. Heyes, G. January 21, 2008. Code Morphing. The Spanner. Retrieved February
25, 2008 from http://www.businessinfo.co.uk/labs/morph/morph.php.

11. Higgins, K. December 19, 2007. Google's Orkut Social Network Hacked. Dark
Reading. Retrieved February 25, 2008 from
http://www.darkreading.com/document.asp?doc_id=141761&WT.svl=news1_2.

12. Hoffman, B. and Sullivan, B. Ajax Security. Addison-Wesley, 2007.
13. Hoffman, B. April 2, 2007. Jikto in the wild. The HP Security Laboratory.

Retrieved February 27 from
http://portal.spidynamics.com/blogs/spilabs/archive/2007/04/02/Jikto-in-the-
wild.aspx.

14. Jackson, C., Barth, A., Bortz, A., Shao, W., Boneh, D. Protecting Browsers from
DNS Rebinding Attacks. Retrieved February 25, 2008 from
http://crypto.stanford.edu/dns/dns-rebinding.pdf.

15. Kaplan, D. December 5, 2007. Duke University Law School Infiltrated by
Hackers. SC Magazine. Retrieved February 25, 2008 from
http://www.scmagazineus.com/Duke-University-Law-School-website-infiltrated-
by-hackers/article/99613/.

16. Kerckhoffs, A. 1883. La Cryptographie Militaire. Journal Des Sciences
Militaires, IX, 5-83, 161-191.

17. Maone, G. NoScript – JavaScript/Java/Flash blocker for a safer Firefox
experience! Retrieved February 25, 2008 from http://noscript.net/.

18. Markham, G. February 24, 2005. Auto-Sizing IFRAMEs? Hacking for Christ.
Retrieved February 25, 2008 from
http://weblogs.mozillazine.org/gerv/archives/007610.html.

19. Rhodes, K. August 29, 2001. Code Red, Code Red II, and SirCam Attacks
Highlight Need for Proactive Measures. United States General Accounting
Office. Retrieved February 25, 2008 from
http://www.gao.gov/new.items/d011073t.pdf.

20. Sirdarkcat. November 8, 2007. Inside History of hacking rsnake for fun and
pagerank. SIRDARKCAT: Security and Programming Blog. Retrieved February
25, 2008 from http://sirdarckcat.blogspot.com/2007/11/inside-history-of-hacking-
rsnake-for.html.

21. Sutton, Michael. December 31, 2006. Web Application Security Statistics. Web
Application Security Consortium. Retrieved February 25, 2008 from
http://www.webappsec.org/projects/statistics.

22. Unknown. Spam Mimic .Retrieved February 25, 2008, from
http://www.spammimic.com.

23. Valotta, R. Nduja Connection. Retrieved February 25, 2008 from
http://rosario.valotta.googlepages.com/home.

24. Veness, C. SHA-1 Cryptographic Hash Algorithm. Movable Type Scripts.
Retrieved February 25, 2008 from http://www.movable-
type.co.uk/scripts/sha1.html.

25. Zhou, Y., Cui X., Wu, B. Worm Poisoning Technology and Application.
CNCERT/CC. Retrieved February 27, 2008 from
http://www.first.org/conference/2006/papers/xiang-cui-papers.pdf.

26. Spafford, E. The Internet Worm Program: An Analysis. Purdue Technical Report
CSD-TR-823. Department of Computer Sciences, Purdue University. Retrieved
February 27, 2008 from http://homes.cerias.purdue.edu/~spaf/tech-reps/823.pdf.

