
SWF and the Malware Tragedy

Detecting Malicious Adobe Flash Files

fukami1 and Ben Fuhrmannek2

1 SektionEins, fukami@sektioneins.de, http://sektioneins.de/
2 ben@fuhrmannek.de, http://fuhrmannek.de/

March 9, 2008

Abstract. Security of Adobe Flash based Rich Internet Applications
(RIA) has become a subject for many concerns over the last year. Nu-
merous tools for decompiling, disassembling and analysis are available,
although most of them are not intended be used for security-related anal-
ysis. The recent attacks supplying malicious banner ads through high
profile web sites are an example how easy it is to reach a large number of
targets with relatively primitive techniques such as redirects from within
a Flash banner. This paper is focussed on the detection of malicious SWF
files.

http://sektioneins.de/
http://fuhrmannek.de/

Table of Contents

SWF and the Malware Tragedy . 1
fukami and Ben Fuhrmannek

1 Introduction . 2
2 Common Attacks . 3

2.1 Redirections and Arbitrary Requests . 3
2.2 Attacks using ExternalInterface . 3
2.3 Socket Functions . 4
2.4 Attacking the Parser and Analysis Tools . 4

3 Preventing Attacks . 4
3.1 Static Code Analysis . 4
3.2 SWF File Format . 5
3.3 Analysation Patterns . 5
3.4 Sets of Analysation Patterns . 7
3.5 Evaluation . 8

4 Conclusion . 9

1 Introduction

Flash has became one of the major topics for security concerns over the last
year. While Adobe began to respond to these concerns and started to provide
a lot of possibilities for protection by configuration [28], there are still attacks
using Flash. The most recent attacks at larger scale utilised Flash banner ads
for supplying malicious content. While these malicious banners are mainly redi-
rectors tricking users to download and install malware, much nastier attacks are
possible.

From the attackers perspective using banner ads on high profile sites has a
lot of benefits. Beside the fact that banner on these sites have many page im-
pressions and so many targets for exploitation, most ad networks and publishers
still only superficially test Flash banners for appearance (i.e. if it fits into the
layout without messing around). In most cases no tests for ActionScript func-
tions happen. Many ad related companies also still think about SWF as pictures,
but since Flash files can somewhat carry full applications it is no real surprise
this kind of exploitation is quite successful.

But even if tests for ActionScript are present there are numerous ways to
obfuscate SWF to hide malicious intentions. The attacker for example doesn’t
want the exploit to be triggered before a certain date (for example before the
SWF is actually deployed on the target site) and wants to hide its present from
the people in the content providers network so that testing doesn’t reveal the
real nature of the SWF.

SWF and the Malware Tragedy 3

At the moment it can be rather complicated for non-security people to recog-
nise malicious SWFs. Although current Analysis tools provide powerful means
to examine SWFs, its output is to be interpreted in a security related context.

This paper is focused on possible exploit techniques with Flash and ap-
proaches for analysing SWF.

2 Common Attacks

The most common and best examined attacks utilize Flash for redirections,
XSS and CSRF as well as other approaches involving URLLoader and socket
functions. Also privacy concerns with so-called Local Shared Objects aka Flash
Cookies have been widely discussed in the past.

The following 4 general type of attacks are used to define criteria for detection
patterns discussed later in the paper.

2.1 Redirections and Arbitrary Requests

Heise and other big online news sites have recently been hit by very aggressive
Flash banner ads trying to convince users to download and install malware [2,3].
Once displayed, the user was redirected to the advertiser’s site, without clicking
on the banner. This attack pattern could as well be used to redirect to sites
hosting attack frameworks like MPack [4] and alike.

If an attack consists of only a single HTTP GET requests, the attack could
be triggered by redirecting to its corresponding URL. This has for example been
done by so-called drive-by-pharming attacks where malicious Flash files contain
requests for changing DNS entries for routers [5,6].

The most common way for redirection and other arbitrary requests is the use
of ActionScript 2 based scripts with functions like getURL [30] and loadMovie
[31]. The getURL function is also capable of directly executing JavaScript, so it
is well known to be critical. With ActionScript 3 the function navigateToURL
[33] can be used. A meaningful example for this function in conjunction with a
URLRequest [34] object can be found in the proof of concept exploit for requesting
UPnP functionality via SOAP [7].

2.2 Attacks using ExternalInterface

ActionScript 3 based URLLoader functions are less prone to JavaScript injections
than similar functions present in ActionScript 2. But there is a function present
in ActionScript 2 and 3 which deals with JavaScript called ExternalInterface
[32,35]. Since ExternalInterface.call() function behaves similar to JavaScripts
eval() it is possible to do DOM injections and call JavaScript cross domain [8].
This doesn’t even violate security policies with the recent Flash Player as long
as the embed code doesn’t disallow scripting (i.e. by setting allowNetworking
to internal or none in embedding code). ExternalInterface functions also
allow development of attack back channels similar to BeEF [21] or Backframe
[22].

4 fukami and Ben Fuhrmannek

2.3 Socket Functions

The Princeton attack back in 1996 also used banner ads to demonstrate DNS
rebinding attacks with Java [9]. This kind of attack was also possible with Flash
in the past and its discovery was an important step in sense of securing the Flash
player [10,11,12]. However, simple port scans with Socket [36] and XMLSocket
[37] functions are still possible using a side channel attack as long as the socket
functions are not completely disabled by Player configuration [13,27].

2.4 Attacking the Parser and Analysis Tools

Past Flash player versions suffered from buffer and heap overflows as well as
memory violations [14] problems. It is very likely that there are still attacks
possible using yet unknown low level exploits. Banner for example carrying such
exploits would probably have a big impact.

But not only the Flash Player itself can be attacked. Also some of the analysis
tools like Flare [17] suffer from problems parsing SWF, and runtime analysis tools
such as SWFIntruder [20] could also lead to an exploitation. While normal users
won’t probably be a target for such exploits it could be used to attack security
researchers and other people analysing SWF.

3 Preventing Attacks

We would like to minimise the risk of being exploited by a seamless Flash ap-
plication. There are several approaches of how to check such an application for
security issues. A risky way would be just to run the code and see what hap-
pens. This method is known as runtime code analysis or dynamic code analysis.
It may be exactly what we want in order to analyse reoccurring behaviours
such as file downloads or network socket activity while residing in a safe test-
ing environment. An ordinary debugger can easily track values of variables and
trace function calls thus giving an accurate overview of the application’s internal
structure. Runtime code analysis, however, is hardly practical for use outside a
testing environment since the code is actually being executed here.

As a result our approach to recognise potentially malicious Flash applications
is purely based on the static code analysis, covered by the remainder of this
section.

3.1 Static Code Analysis

The decision whether to trust an application enough to execute it will purely be
the result of analysing the disassembly of the SWF file in question. During the
process no part of the application’s code is being executed.

The basis for our static code analysis is the internal structure of the SWF
format itself. Having the disassembled SWF it is possible to apply a series of
analysation patterns such as a pattern matching for a function call or its pa-
rameters. For each of the attacks described in section 2 an attempt is made to
define a set of analysation patterns recognising the attack method.

SWF and the Malware Tragedy 5

3.2 SWF File Format

According to Adobe’s SWF specification[25] the file starts with the string “FWS”
or “CWS”, followed by an 8-bit version number and 32-bit file length field. In case
of CWS all the remaining file contents are ZLIB compressed:

[FWS] [Version] [Length] [Data]

or

[CWS] [Version] [Length] [Zlib Data]

The uncompressed data part starts with a header followed by a list of tags.

[Header] [Tag] [Tag] ...

Each tag acts as a container for a data type, e.g. for a JPEG image, RGB
colour or an ActionScript bytecode. A tag starts with a tag type identifier and
the tag’s length, followed by arbitrary data.

[tag code and length (16 bits)] [data (length bytes)]

When decoding SWF files from the real world, undocumented or unknown tag
codes may be encountered. There can be several reasons for these mysterious tag
codes, for example the file could be corrupted or our parser could be incomplete.
More likely, however, is either that a commonly used - yet undocumented - tag
was used correctly according to the programmer’s point of view.

The complete SWF looks like this:

[FWS/CWS] [Version] [Length] [[Header] [[Tag Header] [Tag Contents]] ... [0]]

As indicated, the last tag is a tag with tag type 0 and length 0 hence resulting
in a 16 bit representation of 0.

Tags containing the program logic are of special interest to the static code
analysis. Bytecode referenced as ActionScript 2 bytecode in this paper means an
ACTIONRECORD, which is a list of actions. ACTIONRECORDs can reside in
one of the following tags: DoInitAction, DoAction, PlaceObject2, PlaceObject3,
DefineButton, DefineButton2. ActionScript 3 bytecode is contained in DoABC
tags and is separately specified by the ABC Specification [26].

3.3 Analysation Patterns

Patterns are defined using Examples written in ActionScript 2 bytecode only. All
patterns, with the exception of the described obfuscation method, have equiva-
lents in ActionScript 3 bytecode. These have been omitted, since they are con-
ceptually identical.

6 fukami and Ben Fuhrmannek

Obfuscation. In order to prevent exactly the static code analysis the bytecode
could have been obfuscated. Some programmers like to obfuscate their code just
to create the illusion of a property protection. For the purpose of a security
analysis, disguised or obfuscated code is to be considered potentially malicious.

One common obfuscation method looks like this (see [15]): ActionScript 2
bytecode (e.g. as located inside doAction tags) can contain branch actions3

with a relative address offset pointing to an address outside the current tag.
Example (written in pseudo code):

0x100: tag1 header with unknown tag code
0x104: code in tag 1
...
0x200: doAction tag
0x204: jump -0x100

This way the code inside tag1 is hidden from ordinary SWF analyser tools
and can still be executed. In order to make it even harder to find the hidden
code, a random bytecode sequence could be inserted in between actual bytecode,
or dormant bytecode (which is never executed) could be used as distraction. A
variation of this obfuscation method is to hide code not in another tag, but in
the same tag after deceivingly adding an end-of-actionlist action (action code
0).

Fortunately this technique is also really easy to detect since a checker only
needs to be able to check for uncommon branch offsets. However, most decom-
pilers, such as Flare, can be fooled.

Code Inconsistencies. The SWF format specification was written for building
compilers assembling SWF files. Any deviation in the binary code of SWF files
either not covered or (explicitly or implicitly) ruled out by the specification is
an inconsistency. Examples:

– A string would normally be null-terminated, but could come with a redun-
dant length field. This length may differ from the actual size of the string
resulting in an inconsistency.

– Lists of Actions, e.g. in the DoAction tag, are terminated by an action with
code 0, but the list could go on.

– Negative values of signed numbers could make no sense in a specific context,
like for the application frame’s geometry.

– Tags or Actions could be incomplete or malformed, e.g. unterminated strings,
premature end of tag.

– Unknown tag or action codes can disguise hidden code for obfuscation.

Constant Pool Pattern Matching. The action ConstantPool defines a list
of string constants. If referenced accordingly, they can have the meaning of func-
tion names, function parameters or parts of function parameters. The occurrence
3 aka. jump or goto

SWF and the Malware Tragedy 7

of well known names of functions or objects provided by the Flash Player could
indicate the use of a referenced object. Additionally a detailed analysis of all
references to the constant pool can reveal the purpose of each constant individ-
ually. A matching can be applied to the constant’s value in both cases, with or
without its context.

Tag and Action Matching Tags and Actions can both be matched by code,
which is documented in the format specification.

3.4 Sets of Analysation Patterns

The following case by case study is an attempt to define criteria for the detection
of attacks discussed above. Each criterion is composed of one or more analysation
patterns and relates directly to one of the attacks as described in 2.

Criteria can serve as a basis for automated filters such as filtering proxy
servers or browser plug-ins. The general idea is to analyse all data requested by
a web-browser, then detect SWF files and apply the criteria on the fly.

For each attack all of the following questions should be answered:

– Can the attack be recognised by using any combination of analysation pat-
terns, and how?

– Assuming an ordinary Flash banner advertisement is being analysed, what
are the security implications? This point is of particular interest, since anyone
can place arbitrary Flash files onto web-pages just by booking ad space. This
way banners equipped with appropriately prepared bytecode could reach and
exploit a vast number of target systems.

Redirections. Redirections can be accomplished by loading a URL, which in-
volves any of the following calls: LoadMovie, LoadMovieNum. These can be found
using the constant pool pattern matching. In addition there is the Action getURL.

Finding an occurrence of any such function is not enough here to assume
security implications. Ads, for example, regularly load data such as context or
location sensitive information into the running application. That means the URL
to be loaded would have to be processed further, e.g. matched against a whitelist
or blacklist of URLs. Unfortunately this URL could also be put together on the
fly incorporating external arguments. In fact it happens to be a common way
for banner ads to supply the embedded Flash with the redirection URL as an
argument. Since the argument is not known at the time of the analysis only the
mere existence of non-constant parameters given to the function calls mentioned
can be matched against safely.

ExternalInterface and DOM injections. The use of the ExternalInterface
can be matched by using the constant pool pattern matching. Unless there is
a reason why the Flash application should be allowed to access the underlying
DOM or any other JavaScript function, the use of this interface alone may be

8 fukami and Ben Fuhrmannek

an indication for security implications. As far as banner ads are concerned there
is no such reason.

Socket functions. The use of socket functions can be matched by using the
constant pool pattern matching. While it can happen that banner may take
external data for displaying (i.e. stock exchange information or special offers) to
be able to easily update information it is most likely that the existence of such
functions indicates a security risk. Ads would never have to use sockets.

Attacking the parser and analysis tools. Any code inconsistency not an-
ticipated by the programmer of a format parser may result in an undetermined
behaviour of the parser. If this includes granting the program access to memory
or functions normally not used by the program, it may be exploitable.

It is possible to check a SWF file for well known inconsistencies such as the
examples mentioned in section 3.3/Code Inconsistencies. However yet undiscov-
ered flaws in parsers could still pose a vulnerability. A common technique to
harden parsers against such attacks is format fuzzing.

3.5 Evaluation

The following list of freely available tools shows how the analysation patterns
described in section 3.3 can be put into practical use. It includes disassemblers
for SWF, ActionScript 2 and ActionScript 3 bytecode.

– Flare and Flasm: Flare[17] and the Open Source tool Flasm[18] can disassem-
ble SWF up to Version 8 including ActionScript 2 bytecode. The resulting
data is saved in human readable pseudocode.
They can be used for the analysation patterns ‘Constant Pool Pattern Match-
ing’ and ‘Tag and Action Matching’. In case of obfuscated SWF files the
resulting output is incomplete.

– Tamarin abcdump: The abcdump tool is part of the Tamarin project[19].
ActionScript 3 bytecode can be decompiled into pseudocode source code.
As such it is suitable for the ActionScript 3 equivalent of the ‘Constant
Pool Pattern Matching’. Obfuscation as described in 3.3 is not known for
ActionScript 3 bytecode by now.

– erlswf: The erlswf [16] toolkit provides an Erlang library for disassembly of
SWF files up to version 9. It has been designed with security as its main
focus. Unknown tags and the use of the branch offset obfuscation method
explained in section 3.3 can be recognised using the provided command line
tool. Up to date the analysis of ActionScript 2 bytecode is limited to the
DoAction and DoInitAction tags.
Erlang is a programming language designed for process oriented and con-
current software design. With this and the idea of a proxy as introduced in
section 3.4 in mind, the erlswf toolkit could be used to implement real-time
analysis of SWF files.

SWF and the Malware Tragedy 9

4 Conclusion

This paper reflects the current state of research in malware ads based on Adobe
Flash and has to be considered “work in progress”. So the findings in this paper
are far from being complete. While most static tools for analysing SWF were not
developed to be used for security testing and analysis, erlswf is known to be the
first with this intention (SWFIntruder is intended to be used for ActionScript 2
based SWF runtime analysis). However, erlswf is still missing some abilities, for
example full AVM2/ActionScript 3 support and support for ActionScript 2 tags
other than DoAction and DoInitAction.

With some of the tools mentioned in 3.5 (Flare, Flasm) static analysis is
much easier to use for a tester who is aware of critical ActionScript functions.
But neither Flare nor Flasm help much in building a tool chain for a quick real
time analysis or even a proxy and they are not supporting ActionScript 3 at all.

The conditions where exploitation through banners are possible depend very
much on the way how the SWF is embedded into the calling page and configura-
tion of the player. Ad networks are advised to supply the parameter allowScriptAccess
with the value never nad allowNetworking with the value internal or none
in order to make exploitation much harder.

Adobe should introduce a way for users to be notified when cross domain calls
are triggered from inside a SWF and the ability to block this requests before
they happen. One way could be another option for general configuration.

In general there are no known official guidelines for securely testing and
deploying banner ads by now beside some tips from Adobe covering general
Flash security considerations [29]. Such guideline should contain for example:

– A description how SWF has to be tested in a safe environment, what tools
need to be used and how the results have to be interpreted by the testers

– Functions which are not allowed inside a SWF for safe deployment (i.e.
Socket, ExternalInterface, eval’d ActionScript 2 code)

– How to safely embed SWF into the ad code

Another interesting topic which goes beyond the scope covered by this pa-
per is obfuscation of SWF. While some Flash developers think it is important
for them to obfuscate their work in order to protect their intellectual property
from decompiling and analysis, from the security perspective all obfuscated SWF
should be completely rejected, front and foremost when being used as a banner
ad.

References

1. John Viega, J.T. Bloch, Tadayoshi Kohno, and Gary McGraw. Its4: A static vulner-
ability scanner for C and C++ code. In Proceedings of the 16th Annual Computer
Security Applications Conference, 2000.

2. Sandi Hardmeier. Heise.de hit by malicious banner advertisement. Web-
site, https://msmvps.com/blogs/spywaresucks/archive/2008/01/15/1463622.

aspx, January 2008.

https://msmvps.com/blogs/spywaresucks/archive/2008/01/15/1463622.aspx
https://msmvps.com/blogs/spywaresucks/archive/2008/01/15/1463622.aspx

10 fukami and Ben Fuhrmannek

3. Sandi Hardmeier. Malicious advertisements and advertising fraud. What do we
know? Website, http://msmvps.com/blogs/spywaresucks/archive/2007/12/08/
1386804.aspx, December 2007.

4. Wikipedia: MPack (software). Website, http://en.wikipedia.org/wiki/MPack_
(software)

5. Paul Oliveria, Targeted Attack in Mexico: DNS Poison-
ing via Modems. Website, http://blog.trendmicro.com/

targeted-attack-in-mexico-dns-poisoning-via-modems/, January 2008.
6. Paul Oliveria, Targeted Attack in Mexico, Part 2: Yet An-

other Drive-By Pharming. Website, http://blog.trendmicro.com/

targeted-attack-in-mexico-part-2-yet-another-drive-by-pharming/,
March 2008.

7. Petko D. Petkov. Hacking the interwebs. Website, http://www.gnucitizen.org/
blog/hacking-the-interwebs/, January 2008.

8. fukami. DOM manipulation with Flash using ExternalInterface. Demo, http://
dom.flashsec.org/, March 2008.

9. Princeton Attack: DNS Attack Scenario. Website, http://www.cs.princeton.

edu/sip/news/dns-scenario.html, February 1996.
10. Martin Johns. (somewhat) breaking the same-origin policy by undermining

DNS pinning. Website, http://shampoo.antville.org/stories/1451301/, Au-
gust 2006.

11. Kanatoko Anvil. Anti-DNS Pinning + Socket in Flash. Website, http://www.

jumperz.net/, August 2006.
12. Collin Jackson, Adam Barth, Andrew Bortz, Weidong Shao, Dan Boneh. Pro-

tecting Browsers from DNS Rebinding Attacks. Paper, http://crypto.stanford.
edu/dns/dns-rebinding.pdf, October 2007.

13. David Neu, fukami. Design flaw in AS3 socket handling allows port probing. Web-
site, http://scan.flashsec.org, July 2007.

14. FlashSec: Advisories regarding Adobe Flash. Website, https://www.flashsec.

org/wiki/Advisories

15. Eric Lin. How to protect SWFs from decompilers? Website, http://www.

gotoandplay.it/_articles/2004/04/swfProtection.php, April 2004.
16. Ben Fuhrmannek. erlswf: Toolkit for diassembling SWF up to version 9. Tool,

http://code.google.com/p/erlswf/

17. Igor Kogan. Flare: ActionScript decompiler. Tool, http://www.nowrap.de/flare.
html

18. Igor Kogan. Flasm: Command line assembler/disassembler of ActionScript byte-
code. Tool, http://www.nowrap.de/flasm.html

19. Tamarin project:Open-Source implementation of the ECMAScript 4th edition
(ES4) language specification. Tool, http://www.mozilla.org/projects/tamarin/

20. Stefano Di Paola. SWFIntruder: Runtime analyzer for SWF. Tool, http://code.
google.com/p/swfintruder/, December 2007

21. Wade Alcorn. BeEF: Browser Exploitation Framework. Tool, http://www.

bindshell.net/tools/beef/

22. Petko D. Petkov. Backframe: Attack console for exploiting web browsers. Tool,
http://www.gnucitizen.org/projects/backframe/, October 2006

23. David A. Wheeler. Flawfinder. Tool, http://www.dwheeler.com/flawfinder,
2001.

24. Inc. Secure Software. Rats - rough auditing tool for security. Tool, http://www.
securesoftware.com/resources/download_rats.html, 2001.

http://msmvps.com/blogs/spywaresucks/archive/2007/12/08/1386804.aspx
http://msmvps.com/blogs/spywaresucks/archive/2007/12/08/1386804.aspx
http://en.wikipedia.org/wiki/MPack_(software)
http://en.wikipedia.org/wiki/MPack_(software)
http://blog.trendmicro.com/targeted-attack-in-mexico-dns-poisoning-via-modems/
http://blog.trendmicro.com/targeted-attack-in-mexico-dns-poisoning-via-modems/
http://blog.trendmicro.com/targeted-attack-in-mexico-part-2-yet-another-drive-by-pharming/
http://blog.trendmicro.com/targeted-attack-in-mexico-part-2-yet-another-drive-by-pharming/
http://www.gnucitizen.org/blog/hacking-the-interwebs/
http://www.gnucitizen.org/blog/hacking-the-interwebs/
http://dom.flashsec.org/
http://dom.flashsec.org/
http://www.cs.princeton.edu/sip/news/dns-scenario.html
http://www.cs.princeton.edu/sip/news/dns-scenario.html
http://shampoo.antville.org/stories/1451301/
http://www.jumperz.net/
http://www.jumperz.net/
http://crypto.stanford.edu/dns/dns-rebinding.pdf
http://crypto.stanford.edu/dns/dns-rebinding.pdf
http://scan.flashsec.org
https://www.flashsec.org/wiki/Advisories
https://www.flashsec.org/wiki/Advisories
http://www.gotoandplay.it/_articles/2004/04/swfProtection.php
http://www.gotoandplay.it/_articles/2004/04/swfProtection.php
http://code.google.com/p/erlswf/
http://www.nowrap.de/flare.html
http://www.nowrap.de/flare.html
http://www.nowrap.de/flasm.html
http://www.mozilla.org/projects/tamarin/
http://code.google.com/p/swfintruder/
http://code.google.com/p/swfintruder/
http://www.bindshell.net/tools/beef/
http://www.bindshell.net/tools/beef/
http://www.gnucitizen.org/projects/backframe/
http://www.dwheeler.com/flawfinder
http://www.securesoftware.com/resources/download_rats.html
http://www.securesoftware.com/resources/download_rats.html

SWF and the Malware Tragedy 11

25. SWF Format Specification by Adobe (requires registration). Specification, http:
//www.adobe.com/licensing/developer/

26. ABC Format Specification. Specification, http://www.adobe.com/devnet/

actionscript/articles/avm2overview.pdf

27. Socket connection timing can reveal information about network configura-
tion Website, http://kb.adobe.com/selfservice/viewContent.do?externalId=
kb402956

28. Adobe Flash Player Administration Guide Paper, http://www.adobe.com/

devnet/flashplayer/articles/flash_player_admin_guide/flash_player_

admin_guide.pdf

29. Adobe Flash Player Player 9 Security Guide Paper,http://www.adobe.com/
devnet/flashplayer/articles/flash_player_9_security.pdf

30. ActionScript 2 reference: MovieClip.getURL. http://livedocs.adobe.com/

flash/8/main/wwhelp/wwhimpl/common/html/wwhelp.htm?context=LiveDocs_

Parts&file=00001730.html

31. ActionScript 2 reference: MovieClip.loadMovie. http://livedocs.adobe.com/

flash/8/main/wwhelp/wwhimpl/common/html/wwhelp.htm?context=LiveDocs_

Parts&file=00002479.html

32. ActionScript 2 reference: flash.external.ExternalInterface. http://livedocs.

adobe.com/flash/8/main/wwhelp/wwhimpl/common/html/wwhelp.htm?context=

LiveDocs_Parts&file=00002200.html

33. Flex 2 Language Reference: flash.net.navigateToURL. http://livedocs.adobe.

com/flex/2/langref/flash/net/package.html#navigateToURL()

34. Flex 2 Language Reference: flash.net.URLRequest. http://livedocs.adobe.com/
flex/2/langref/flash/net/URLRequest.html

35. Flex 2 Language Reference: flash.external.ExternalInterface. http://livedocs.

adobe.com/flex/2/langref/flash/external/ExternalInterface.html

36. Flex 2 Language Reference: flash.net.Socket. http://livedocs.adobe.com/flex/
2/langref/flash/net/Socket.html

37. Flex 2 Language Reference: flash.net.XMLSocket. http://livedocs.adobe.com/
flex/2/langref/flash/net/ExternalInterface.html

License

This work is licensed under the Creative Commons Attribution-ShareAlike 2.5
License.

http://www.adobe.com/licensing/developer/
http://www.adobe.com/licensing/developer/
http://www.adobe.com/devnet/actionscript/articles/avm2overview.pdf
http://www.adobe.com/devnet/actionscript/articles/avm2overview.pdf
http://kb.adobe.com/selfservice/viewContent.do?externalId=kb402956
http://kb.adobe.com/selfservice/viewContent.do?externalId=kb402956
http://www.adobe.com/devnet/flashplayer/articles/flash_player_admin_guide/flash_player_admin_guide.pdf
http://www.adobe.com/devnet/flashplayer/articles/flash_player_admin_guide/flash_player_admin_guide.pdf
http://www.adobe.com/devnet/flashplayer/articles/flash_player_admin_guide/flash_player_admin_guide.pdf
http://www.adobe.com/devnet/flashplayer/articles/flash_player_9_security.pdf
http://www.adobe.com/devnet/flashplayer/articles/flash_player_9_security.pdf
http://livedocs.adobe.com/flash/8/main/wwhelp/wwhimpl/common/html/wwhelp.htm?context=LiveDocs_Parts&file=00001730.html
http://livedocs.adobe.com/flash/8/main/wwhelp/wwhimpl/common/html/wwhelp.htm?context=LiveDocs_Parts&file=00001730.html
http://livedocs.adobe.com/flash/8/main/wwhelp/wwhimpl/common/html/wwhelp.htm?context=LiveDocs_Parts&file=00001730.html
http://livedocs.adobe.com/flash/8/main/wwhelp/wwhimpl/common/html/wwhelp.htm?context=LiveDocs_Parts&file=00002479.html
http://livedocs.adobe.com/flash/8/main/wwhelp/wwhimpl/common/html/wwhelp.htm?context=LiveDocs_Parts&file=00002479.html
http://livedocs.adobe.com/flash/8/main/wwhelp/wwhimpl/common/html/wwhelp.htm?context=LiveDocs_Parts&file=00002479.html
http://livedocs.adobe.com/flash/8/main/wwhelp/wwhimpl/common/html/wwhelp.htm?context=LiveDocs_Parts&file=00002200.html
http://livedocs.adobe.com/flash/8/main/wwhelp/wwhimpl/common/html/wwhelp.htm?context=LiveDocs_Parts&file=00002200.html
http://livedocs.adobe.com/flash/8/main/wwhelp/wwhimpl/common/html/wwhelp.htm?context=LiveDocs_Parts&file=00002200.html
http://livedocs.adobe.com/flex/2/langref/flash/net/package.html#navigateToURL()
http://livedocs.adobe.com/flex/2/langref/flash/net/package.html#navigateToURL()
http://livedocs.adobe.com/flex/2/langref/flash/net/URLRequest.html
http://livedocs.adobe.com/flex/2/langref/flash/net/URLRequest.html
http://livedocs.adobe.com/flex/2/langref/flash/external/ExternalInterface.html
http://livedocs.adobe.com/flex/2/langref/flash/external/ExternalInterface.html
http://livedocs.adobe.com/flex/2/langref/flash/net/Socket.html
http://livedocs.adobe.com/flex/2/langref/flash/net/Socket.html
http://livedocs.adobe.com/flex/2/langref/flash/net/ExternalInterface.html
http://livedocs.adobe.com/flex/2/langref/flash/net/ExternalInterface.html

	SWF and the Malware Tragedy
	fukami and Ben Fuhrmannek
	Introduction
	Common Attacks
	Redirections and Arbitrary Requests
	Attacks using ExternalInterface
	Socket Functions
	Attacking the Parser and Analysis Tools

	Preventing Attacks
	Static Code Analysis
	SWF File Format
	Analysation Patterns
	Sets of Analysation Patterns
	Evaluation

	Conclusion

